
Project 2 for Bayesian Inference
Spring 2009

You can use functions other than runif(0,1) in order to simulate from a
suitable distribution.

1. Let π(x, y) denote a bivariate density which is uniform over the region
bounded by the lines x = 0, x = 1, x+ y = 1, and x+ y = 2.

(a) Identify the conditional densities π(y|x), π(x|y) for 0 < x < 1
and 0 < y < 2. (A sketch of the region will help). Design and
implement a Gibbs sample to sample from π, by drawing from
these conditional densities.

(b) Generate histogram estimates of the marginal densities π(x) and
π(y), and verify that your algorithm produces estimates that
agree with the theoretical marginal densities (which you will have
to work out!)

(c) Suppose that you used a similar algorithm to sample from a den-
sity that was uniform on the region bounded by x = 0, x = 1,
x + y = 1, and x + y = 1.1. By considering the shape of this
region, suggest why your Gibb’s sampler would not explore the
target density efficiently.

2. Design and implement a Gibbs sampler to simulate from the posterior
density π(µ,ψ|x) where x is a random sample of size n from a Normal
distribution with unknown mean mu, and variance σ2 = 1

ψ
, using in-

dependent normal and Gamma priors for µ and ψ respectively. (Code
for this has been given out to the class.)

(a) Apply your algorithm to investigate π(µ,ψ|x) where x is a ran-
dom sample of size 20 from an N(1, 0.5) density (which you will
have to generate yourself! - Remember rnorm() uses the standard
deviation.) Use initially the improper, vague priors (π(µ) ∝ 1,
π(ψ) ∝ ψ−1) discussed in lectures. By generating a suitably long
sequence of iterates from the chain, estimate the posterior mean
and variance of the parameters, and the posterior probabilities
that µ > 1.5 and σ2 > 0.75.

(b) Repeat these calculations for a sample size of 60 from an N(1,
0.5) distribution.
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(c) Consider how you might use standard results (see chapter 3 of
notes!) in order to check whether your Gibbs sampler is working
correctly.

3. Let x = (5.25, 4.80, 4.55, 5.8, 5.3, 4.38, 3.08, 5.60) denote a random sam-
ple from a Γ(α, β) distribution for which

∑
xi = 38.76 and

∏
xi =

266, 274. Assume that a priori α ∼ U(1, 15) and β ∼ Exp(0.1). Imple-
ment in R the Metropolis algorithm described in lectures for simulating
from the posterior π(α, β|x). By applying the method of moments to
the data, identify suitable initial values for α and β. Use trial and
error to identify suitable step-sizes for updates to α and β.

(a) Estimate the posterior mean and variance of α and β from a
suitably long run of the chain. Examine the shape of the marginal
histogram for α and estimate its posterior mode.

(b) Estimate 90% equal-tailed credible intervals for α and β from the
output of the chain. (You can do this using the sort() command
in R which arranges the elements in a vector in increasing order.
The end points of a credible interval can then be obtained from
the ordered Markov chain output.)

(c) How do the marginal distributions of α and β change when the
prior for β is selected to be a) Exp(1) and b) Exp(5)?

(d) By plotting the points (αi, βi) on a scatter diagram, investigate
the dependence of α and β in the posterior distribution.

(e) The data were generated from a Gamma(8, 1.5) distribution.
Simulate random samples of size 20 and size 40 from this dis-
tribution using the rgamma(n, alpha, beta) function in R and
apply your algorithm to these samples in order to estimate (α, β)
using the Exp(0.1) prior for β. Investigate how the posterior
marginal densities for the parameters change as the sample size
becomes larger.

4. Modify your code for the M-H sampler of the previous question (infer-
ence on (α, β) in the Γ(α, β)) distribution) by using a Gibbs update
for β instead of the Metropolis step. By examining trace plots of the
values of α and β against iterate and/or calculating autocorrelation
functions determine whether the Gibbs sampler has superior mixing
properties.
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