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1 Memoryless law with density

Suppose that we want to find the law of a positive random variable T with
the property that

for all t > 0 the law of T − t, conditional on T > t, is the same
as the law of T .

In other words, if we think of T as the unknown occurrence time of some
event then we want it to follow the property that if we keep observing for
t units of time and we see that the event has not occurred by time t then
the remaining time until its ocurrence (which is T − t) must behave as if the
clock just started at time t. Mathematically, we want

P (T − t > s|T > t) = P (T > s)

for all s, t > 0. Since

P (T − t > s|T > t) =
P (T − t > s, T > t)

P (T > t)
=

P (T > s + t)

P (T > t)
,

it follows that we need

P (T > t + s) = P (T > t)P (T > s).

Consider the function
h(t) = − log P (T > t).

Then
h(t + s) = h(t) + h(s),

for all t, s > 0. This implies that, for every positive integer m, and any
a > 0,

h(ma) = h((m − 1)a + a) = h((m − 1)a) + h(a),

and so
h(ma) = mh(a).

1



Letting a = 1/n, where n is a positive integer, we obtain

h(m/n) = mh(1/n).

Since 1 = n(1/n), we also have

h(1) = nh(1/n),

and so, putting the last two together,

h(m/n) = (m/n)h(1),

for any positive integers m,n. But we know that P (T > t) is a continuous
function of t. (We assumed that T has a density.) Therefore h(t) is a
continuous function of t. Since, for an arbitrary number t > 0, we can find
a sequence (mk, nk), k = 1, 2, . . . of positive integers such that mk/nk → t
as k → ∞, we have, by the continuity property,

h(mk/nk) → h(t), as t → ∞.

But
h(mk/nk) = (mk/nk)h(1) → th(1), as t → ∞.

Since the limit it unique, we conclude that

h(t) = th(1).

Since h(t) ≥ 0, we have h(1) ≥ 0. But

P (T > t) = e−h(t) = e−h(1)t.

We can exclude the case h(1) = 0, since it gives P (T > t) = 0, for all
t > 0, meaning that T = ∞ with probability one. Therefore h(1) > 0 is the
interesting case. We change name for this quantity:

λ := h(1),

and so obtain that
P (T > t) = e−λt.

This law is called exponential[λ].

Here are some facts:

Density:

−
d

dt
P (T > t) = λe−λt, t > 0.
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Scaling: If T1 has law exponential[1] then T1/λ has law exponential[λ].
Indeed, P (T1 > t) = e−t for all t. So P (T1/λ > t) = P (T1 > λt) = e−λt.

Mean and variance: By the scaling property, it is immediate that

ET =
1

λ
ET1, var T =

1

λ2
var T1,

so you can remember that the mean and the variance are proportional to 1/λ
and 1/λ2, respectively–an important fact. Now, simple integration actually
gives that ET1 = var T1 = 1, so that

ET =
1

λ
, var T =

1

λ2
.

2 Sum of exponentials

Define
Zn = T1 + · · · + Tn

to be the sum of n independent exponential[1] variables. If we obtain
the density of Zn, we can also obtain the density for the case where we use
exponential[λ] summands, by the scaling property explained above.

We have Zn = Zn−1 + Tn. Let fn(z) be the density of Zn. We know that
the density of Tn is e−t

1(t > 0). Therefore, since the density of Zn is the
convolution of the densitites of Zn−1 and Tn,

fn(t) =

∫ t

0
e−(t−x)fn−1(x)dx = e−t

∫ t

0
exfn−1(x)dx,

which can be rewritten as

etfn(t) =

∫ t

0
exfn−1(x)dx.

We are led therefore to the definition

gn(t) := etfn(t),

and so

gn(t) =

∫ t

0
gn−1(t)dt.

but
g1(t) = etf1(t) = ete−t = 1.
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And so

g2(t) =

∫ t

0
1dx = t

g3(t) =

∫ t

0
xdx =

t2

2

g4(t) =

∫ t

0

x2

2
dx =

t3

2 · 3

g5(t) =

∫ t

0

x3

2 · 3
dx =

t4

2 · 3 · 4

· · · · · ·

gn(t) =
tn−1

1 · 2 · · · (n − 1)
=

tn−1

(n − 1)!
.

