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The proof of correctness of the rejection sampling algorithm (SZ notes, page
19) requires further elaboration.

Let us recall the algorithm. We wish to simulate a random variable with
given density f . We assume that we know how to simulate a random variable
from another density g which has the property that there exists a constant
M > 0 such that

f(x) ≤ Mg(x), for all x (in the support of f). (1)

Define

p(x) =
f(x)

Mg(x)
.

Let Z1, Z2, . . . be i.i.d. random variables with common density g. Let ξ1, ξ2, . . .

be i.i.d. coin tosses, conditionally on the Z1, Z2, . . .. In other words,

P (ξn = 1|Z1, Z2, . . .) = P (ξ1 = 1|Zn) = p(Zn)

P (ξn = 0|Z1, Z2, . . .) = P (ξ0 = 1|Zn) = 1 − p(Zn).

Let
N = min{n ≥ 1 : ξn = 1}.

The claim is:

Claim 1. ZN has density f .

Proof. First observe that

P (ξn = 1) = E[P (ξn = 1|Zn)] = E[p(Zn)]

=

∫
p(z)g(z)dz =

∫
1

M
f(z)dz =

1

M
,

where the integral is taken over the support of g which, by assumption (1),
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includes the support of f . We then have

P (ZN ∈ dy) =
∞∑

n=1

P (ZN ∈ dy,N = n)

=

∞∑
n=1

P (Zn ∈ dy,N = n)

=

∞∑
n=1

P (Zn ∈ dy, ξ1 = · · · = ξn−1 = 0, ξn = 1)

=
∞∑

n=1

P (Zn ∈ dy)P (ξ1 = · · · = ξn−1 = 0, ξn = 1|Zn = y)

=

∞∑
n=1

g(y)dy P (ξ1 = 0) · · ·P (ξn−1 = 0) P (ξn = 1|Zn = y)

=
∞∑

n=1

g(y)dy (1 − M−1)n−1 p(y)

=

∞∑
n=1

f(y)dy
1

M
(1 − M−1)n−1

= f(y)dy
1

M

∞∑
n=1

(1 − M−1)n−1 = f(y)dy
1

M
M = f(y)dy,

as required.

Apology. If you don’t like the notation P (· · · ∈ dy) then replace it by
P (· · · ∈ A) for some set A and rewrite the calculation.
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