Explanatory Notes 3 for Bayesian Inference

Simulating normal random variables

Takis Konstantopoulos, Spring 2009

The beautiful geometric method for simulating normal random variables rests on the following observation:

Lemma 1. If (X, Y) are two independent standard normals then so are

$$
\begin{aligned}
X^{\prime} & :=X \cos \alpha+Y \sin \alpha \\
Y^{\prime} & :=-X \sin \alpha+Y \cos \alpha
\end{aligned}
$$

Proof. Because the map $(X, Y) \mapsto\left(X^{\prime}, Y^{\prime}\right)$ is linear, the new variables are also jointly normal. Clearly, they have zero mean, while

$$
E X^{\prime 2}=E X^{2} \cos ^{2} \alpha+E Y^{2} \sin ^{2} \alpha+2 E X Y \sin \alpha \cos \alpha
$$

$$
=\cos ^{2} \alpha+\sin ^{2} \alpha+0=1 .
$$

Similarly,

$$
E Y^{\prime 2}=1,
$$

and

$$
E X^{\prime} Y^{\prime}=0 .
$$

So the X^{\prime}, Y^{\prime} are uncorrelated and, being jointly normal, this means that they are independent with unit variance each.

This means that if we rotate the point (X, Y) on the Euclidean plane by any angle then its distribution does not change. This implies that if Θ denotes the angle formed between the vector and the positive horizontal axis then
the distribution of Θ is the same as the distribution of any translation of it by any angle. So Θ is uniform (between 0 and 2π).
Next define

$$
R:=\sqrt{X^{2}+Y^{2}}
$$

We have
Lemma 2. R^{2} is exponentially distributed with parameter 2.
Proof. Notice that the joint density of (X, Y) is

$$
f(x, y)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}}
$$

and so it is constant on circles centred at the origin: its value on the circle with radius r is $\frac{1}{2 \pi} e^{-r^{2} / 2}$. The probability that R falls in the ring between two circles centred at the origin with radii r and $r+d r$, when $d r$ is small, is about the value of f on the circle of radius r times the area of the disk ring ; this area is about $2 \pi r d r$.

Hence

$$
P(r<R<r+d r) \approx \mathrm{r} e^{-r^{2} / 2} d r .=\frac{1}{2} e^{-r^{2} / 2} d\left(r^{2}\right)
$$

Hence

$$
P\left(u<R^{2}<u+d u\right) \approx \frac{1}{2} e^{-u / 2} d u
$$

This means that R^{2} has density $\frac{1}{2} e^{-u / 2}$, as claimed.
Exercise 1. Show that Θ and R^{2} are independent.
If we know R and Θ then certainly we know X and Y :

$$
\begin{aligned}
X & =R \cos \theta \\
Y & =R \sin \theta .
\end{aligned}
$$

We can easily simulate R^{2} by setting

$$
R^{2}=-2 \log U
$$

where U is uniform between 0 and 1 . We can simulate Θ by setting

$$
\Theta=2 \pi V,
$$

where V is independent of U, also uniform between 0 and 1 .
Hence

$$
\begin{aligned}
& X=\sqrt{-2 \log U} \cos (2 \pi V) \\
& Y=\sqrt{-2 \log U} \sin (2 \pi V)
\end{aligned}
$$

gives two i.i.d. standard normals.
Exercise 2. Show that the product XY of two i.i.d. standard normal has the same law as $T S$ where T is exponential with mean 1 and S has the arcsine law:

$$
P(S \in d s)=\frac{1}{\pi \sqrt{1-s^{2}}} d s, \quad-1<s<1
$$

Conclude that the density of $X Y$ is

$$
\frac{1}{\pi} K_{0}(|u|)=\frac{1}{\pi} \int_{1}^{\infty} \frac{e^{-|u| t}}{\sqrt{t^{2}-1}} d t, \quad-\infty<u<\infty
$$

a function which is known as the 0 -th order modified Bessel function of the second kind. In R, this function is called by the command besselK $(\mathrm{x}, 0)$.
You can experiment as follows

```
n=100000
x=rnorm(n); y=rnorm(n)
cx=abs(x)<2; cy=abs(y)<2
X=x[cx] ; Y=y [cy]
hist(X*Y,breaks=100)
plot((1/pi)*besselK(seq(0.01,3,0.01),0),type='l')
```

Compare the histogram with the plot of the Bessel function.

