
Bayesian Inference and Computational Methods 2009

Homework 6

1. Suppose that the bivariate density π(x, y) on R
2
+ (i.e. the positive quadrant {(x, y) : x ≥

0, y ≥ 0}) is given by, for some parameters λ > 0, µ > 0,

π(x, y) ∝ exp(−[λx+ λy + µxy]), x ≥ 0, y ≥ 0.

(a) Show that the conditional distribution of y, given x, is Exp(λ+ µx), and simi-
larly that the conditional distribution of x, given y, is Exp(λ+ µy).

(b) Write a programme using the Gibbs sampler to sample from π, using these
conditional distributions. (One possible such programme is the R function
gscexp available at http://www.ma.hw.ac.uk/~stan/f73bi/R/) For the case
λ = µ = 1, investigate both theoretically and practically the mixing properties
of the sampler.

(c) Again for the case λ = µ = 1, generate a histogram estimate of the marginal
density of x. Estimate also the mean and the standard deviation of the marginal
distribution of x.

(d) Estimate the probability, under the joint distribution of x and y, that both x
and y are less than 1.

2. Let π(x, y) denote a bivariate density which is uniform over the region bounded by
the lines x = 0, x = 1, x+ y = 1, and x+ y = 2.

(a) Identify the conditional densities π(y |x), π(x | y), for 0 < x < 1 and 0 < y < 2.
(A sketch of the region will help).

(b) Write a programme using the Gibbs sampler to sample from π, using these
conditional densities.

(c) Generate histogram estimates of the marginal densities π(x) and π(y), and
verify that your algorithm produces estimates that agree with the theoretical
marginal densities (which you will have to work out!).

(d) Suppose that you used a similar algorithm to sample from a density that was
uniform on the region bounded by x = 0, x = 1, x + y = 1, and x + y = 1.1.
By considering the shape of this region, suggest why your Gibbs sampler would
not explore the target density efficiently.

3. Suppose that the bivariate density π(x, y) on R
2 is given by

π(x, y) =

{

kxy, x ≥ 0, y ≥ 0, x+ y ≤ 1,

0 otherwise.

for some normalising constant k > 0.

(a) Show that the conditional density π(y |x) of y, given x, is given by

π(y |x) =







2y

(1 − x)2
, 0 ≤ y ≤ 1 − x,

0 otherwise.

Clearly a similar result holds for the conditional density π(x | y) of x, given y.

(b) Write a programme using the Gibbs sampler to sample from π, using these
conditional distributions. (You will find it easiest to simulate from these condi-
tional distributions by using the inverse transform method. One possible such
programme is the R function gsbv available at
http://www.ma.hw.ac.uk/~stan/f73bi/R/

but you will learn much more if you write your own.) Investigate both theoret-
ically and practically the mixing properties of the sampler.

http://www.ma.hw.ac.uk/~stan/f73bi/R/
http://www.ma.hw.ac.uk/~stan/f73bi/R/


(c) Generate a histogram estimate of the marginal density of x. Estimate also
the unconditional (marginal) probability that x ≤ 1/4, and compare with the
theoretical value.

(d) Estimate the probability, under the joint distribution of x and y, that both x
and y are less than 1/2.

4. Suppose that y = (y1, . . . , yn) is a random sample of size n from a normal distribution
with unknown mean µ and unknown variance σ2 = 1

ψ . The prior distributions of µ
and ψ are taken to be independent, with µ having an improper prior distribution
which is uniform on R (i.e. constant density on R), and ψ having an improper prior
distribution whose density on R+ is proportional to ψ−1 (note that the latter is
equivalent to a constant, improper, density for logψ).

(a) Show that the posterior joint distribution of (µ,ψ) is given by the density

π(µ,ψ |y) ∝ ψ
n−2

2 exp

(

−
ψ

2

n
∑
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(yi − µ)2

)
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n−2
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(n− 1)s2 + n(ȳ − µ)2
)

)

,

where ȳ = 1
n

∑n
i=1 yi is the sample mean and s2 =

∑n
i=1(yi − ȳ)2/(n − 1) is

the sample variance. Deduce that the conditional distribution of ψ given µ is

Γ
(

n
2
, 1

2

(

(n− 1)s2 + n(ȳ − µ)2
))

, while the conditional distribution of µ given

ψ is N
(

ȳ, (nψ)−1
)

.

(b) Write a programme (taking as its input the vector y of observations and com-
puting initially ȳ and (n− 1)s2 as sufficient statistics, given this model) to use
the Gibbs sampler to simulate from the above posterior distribution of (µ,ψ).
(Recall also that the R function rnorm uses the standard deviation—not the
variance—as its scale parameter.)

