
Bayesian Inference and Computational Methods 2009

Homework 5

1. Simulation of a general finite state space Markov chain. The simple R function
markov defined below takes as its arguments the transition matrix P of a finite state-
space Markov chain, an initial state x0 of the chain, and a discrete time n up to
which the chain is to be simulated. The function returns as its value a simulation
(realisation) of the chain consisting of the simulated states at times 1, 2, . . . , n.

markov = function(P, x0, n)

{

# R function to simulate the first n steps

# of a Markov chain with transition matrix P and

#initial state x0

R = t(apply(P, 1, "cumsum"))

x = numeric(n)

r = R[x0, ]

for(i in 1:n) {

u = runif(1)

x[i] = 1 + sum(u > r)

r = R[x[i], ]

}

return(x)

}

(a) Understand carefully the workings of the function markov. In particular under-
stand the role of the matrix R.

(b) Use the function to simulate 100000 steps of each of the Markov chains whose
transition matrices are given below. In each case use the simulation to estimate
the stationary distribution of the chain, and compare it with the true value.

i. The device state Markov chain of the lecture notes with transition matrix
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ii. The taxicab driver Markov chain of Homework 4 with transition matrix
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(c) Consider the Markov chain {Xn, n ≥ 0} with state space {0, 1, . . . , c} and
transition probabilities given by

pi,i+1 = p, pi,i−1 = 1 − p,

for 1 ≤ i ≤ c − 1, where 0 < p < 1, and

p0,1 = pc,c−1 = 1

(with pij = 0 otherwise). For the case c = 10, p = 1/3, use the function markov

to estimate the stationary distribution of this chain, and also the expected value
of the random variables Xn under this stationary distribution. Compare your
results with the exact values of these quantities (which may be obtained via
the solution of the detailed balance equations).



2. Simulation of a distribution on the integers. Suppose that a target distribution

takes values on the set Z of integers, and has probability function proportional to
some known function π. Assume also that the set S on which π takes nonzero
values consists of consecutive integers. We may construct a Markov chain {Xn}n≥0—
formally with the state space Z but which never takes values outside the set S—whose
stationary distribution is the given target by using an instance of the random-walk

Metropolis algorithm as follows.

• The proposal is to jump one state up or one state down with equal probabilities
1/2, i.e. the matrix q(·, ·) of proposal probabilities is given by, for all x,

q(x, x − 1) =
1

2

q(x, x + 1) =
1

2
q(x, y) = 0 otherwise.

• The acceptance probabilities α(·, ·) are now given as usual by, for each x,

α(x, x − 1) = min

(

1,
π(x − 1)

π(x)

)

α(x, x + 1) = min

(

1,
π(x + 1)

π(x)

)

(and in the event of a proposal to move to x − 1 or x + 1 not being accepted,
the chain remains in the same state x for the next time instant).

This algorithm is implemented by the R function rwm.int available at
http://www.ma.hw.ac.uk/~stan/f73bi/R/

List the function for details on how to use it. Note in particular that the first
argument of this function is the name of another R function to evaluate π(x) at any
integer x.

For each of the following sets S and functions π, use this scheme to simulate a
chain whose stationary distribution is proportional to π. In each case use the chain
to estimate the probability that the target distribution takes the value x for each
0 ≤ x ≤ 10, and also to estimate the mean and the standard deviation of the target
distribution (where these exist). Compare your answers with known results where
possible. [Note also that you should probably use a burn-in period of around 1000
steps of the chain (in this simple problem it would probably also be safe to have no
burn-in period), followed by a simulation consisting of, say, 100, 000 further steps of
the chain.]

(a) S = {0, 1, . . . , 10} and π(x) = 1 for all x ∈ S;

(b) S = {0, 1, . . . , 10} and π(x) = 1/2x for all x ∈ S;

(c) S = {0, 1, 2, . . . } and π(x) = 4x/x! for all x ∈ S;

(d) S = {1, 2, . . . } and π(x) = x−3 for all x ∈ S.

http://www.ma.hw.ac.uk/~stan/f73bi/R/


3. Random-walk Metropolis. Recall that the Metropolis algorithm is the special case
of the Metropolis-Hastings algorithm in which the proposal q(·, ·) satisfies q(x, y) =
q(y, x) for all x, y ∈ S. Suppose now that the state space S is either the set of
integers or the real line. The random-walk Metropolis algorithm further requires
that q(x, y) = q(|y−x|) for some function q (on the positive integers or positive real
line as appropriate). Thus at each step the proposal is to make a jump from the
current state, the distribution of the size of the jump being always the same and
symmetric about 0. As usual for the Metropolis algorithm, given that the proposal
is to move from x to y, the acceptance probability is

α(x, y) = min

(

1,
π(y)

π(x)

)

.

