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In the notes you have there is a statement (SZ, p.9) that if we are given a
normal distribution with mean which is a priori normally distributed then
it is also a posteriori normally distributed. In the notes you are asked to
perform some tedious algebraic manipulations in order to find out the exact
posterior distribution.

The problem with this approach is that, even if do the algebra correctly,
you will not understand why the posterior is again normal and where its
parameters come from.

I always maintain that it is impossible to learn something unless you under-
stand it. So, to actually understand the result, we shall proceed in small,
easy-to-digest, steps.

Recall that the density of a standard normal random variable X is

ϕ(x) = (2π)−1/2 exp(−x2/2).

We define N (µ, σ2) to be the law of σX + µ. The density of N (µ, σ2) is

ϕµ,σ2(x) =
1

σ
ϕ
(x − µ

σ

)

.

Definition 1. Recall that the random variables (X1, . . . ,Xd) are said to be
multivariate normal (or jointly normal, or jointly Gaussian) if any linear
combination of them is normal.

Exercise 1. Find the joint density (if it exists) of d jointly normal random
variables and state a necessary and sufficient condition under which this
density exists.

Hint: Let R be the matrix with entries the covariances between the variables.
A necessary and sufficient condition for the existence of density is that R be
non-singular matrix (its determinant must be nonzero). The joint density
is found by considering Definition 1.

Exercise 2. Show that if (X,Y ) are jointly normal and uncorrelated then
they are independent.

Lemma 1. If (U, V ) are jointly normal with EU = EV = 0, EV 2 6= 0 then
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(i) E(U |V ) is a linear function of V ; that is,

E(U |V ) = αV, where α =
EUV

EV 2
.

(ii) var(U |V ) is not a random variable; in fact,

var(U |V ) = var(U) − var(E(U |V )) .

(iii) the law of U conditional on V is N
(

E(U |V ), var(U |V )
)

.

Proof. Assume that we have shown that E(U |V ) = αV for some real num-
ber α. We can find this α by recalling that, by definition of conditional
expectation, U − αV and any (linear or nonlinear) function of V must be
uncorrelated. In particular, U − αV and V are uncorrelated:

E[(U − αV )V ] = 0. (1)

This gives α = EUV/EV 2. To show that E(U |V ) = αV with α as above,
observe that (1) and Exercise 2 imply the very important fact that

U − αV and V are independent. (2)

Hence
E(U − αV |V ) = E(U − αV ) = 0.

But U = (U − αV ) + αV and so E(U |V ) = E(U − αV |V ) + E(αV |V ) =
0 + αE(V |V ) = αV , as claimed. So (i) holds. To show (ii), recall that

var(U |V ) = E
(

(U − E(U |V ))2|V
)

,

and use again the important fact (2) to get rid of the conditioning with
respect to V :

var(U |V ) = E
(

(U − E(U |V ))2
)

.

But U = (U − E(U |V )) + E(U |V ), and, by independence,

var(U) = var(U − E(U |V )) + var(E(U |V ))

and so (ii) holds. The last part (iii) follows again from the important obser-
vation (2).
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Exercise 3. Suppose that EU,EV are not necessarily zero. Then argue that

E(U |V ) = E(U |V − EV ) = E(U − EU |V − EV ) + EU,

where the first equality follows from the fact that V and V − EV convey
the same information, while the second equality is trivial. Thus reduce the
problem to the previous case, therefore justifying the formula

E(U |V ) = α(V − EV ) + EU,

where α = E[(U − EU)(V − EV )]/ var(V ), as long as var(V ) 6= 0. What
happens when var(V ) = 0?

Interpretation. Variances measure (squared) lengths of vectors. Corre-
lation corresponds to inner product. Zero correlation means orthogonality.
In the Gaussian World, E(U |V ) corresponds to the projection of U onto
the space defined by V . The Pythagorean theorem holds: the square of the
hypotenuse of a right triangle equals the sum of the squares of the other two
sides.

E(   |    )U V

var(U|V)

E(   |    )U Vvar( )

var(  )U

U

V

We can now show the main result. The statement on p.9 of the SZ notes is
that

...we have n independent observations y = (y1, . . . , yn) from a
normal distribution N (µ, σ2) with known variance σ2 and un-
known mean µ to be estimated...

It is further written that:

...[s]uppose now that we choose a prior distribution for µ a N (µ0, σ
2

0
)

distribution...
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These statements are informal wordings of the following assumption:

Assumption 1. Let µ be a random variable whose law is N (µ0, σ
2

0
) and let

(Y1, . . . , Yn) be such that, conditional on µ, they are i.i.d. N (µ, σ2) each.

Lemma 2. Under Assumption 1, the distribution of µ conditional on (Y1, . . . , Yn)
is again normal with

mean equal to µ0 +
σ2

0

1

nσ2 + σ2

0

(Y − µ0)

and variance equal to
1

nσ2σ2

0

1

nσ2 + σ2

0

,

where Y = 1

n

∑n
k=1

Yk.

Proof. I shall do the proof for the case where µ0 = 0 and n = 1 and leave
the rest for an (easy) exercise. The assumption says that the law of µ is
N (0, σ2

0
) and that the law of Y , conditional on µ is N (µ, σ2). We wish to

compute the law of µ conditional on Y . By (iii) of Lemma 1, we have that
this conditional law is N

(

E(µ|Y ), var(µ|Y )
)

, so all we have to do is compute
E(µ|Y ) and var(µ|Y ). From (i) of Lemma 1 we have

E(µ|Y ) = αY, where α =
EµY

EY 2
.

But
Y = (Y − µ) + µ (3)

and the terms on the right are independent zero-mean normal random vari-
ables. So

EµY = E[µ(Y − µ)] + Eµ2 = E(µ)E(Y − µ) + σ2

0
= σ2

0

EY 2 = E(Y − µ)2 + Eµ2.

But

E(Y − µ)2 = E(E(Y − µ)2|µ) = E var(Y |µ) = var(Y |µ) = σ2,

by assumption. Hence
EY 2 = σ2 + σ2

0
.
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Next, by (ii) of Lemma 1,

var(µ|Y ) = var(µ) − var(E(µ|Y ))

= σ2

0 − var(αY )

= σ2

0 − α2 var(Y )

= σ2

0
−

(

σ2

0

σ2 + σ2

0

)

2

σ2

=
σ2σ2

0

σ2 + σ2

0

.

Exercise 4. Complete the proof of Lemma 2 for general n and µ0.

Hint: Observe that

E(µ|Y1, . . . , Yn) = E(µ|Y1 + · · · + Yn) = E(µ|Y ).

Then replace (3) above by

(Y − µ0) = (Y − µ) + (µ − µ0),

observing, again, that the two terms on the right are independent, zero-mean
normal random variables.

Exercise 5. Let us now have some fun, as follows: Suppose that we have
a random variable Y which, conditionally on µ, has law N (µ, σ2). Suppose
that µ, conditionally on µ0, has law N (µ0, σ

2

0
). Suppose that µ0, condition-

ally on µ1, has law N (µ1, σ
2

1
). Suppose that µ1, conditionally on µ2, has

law N (µ2, σ
2

2
). And so on. Can we take this ad infinitum? Under what

conditions? What about the limit?
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