Therefore the density of Zn is

fn(t) =
tn−1

(n − 1)!
e−t, t > 0.

Density of sum of n i.i.d. exponential[λ]. We see that the sum of n
i.i.d. exponential[λ] variables has the same law as Zn/λ. Therefore its
density is

d

dt
P (Zn/λ < t) =

d

dt
P (Zn < λt) = λfn(λt) =

λn

(n − 1)!
tn−1e−λt.

The factorial integral. In the course of doing the above, we managed to
compute the following definite integral

∫

∞

0
tne−tdt = n!.

You should keep this in mind.

3 The gamma law

Look at the last integral and wonder what might happen if we replace n by
a number z which is not necessarily and integer. Let us try to define the
function

Π(z) =

∫

∞

0
tze−tdt.
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When t is smaller than 1, we have e−t < 1, and so when z > −1, we have
tze−t < tz and the latter function has finite integral between 0 and 1:

∫ 1

0
tzdz =

tz+1

z + 1

∣

∣

∣

∣

1

0

=
1

z + 1
< ∞.

On the other hand, for large enough t the function tze−t is dominated by
e−t/2 which has finite integral. For t between 1 and any large but finite value,
the function tze−t is bounded by a constant (because it is continuous), and
therefore has finite integral (the integral of a constant over an interval is the
constant times the length of the interval).

The point of the above is to see that for many z’s (indeed for all z > −1)
the function Π(z) is well-defined. Now observe that

d

dt
(tze−t) = ztz−1e−t − tze−t.

If we assume that z ≥ 0 and integrate the above from 0 to ∞, we first see
that the left-hand side, from the fundamental theorem of calculus, equal
the value of tze−t at ∞ (which is zero) minus its values at zero – provided
we here assume that z ≥ 0. On the other hand, the right-hand side is
zΠ(z − 1) − Π(z). Hence

Π(z) = zΠ(z − 1), z ≥ 0.

For integral z = n, we have
Π(n) = n!,

and so the previous property is a generalization of the factorial property

n! = n × (n − 1)!

Indeed then, in more than just a formal manner, the function Π(z) is a
proper generalization of the factorial function for non-integral values of the
argument.

In practice, we prefer to change names and use

Γ(z) := Π(z − 1) =

∫

∞

0
tz−1e−tdt,

which is well-defined, as explained above, when z− 1 > −1, i.e. when z > 0.
Let us define the function:

fz(t) =
tz−1e−t

Γ(z)
, t > 0.
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We observe that:
• fz(t) > 0, for all t > 0;
•

∫

∞

0 fz(t)dt = 1.
Therefore fz(t) is a density of some random variable. We call fz(t) the
gamma[z] density.

Observe (again!) that if z = n is a positive integer then

fz(t) = fn(t) =
tn−1e−t

Γ(n)
=

tn−1e−t

(n − 1)!

which means that, in this case, it is the density of the sum of n i.i.d.
exponential[1] random variables.

In a sense, the gamma[z] law generalizes the concept of summation of inde-

pendent exponential[1] random variables when the number of summands

is not an integer. For this sense to be made precise you need to learn the

theory of Lévy processes.

Now recall that, earlier, we also added n i.i.d. exponentials with general pa-
rameter λ, not necessarily equal to 1. Using the scaling property, we easily
obtained the density (2). This prompts us to consider the analogous gener-
alization in the gamma case. So we define, just as in (2), the gamma[z, λ]
law as the law of Z/λ where Z is a gamma[z] random variable and thus
have that

The density of the gamma[z, λ] law is

fz,λ(t) = λfz(λt) =
λztz−1e−λt

Γ(z)
, t > 0.

In R, the code for the density of the gamma[z, λ] law is

dgamma(t,z,lambda)

We can generate n i.i.d. samples from a gamma[z, λ] law using

rgamma(n,z,lambda)
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Figure 1: Plots of the gamma[a, 1] densities for a = 1, 2, 3, 4. The value
a = 1 corresponds to the standard exponential density. The value a = 4
corresponds to the sum of 4 i.i.d. standard exponentials.
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Figure 2: Plots of the gamma[3, b] densities for b = 1, 2, 3. The larger the b
the faster the function goes to 0, but the bigger the overall maximum.
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