Design and implement a random-walk Metropolis algorithm to simulate from a
Γ(2, 1) distribution using a normal distribution as the the proposal distribution.
(Note that we require that the size of the proposed jump should have mean 0, or
equivalently that the mean of the proposal distribution should be equal to the current
state.)

(a) By examining a time series plot of the output from the chain investigate how
the mixing properties of the chain depend on the variance of the proposal
distribution.

(b) Investigate how the dynamics of your chain are affected by the choice of initial
state.

Hint: you may find helpful the R function rwm.norm available at
http://www.ma.hw.ac.uk/~stan/f73bi/R/

As usual, list the function for details on how to use it. Note in particular that
the first argument of this function is the name of another R function to evaluate a
function proportional to the target density.

4. Allowed and forbidden states.

(a) Suppose that r balls are distributed among n consecutive boxes, subject to the
constraints that no box may contain more than one ball and no three consecutive
boxes may each contain a ball, and in which all allowed assignments of balls
to boxes are equally likely. Write a programme, for general n and r < n,
to implement the Metropolis algorithm, in which the proposal is to choose at
random a pair of boxes and to swap their contents. (Since the target distribution
assigns the same probability to all allowed states, the proposal is accepted if
and only if the resulting state is allowed.) The program should calculate an
estimate of the probability π(i) that each box i contains a ball. In the case
n = 20, r = 6, investigate how this probability varies with i.

(b) Consider also the modification to the above example in which the number of
balls is not fixed and in which, again subject to the above constraints, all
assignments of balls to boxes are equally likely. A simple proposal is now to
choose any box at random and to change its occupancy state. Again write a
programme, for general n and r < n, to implement the suggested algorithm
and to calculate an estimate of the probability π(i) that each box i contains a
ball. In the case n = 20 investigate how this probability varies with i.

http://www.ma.hw.ac.uk/~stan/f73bi/R/


5. Bayesian inference for the gamma distribution with known shape parameter. A set of
observations y1, y2, . . . , yn is known to be reasonably modelled as a random sample
from a Γ(4, λ) distribution.

(a) Suppose that the prior distribution for λ is taken to be Exp(0.1) and that, for
a set of n = 20 observations, it is found that

∑20
i=1 yi = 64.0. Show that the

posterior distribution of λ is given by

π(λ;y) ∝ λ80e−64.1 λ.

(b) Use a random-walk Metropolis algorithm with normally distributed step sizes
to simulate from this posterior distribution. Use trial and error to identify a
suitable standard deviation of the step-size. Hint: you may again find helpful
the R function rwm.norm available at
http://www.ma.hw.ac.uk/~stan/f73bi/R/

(c) Estimate the mean and variance of the posterior distribution of λ from a suit-
ably long run of the chain. Examine the shape of the histogram for this poste-
rior distribution and estimate its mode. In all cases compare your results with
the theoretical values—which are obtainable analytically for this particularly
simple posterior distribution.

(d) Estimate a 90% equal-tailed credible interval for λ from the output of the
chain. (You can do this using the R function sort which arranges the elements
of a vector in increasing order. The end points of a credible interval can then
be obtained from the ordered Markov chain output. Alternatively, and more
simply, you can use the R function quantile.)

(e) How does the posterior distribution of λ change when its prior is taken instead
to be Exp(1)?

6. Bayesian inference for the truncated Poisson distribution. In a random sample of
size 30 from an assumed Poisson distribution with unknown parameter (mean) λ, 20
of the observations were as follows

3 4 4 4 4 5 5 6 7 7 7 8 8 8 9 9 10 10 10 10

while a further 10 observations took values which were greater than 10.

(a) Show that the likelihood function for λ, given these data, is given by

L(λ) ∝ e−20λλ138

(

1 − e−λ

10
∑

i=0

λi

i!

)10

.

(b) Suppose that the prior distribution for λ is taken to be Exp(0.1). Find the
posterior distribution of λ.

(c) Use a random-walk Metropolis algorithm with normally distributed step sizes
to simulate from this posterior distribution. Use trial and error to identify a
suitable standard deviation of the step-size.

(d) Estimate the posterior mean and variance of λ from a suitably long run of the
chain. Examine the shape of the histogram for λ and estimate its posterior
mode. Estimate also a 90% equal-tailed credible interval for λ from the output
of the chain.

(e) In fact the data were a random sample from a Pois(9) distribution. Generate a
sample of size 300 from this distribution, similarly failing to record the precise
values of observations in excess of 10. Investigate the extent to which inference
about λ is improved by the use of this larger sample.
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Homework 5 – Solutions

1. Simulation of a general finite state space Markov chain.

(a) Exercise.

(b) i. Suitable R code is

> P = matrix(nr=3,c(1/2,0,1,1/4,3/4,0,1/4,1/4,0)) # construct P

> P # check

[,1] [,2] [,3]

[1,] 0.5 0.25 0.25

[2,] 0.0 0.75 0.25

[3,] 1.0 0.00 0.00

> sim = markov(P,1,100000) # simulate 100000 steps

> table(sim)/100000 # estimate stationary dist

sim

1 2 3

0.39919 0.40009 0.20072

Note that the estimate compares well with the true value π = (0.4, 0.4, 0.2)

ii. Exercise.

