Question 1 Generate a sample of length 1000 from a $N(0,1)$ distribution, making use of the Box-Muller technique. Use graphical methods (e.g. histogram) to convince yourselves that you get what you want. Estimate the sample mean and the sample variance. Do a q-q plot.

Answer The Box-Muller technique is is based on the observation that if (X, Y) is a normal random variable in \mathbb{R}^{2} then its representation (R, Θ) in polar coordinates is such that R^{2} is exponential with mean $1 / 2$ and Θ uniform on $(0,2 \pi)$.
Now, if U, V are i.i.d. uniform on $(0,1)$ then $R^{2}=-2 \log U$ is exponential with mean $1 / 2$, and $\Theta=2 \pi V$ is uniform on $(0,2 \pi)$.
We first n independent samples from U and n from V :
$n=10000$; $u=r u n i f(n)$; v=runif(n)
We then compute R^{2} and Θ :
rsquared $=-2 * \log (u)$; theta $=2 *$ pi $* v$
Finally, we generate samples for (X, Y) by using the formula $X=R \cos \Theta, Y=R \sin \Theta$:
$r=s q r t(r s q u a r e d) ; x=r * \cos ($ theta $) ; y=r * \sin ($ theta)
We can concatenate x and y to obtain a size $2 n$ sample:
$\mathrm{z}=\mathrm{c}(\mathrm{x}, \mathrm{y})$
We estimate the mean and the variance

```
mean(z); var(z)
```

The answer is: 0.002601275 and 1.000343 , respectively.
We generate a histogram for z and compare it against the theoretical density

$$
f(z)=(2 \pi)^{-1 / 2} \exp \left(-z^{2} / 2\right)
$$

as follows:

```
hist(z,breaks=50,probability=1)
f=function(x){(2*pi)^ (-1/2)*exp (-x^2/2)}
plot(f,-4,4,add=TRUE)
dev.copy(postscript,'plot1.ps')
dev.off()
```


We obtain a good much and we're happy.
Define now

$$
F(z)=\int_{-\infty}^{z} f(t) d t
$$

and its inverse function

$$
F^{-1}(p)=\inf \{z \in \mathbb{R}: F(z)>p\}=\inf \{z \in \mathbb{R}: F(z)=p\}
$$

The function F^{-1} is called quantile function. The formula for $F^{-1}(p)$ in R is $\mathrm{rnorm}(\mathrm{p})$. We have a sample z of size $2 n$ and want to check if it comes from F. We generate $2 n$ equally spaced points in the interval $(0,1)$, store them in a vector p and plot $F^{-1}(p)$ against z :

```
p = ((1:(2*n))-0.5)/(2*n)
plot(qnorm(p),sort(z))
dev.copy(postscript,'plot2.ps')
dev.off()
```


We obtain a rather straight line and we're happy.