(c) Generate a random sample of size 20 from an N (1, 0.5) distribution (standard
deviation (0.5)1/2). Use the Gibbs sampler to investigate the above posterior
distribution of (µ,ψ) given your data. As always verify the mixing properties of
the Gibbs sampler. By generating a suitably long sequence of iterates from the
chain, estimate the posterior mean of each of the parameters, and the posterior
probabilities that µ > 1.5 and that σ2 > 0.75. Estimate also 95% equal-tailed
credible intervals for µ and for ψ.

(d) Repeat these calculations for a sample of size 60 from an N (1, 0.5) distribution.

(e) From the results of Section 1.5.1 of the lecture notes it follows that (i) the
marginal posterior distribution of µ is such that

µ− ȳ

s/n1/2
∼ tn−1,

and (ii) the marginal posterior distribution of ψ is such that (n−1)s2ψ ∼ χ2
n−1.

Use these results to check whether your Gibbs sampler is working correctly.



5. Let n1 and n2 denote the number of calls being served at any one time by each of
two adjacent mobile phone masts. The joint distribution of n1 and n2 is given by
the probability function

π(n1, n2) = a
λn1

1

n1!

λn2

2

n2!
φ(n1, n2)

where λ1 > 0, λ2 > 0, φ(n1, n2) ≤ 1 for all n1, n2 and φ(0, 0) = 1, and a is
the appropriate normalising constant. Thus φ(n1, n2) represents the reduction in
the probability of the configuration (n1, n2), relative to (0, 0), due to interference
between the two masts.

(a) Suppose that

φ(n1, n2) =

{

1, n1 + n2 ≤ N

0, n1 + n2 > N,

for some N which denotes the maximum number of calls which can be in
progress at any time. Show that the conditional distributions π(n2|n1) and
π(n1|n2) are both truncated Poisson distributions. Write a program using the
Gibbs sampler to simulate the joint distribution π(n1, n2) of n1 and n2 and
to estimate (via histograms) the marginal distributions of n1 and n2, their
means, and also the constant a = π(0, 0). Carry out the estimations in the case
λ1 = λ2 = 20 and N = 30. (You may wish to compare your results with the
theoretical values, which are here computable.)

(b) Suppose instead that φ(n1, n2) = αn1n2 for some α < 1. Find the conditional
distributions π(n2|n1) and π(n1|n2) in this case. Modify the Gibbs sampler of
the first part of the question to estimate (again via histograms) the marginal
distributions of n1 and n2, together with their means, in the case λ1 = λ2 = 20
and α = 1/2.

6. (Challenging.)

(a) Write a program using the Gibbs sampler for the spatial process considered in
the lecture notes. In the case N = 11, α = 1, β = 0.9, estimate the probability
that the vertex (6, 6) is in the state 1.

(b) Adapt the program to study also the cases where (a) all states on the boundary
are constrained to be 0, (b) all states on the boundary are constrained to be
1. For N = 11, α = 1, β = 0.9, investigate how the probability that the vertex
(6, 6) is in the state 1 varies between these two cases.

(c) Investigate the difficulties caused by using values of β far from 1.
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Homework 6 – Solutions

1. (a) The conditional density of y, given x, is given by

πy |x(y |x) ∝ exp(−[λx+ λy + µxy])

∝ exp(−(λ+ µx)y),

which corresponds to an Exp(λ + µx) distribution. The second result follows
similarly.

(b) The supplied R function gscexp can be used, for example, as follows.

gs = gscexp(100000,1,1)

plot(gs[1:1000,])

plot(gs[1:100,],type=’l’)

The mixing is clearly very good, as can also be argued theoretically by consider-
ing the effects of simulating alternately from the two conditional distributions.

(c) Noting that gs[,1] corresponds to the sequence of simulations of the x coor-
dinate of the chain, we can treat this sequence as a sample from the marginal
distribution of x. A long simulation as above gives estimates of the mean and
standard deviation of this marginal distribution of 0.68 and 0.74 respectively.

(d) R code to estimate the probability, under the joint distribution of x and y, that
both x and y are less than 1 is given, for example, by

sum(gs[,1]<1 & gs[,2]<1)/100000

and gives an estimate of 0.57.

2. (a) For 0 < x < 1, the conditional distribution of y, given x, is U(1−x, 2−x). For
0 < y ≤ 1, the conditional distribution of x, given y, is U(1 − y, 1), while for
1 < y < 2, the conditional distribution of x, given y, is U(0, 2 − y).

(b) A programme using the Gibbs sampler to sample from π may be constructed
by suitably modifying the R function gscexp used earlier. Not the need to
distinguish between values of y between 0 and 1 and between 1 and 2.

(c) Again we may proceed as in the earlier question. Note that the theoretical
marginal distribution of x is U(0, 1), while that of y is given by the density

π(y) =











y, 0 < y ≤ 1,

2 − y, 1 < y < 2,

0, otherwise.

