
Project 1 for Bayesian Inference
Spring 2009

In questions 1-10, construct samples by transforming output from the runif(0,1)
command in R. Histograms and other summary statistics based on the ran-
dom samples you generate should be examined to validate your solutions.
In questions 11- , you can use functions other than runif(0,1) in order to
simulate from a suitable distribution.

1. Generate a sample of length 1000 from a N(0, 1) distribution, making
use of the Box-Muller technique. Use graphical methods (e.g. his-
togram) to convince yourselves that you get what you want. Estimate
the sample mean and the sample variance. Do a q-q plot.

2. Generate a sample of length 1000 from a N(10, 10) distribution, making
use of the Box-Muller technique. Do the same as above.

3. Simulate 1000 draws from a U(−1, 1) distribution. Produce a his-
togram. Compute the sample mean and the median.

4. Simulate 1000 draws from an Exponential(2) distribution by inversion
of the c.d.f. Use graphical methods (e.g. histogram) to convince your-
selves that you get what you want. Next compute exp(xi), where xi

are the draws you obtained, and convince me that these new numbers
are uniformly distributed between 0 and 1.

5. Simulate 1000 draws from a Gamma(3, 2) distribution. What is the
(theoretical) mean and variance of such a distribution? Do the sam-
ple mean and variance appproximate them? Draw a histogram and
compare it with the theoretical density.

6. Devise a method for simulating a Poisson(λ) variate. There are multi-
ple ways of doing this. Can you identify at least two methods? Apply
your method for λ = 10 and λ = 100. Generate a large number of
such variables and use graphical methods to summarise your results.

7. Simulate a Bin(12, 0.5) variate. Generate a large number of such vari-
ables and use graphical methods to summarise your results.

8. Simulate throwing ten fair dice. What is the probability of getting a
total of 30 or more? Compare this to the theoretical probability which
you can compute numerically.
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9. Simulate 1000 realisations of a pair (X,Y ) of jointly normal random
variables with

EX = 10, EY = 12, var(X) = 1, var(Y ) = 9, cov(X,Y ) = 2.

Estimate sample means, variances and covariances. Produce a his-
togram for 3X − 4Y and compare it to the actual density of 3X − 4Y
(which is normal with a mean and variance you can find).

10. Draw a sample of length 1000 from a Beta(2, 2) distribution. There
are (at least) two ways to do this: (i) by simulating two variates from a
gamma distribution first, and (ii) using rejection sampling. Try them
both—which generates a sample of length 1000 fastest? Could you
do it by inverting the c.d.f.? (Harder) Use your random sample from
Beta(2, 2) to generate a (smaller) random sample from Beta(2.2, 2.2)
by applying rejection sampling. Compare the histogram to the actual
density on the same graph.

11. Implement the Metropolis-Hastings algorithm for sampling from a uni-
form distribution on the set 1, 2, 3, 4. By examining a sequence of
outputs from the chain, verify that it converges to the desired station-
ary distribution. How would you modify the Markov chain in order to
sample from an arbitrary distribution on 1, 2, 3, 4? Do the latter for,
at least, the distribution that assigns probabilities 0.1, 0.2, 0.3, 0.4 to
the states 1, 2, 3, 4, respectively. Show that what you got is right by
producting a histogram.

12. Design and implement a random-walk Metropolis algorithm to sim-
ulate from a Gamma(2, 1) distribution using a Normal distribution
(with mean equal to the current state) as the the proposal distribu-
tion.

(a) By examining a time series plot of the output from the chain
investigate how the mixing properties of the chain depend on the
variance of the proposal distribution.

(b) Investigate how the dynamics of your chain are affected by the
choice of initial state.
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