(c) The chain may be simulated, and its stationary distribution estimated, as in
the example above. Note that the function markov and its output assume the
states to be labelled 1, 2, . . . , 11 rather than 0, 1, . . . , 10. Hence, if sim is again
the vector of simulated states, appropriate code to estimate the mean of the
stationary distribution is

mean(sim) - 1

Solution of the detailed balance equations gives that the true stationary distri-
bution π is given by

πn =
3

2n
π0, n = 1, 2, . . . 9,

π10 =
1

29
π0.

where π0 =
(

1 − 2−8
)−1

.

2. Simulation of a distribution on the integers.

(a) This is similar to 2b below. It is only necessary to modify the R function
calculating the target distribution by replacing 2^(-y) by 1.

(b) Appropriate R code, using the supplied functions is

> sim = rwm.int(targ2b,0,101000) # simulate 101000 steps

> length(sim) # check length of result

[1] 101001

> sim = sim[-(1:1001)] # remove burn-in period

> length(sim)

[1] 100000

> table(sim)/100000 # estimate stat dist of chain

sim

0 1 2 3 4 5 6 7

0.50170 0.24864 0.12308 0.06189 0.03115 0.01678 0.00811 0.00423

8 9 10

0.00214 0.00139 0.00089



The normalising constant required to turn the given function π into a distri-
bution is k = (2 − 2−10)−1, so that the required target distribution is given
by

0 1 2 3 4 5 6 7

0.50024 0.25012 0.12506 0.06253 0.03127 0.01563 0.00782 0.00391

8 9 10

0.00195 0.00098 0.00049

(c) This is similar to 2b above. Note that the target distribution is here easily seem
to be Pois(4).

(d) Again this is similar to 2b above. The normalising constant is here not so easily
determined theoretically.

3. Random-walk Metropolis. Note that this question is mostly a practical exercise using
the supplied R functions.

(a) Good values of the variance (for good mixing) are those comparable in magni-
tude to 1.

(b) Initial states x where x is large (and so has low density under the given target
distribution) require sufficient burn-in time for the simulated chain to move to
the high density region.

4. Allowed and forbidden states. These are practical exercises.

5. Bayesian inference for the gamma distribution with known shape parameter.

(a) The density of the Γ(4, λ) distribution is given by fλ(y) = 1
6
λ4y3e−λy for y ≥ 0

(and fλ(y) = 0 for y < 0), and so for the given data, the likelihood function is
given by

L(λ;y) ∝ λ80e−64 λ,

again for y ≥ 0. The prior distribution for λ is given by π(λ) ∝ e−0.1 λ for
y ≥ 0. Hence the posterior distribution is as given.

(b) A suitable R function to calculate the target posterior distribution (which is in
fact Γ(81, 64.1)) except for the normalising constant, which we pretend we do
not know, is given by

targ55 = function(lambda) {

targ = 0

if (lambda >= 0) targ = lambda^80 * exp(-64.1*lambda)

return(targ)

}

A suitable standard deviation of the step size for the suggested random-walk

Metropolis algorithm (to simulate a Markov chain whose stationary distribution
is the required posterior distribution) with normally distributed steps is any
value reasonably comparable with 1.

(c) As usual a long run of the chain may be simulated and a suitable burn-in period
removed. Since the stationary distribution of the chain is the required (target)
posterior distribution for λ, the mean and variance of this posterior distribu-
tion may be estimated from the sample mean and variance of the sequence of
observed states. The true mean and variance of the posterior distribution are
1.2637 and 0.019714 respectively, while its mode is 1.2480.

(d) Letting sim denote the sequence of successive states in a sufficiently long run
of the chain, and again recalling that their sample distribution should estimate
the posterior distribution for λ, a 90% equal-tailed credible interval for λ is
most easily obtained via the following R code



> quantile(sim,c(0.05,0.95))

5% 95%

1.0419 1.5048

(e) When the prior distribution for λ is taken instead to be Exp(1), the posterior
distribution changes very little, reflecting the relative insensitivity of the latter
to the prior when there is sufficient data.

6. (a) Let ∗ denote the “observation” that a value greater than 10 has been obtained.
Then the probability function for y is given by

f(y) =











e−λ λy

y!
, y = 0, 1, . . . , 10

1 − e−λ
∑10

i=0

λi

i!
, y = ∗.

Hence, for the given data, the likelihood function is as given.

(b) The posterior distribution for λ is given by

π(λ |y) ∝ e−20.1 λλ138

(

1 − e−λ

10
∑

i=0

λi

i!

)10

.

(c) Practical exercise.

(d) Practical exercise.

(e) Practical exercise.
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