(d) A sketch of the region would show clearly that in this case the Gibbs sampler
(which, recall, samples alternately from the conditional distribution of y given
x and from the conditional distribution of x given y) would mix rather slowly.



3. (a) Clearly the conditional density π(y |x) of y, given x, is of the form

π(y |x) =

{

k′y, 0 ≤ y ≤ 1 − x,

0 otherwise.

for an appropriate normalising constant k′. The requirement that the integral
of the density is 1 shows k′ = 2/(1 − x)2.

(b) The R code

> gs = gsbv(100000)

> plot(gs[1:100,],type=’l’)

> plot(gs[1:1000,])

shows the mixing properties of the Gibbs sampler to be very good in this case.
This is also not difficult to see by considering the theoretical behaviour of the
sampler.

(c) The unconditional (marginal) probability that x ≤ 1/4 may be estimated by

sum(gs[,1]<=1/4)/100000

and compare with the theoretical value of 67/256.

(d) Appropriate R code is

sum(gs[,1]<1/2 & gs[,2]<1/2)/100000

Again the result may be compared with the theoretical value (exercise).

4. (a) The prior joint density is given by π(µ,ψ) ∝ ψ−1, and so the posterior joint
density is immediate on writing down the likelihood function associated with
the data. The required conditional distributions now follow immediately.

(b) The required R function is entirely analogous to previous R functions for the
Gibbs sampler.

(c) This is a practical exercise, the results to be confirmed using the theory in part
(e).

(d) This is again a practical exercise.

(e) The mean of the posterior distribution of µ is ȳ, while the posterior probability
that µ > 1.5 is

P

(

T >
1.5 − ȳ

s/n1/2

)

where the random variable T ∼ tn−1. A 95% equal-tailed credible interval for
µ is given by

(

ȳ −
s

n1/2
tn−1,0.975, ȳ −

s

n1/2
tn−1,0.975

)

where tn−1,0.975 is the 0.975-quantile of the tn−1 distribution—exactly as the
95% confidence interval of classical statistics in this case. The results for ψ
(exercise) similarly correspond to those obtained using classical statistics.



5. (a) For the given function φ, the conditional distribution of n2 given n1 has prob-
ability function

φ(n2 |n1) =







a′
λn2

2

n2!
, 0 ≤ n2 ≤ N − n1,

0, otherwise,

for some appropriate normalising constant a′. This is a truncated Poisson
distribution. Similarly the conditional distribution of n1 given n2 is a truncated
Poisson distribution.

The R function gsmp at http://www.ma.hw.ac.uk/~stan/f73bi/R/) uses the
Gibbs sampler to simulates the joint distribution π(n1, n2) of n1 and n2. It
uses rejection sampling to simulate the conditional distributions. Suitable code
(with sample output) to estimate the marginal distribution of n1 and its mean,
for the given parameters, is given by

> gs = gsmp(100000,20,20,30)

> plot(gs[1:1000,], type=’l’) # show distribution and check mixing

> histogram(gs[,1])

> table(gs[,1])/100000

0 3 4 5 6 7 8

0.00001 0.00005 0.00020 0.00077 0.00267 0.00705 0.01539

9 10 11 12 13 14 15

0.03004 0.05111 0.08189 0.10967 0.12971 0.13773 0.13273

16 17 18 19 20 21 22

0.10851 0.08238 0.05246 0.03100 0.01584 0.00686 0.00264

23 24 25

0.00094 0.00029 0.00006

> mean(gs[,1])

[1] 14.0159

Note also the general appearance of the joint distribution, and the very good
mixing properties of the Gibbs sampler in this case.

The joint distribution can also be computed exactly via, for example, the fol-
lowing R code

> tp = dpois(0:30,20) # Poisson probs

> pp = tp%o%tp # outer product

> for(i in 1:31) for(j in 1:31) if(i+j>32) pp[i,j]=0 # truncate

> pp = pp/sum(pp) # normalise

> ppmarg = apply(pp,1,’sum’) # marginal probs

> sum(ppmarg) # check

[1] 1

> sum(0:30*ppmarg) # calculate mean

[1] 14.01387

> pp[1,1]

[1] 6.886154e-17 # calculate a

(b) The conditional distribution of n2 given n1 is now Pois(λ2α
n1), while that of

n1 given n2 is Pois(λ1α
n2).

The Gibbs sampler of the first part of the question is easily modified (see the
R function gsmp2 at http://www.ma.hw.ac.uk/~stan/f73bi/R/). However,
in this case its mixing properties are extremely poor. This is closely related to
the pronounced bimodality of the marginal distributions of n1 and n2.

6. This is again a practical exercise!
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