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This is a method for simulating from a probability on a product space. To
explain it, suppose that S1, S2 be discrete sets and let π be a probability on
S1 × S2. In other words, we are given a collection of numbers

π(x1, x2) ≥ 0, with
∑

x1∈S1

∑

x2∈S2

π(x1, x2) = 1.

We denote the marginal laws as follows:

π1(x1) =
∑

x2∈S2

π(x1, x2), π2(x2) =
∑

x1∈S1

π(x1, x2).

We denote the conditional laws as follows:

π12(x1|x2) =
π(x1, x2)

π2(x2)
, π21(x2|x1) =

π(x2, x1)

π1(x1)
.

We define a stochastic process

X(n) = (X1(n),X2(n)), n = 0, 1, . . . ,

with values in S1×S2, by starting with a fairly arbitrary X(0) = (X1(0),X2(0)),
and, by updating, at each step n ≥ 0, as follows:

P (X1(n+1) = x1|X2(n) = x2,X1(n),X(n−1), . . . ,X(0)) = π12(x1|x2)

P (X2(n + 1) = x2|X1(n + 1) = x1,X(n), . . . ,X(0)) = π21(x2|x1).

In other words, the dependency flow is as in the scheme

X1 (0)

X2 (0) X2
(1)

X1 (2)

X2 (2)

X1 (3)

X2 (3)

X1 (1)

in the sense that a random variable at the tip of the arrow depends only on
the one at the beginning of the same arrow and not on the ones before.

We can easily show the following:
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Lemma 1. If X(0) has law π then X(n) has law π for all n ≥ 1.

Proof. Use induction. Assume that X(n) has law π and prove that so does
X(n + 1). We have

P (X1(n + 1) = x1,X2(n + 1) = x2)

= P (X2(n + 1) = x2|X1(n + 1) = x1)P (X1(n + 1) = x1)

= π21(x2|x1)
∑

x′

2
∈S

P (X1(n + 1) = x1|X2(n) = x′

2)P (X2(n) = x′

2)

= π21(x2|x1)
∑

x′

2
∈S

π12(x1|x
′

2
)π2(x

′

2
)

= π21(x2|x1)
∑

x′

2
∈S

π(x1, x
′

2)

= π21(x2|x1)π1(x1)

= π(x1, x2).

Thus, the process (X(n), n ≥ 0) is stationary if we choose X(0) to have law
π.

Now, under irreducibility and aperiodicity assumptions we can show that

lim
n→∞

P (X(n) = (x1, x2)) = π(x1, x2),

and so we can obtain a sample of π, approximately, by simulating the process
long enough.

A pseudo-code for this is as follows:

Compute the conditional distribution p12(x1|x2)

Compute the conditional distribution p21(x2|x1)

N = 50000 # number of iterations

x1 = c(1:N)

x2 = c(1:N)

x1[1] = some reasonable value

x2[1] = some reasonable value

for(i in 1:(N-1)){

Generate x1[i+1] from p12(\cdot | x2[i])

Generate x2[i+1] from p21(\cdot | x1[i+1])

}

Return (x1[N], x1[N]) as an approximate sample from pi
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Note that, since we expect, usually, to approximate pi long before the num-
ber N , we can use the whole trajectory as approximate data from π (throw-
ing away the first small part of transient behaviour which, usually, won’t
hurt us anyway).

The method works for continuous distributions as well, with obvious modifi-
cations as regards conditional densities instead of conditional probabilities.

We explain it better in

An example. Suppose that we want to obtain a sample from a bivariate
normal random variable (X,Y ). To make things interesting assume that
cov(X,Y ) 6= 0. For example, assume that

X = U + V, Y = 3U + V,

where U, V are i.i.d. standard normals. Thus

EX = 0, EY = 0

var X = EX2 = 2, var Y = EY 2 = 10, cov(X,Y ) = EXY = 4

We compute the conditional densities of X given Y and of Y given X.
(See Explanatory Notes 1.) We have that X given Y is normal with mean
E(X|Y ) and deterministic variance equal to var(X − E(X|Y )). To find
E(X|Y ) we write

E(X|Y ) = λY,

for some constant λ, which is comuted by the fact that X − λY and Y are
uncorrelated:

0 = E(X − λY )Y = EXY − λEY 2 = 4 − 10λ, λ = 4/10 = 2/5.

We then have

var(X|Y ) = E(X − E(X|Y ))2 = E(X − 2

5
Y )2

= E((U + V ) − 2

5
(3U + V ))2 = E(−1

5
U + 3

5
V ) =

1

25
+

9

25
=

10

25
=

2

5
.

We thus have
(X|Y ) has law N((2/5)Y, 2/5).

To find E(Y |X) we write

E(Y |X) = λ′X,
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for some constant λ′, computed by

0 = E(Y − λ′X)X = 4 − 2λ′, λ′ = 2.

Thus E(Y |X) = 2X. Also,

var(Y |X) = E(Y − 2X)2 = EY 2 + 4EX2 − 4EXY = 10 + 8 − 16 = 2.

Thus
(Y |X) has law N(2X, 2).

N=30000

x=c(1:N)

y=c(1:N)

x[1]=0

y[1]=0

for(i in 1:(N-1)){

y[i+1] = rnorm(1, 2*x[i], sqrt(2))

x[i+1] = rnorm(1, (2/5)*y[i+1], sqrt(2/5))

}

We check what we found
mean(x) = 0.01679832
var(x) = 2.005077
mean(y) = 0.04314908
var(y) = 10.01576
cov(x,y) = 4.007448
all in close approximation with the needed moments. Scatter Plot:
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Actually, the scatter plot shows the positions of the simulated Markov chain
on the plane. Notice how the clustering of the points represents a typical
slice of the theoretical normal density.

Another test: We know that X −Y has mean 0 and variance E(−2U)2 = 4.
Let’s then do the histogram of X − Y , together with the normal density of
N(0, 4):

Histogram of x − y
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This is a good fit.
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