Project 2 for Bayesian Inference

Spring 2009

You can use functions other than runif $(0,1)$ in order to simulate from a suitable distribution.

1. Let $\pi(x, y)$ denote a bivariate density which is uniform over the region bounded by the lines $x=0, x=1, x+y=1$, and $x+y=2$.
(a) Identify the conditional densities $\pi(y \mid x), \pi(x \mid y)$ for $0<x<1$ and $0<y<2$. (A sketch of the region will help). Design and implement a Gibbs sample to sample from π, by drawing from these conditional densities.
(b) Generate histogram estimates of the marginal densities $\pi(x)$ and $\pi(y)$, and verify that your algorithm produces estimates that agree with the theoretical marginal densities (which you will have to work out!)
(c) Suppose that you used a similar algorithm to sample from a density that was uniform on the region bounded by $x=0, x=1$, $x+y=1$, and $x+y=1.1$. By considering the shape of this region, suggest why your Gibb's sampler would not explore the target density efficiently.
2. Design and implement a Gibbs sampler to simulate from the posterior density $\pi(\mu, \psi \mid \mathbf{x})$ where \mathbf{x} is a random sample of size n from a Normal distribution with unknown mean $m u$, and variance $\sigma^{2}=\frac{1}{\psi}$, using independent normal and Gamma priors for μ and ψ respectively. (Code for this has been given out to the class.)
(a) Apply your algorithm to investigate $\pi(\mu, \psi \mid \mathbf{x})$ where \mathbf{x} is a random sample of size 20 from an $\mathrm{N}(1,0.5)$ density (which you will have to generate yourself! - Remember rnorm() uses the standard deviation.) Use initially the improper, vague priors $(\pi(\mu) \propto 1$, $\pi(\psi) \propto \psi^{-1}$) discussed in lectures. By generating a suitably long sequence of iterates from the chain, estimate the posterior mean and variance of the parameters, and the posterior probabilities that $\mu>1.5$ and $\sigma^{2}>0.75$.
(b) Repeat these calculations for a sample size of 60 from an $\mathrm{N}(1$, $0.5)$ distribution.
(c) Consider how you might use standard results (see chapter 3 of notes!) in order to check whether your Gibbs sampler is working correctly.
3. Let $\mathbf{x}=(5.25,4.80,4.55,5.8,5.3,4.38,3.08,5.60)$ denote a random sample from a $\Gamma(\alpha, \beta)$ distribution for which $\sum x_{i}=38.76$ and $\prod x_{i}=$ 266,274 . Assume that a priori $\alpha \sim U(1,15)$ and $\beta \sim \operatorname{Exp}(0.1)$. Implement in R the Metropolis algorithm described in lectures for simulating from the posterior $\pi(\alpha, \beta \mid \mathbf{x})$. By applying the method of moments to the data, identify suitable initial values for α and β. Use trial and error to identify suitable step-sizes for updates to α and β.
(a) Estimate the posterior mean and variance of α and β from a suitably long run of the chain. Examine the shape of the marginal histogram for α and estimate its posterior mode.
(b) Estimate 90% equal-tailed credible intervals for α and β from the output of the chain. (You can do this using the sort() command in R which arranges the elements in a vector in increasing order. The end points of a credible interval can then be obtained from the ordered Markov chain output.)
(c) How do the marginal distributions of α and β change when the prior for β is selected to be a) $\operatorname{Exp}(1)$ and b) $\operatorname{Exp}(5)$?
(d) By plotting the points $\left(\alpha_{i}, \beta_{i}\right)$ on a scatter diagram, investigate the dependence of α and β in the posterior distribution.
(e) The data were generated from a $\operatorname{Gamma}(8,1.5)$ distribution. Simulate random samples of size 20 and size 40 from this distribution using the rgamma(n, alpha, beta) function in R and apply your algorithm to these samples in order to estimate (α, β) using the $\operatorname{Exp}(0.1)$ prior for β. Investigate how the posterior marginal densities for the parameters change as the sample size becomes larger.
4. Modify your code for the M-H sampler of the previous question (inference on (α, β) in the $\Gamma(\alpha, \beta)$) distribution) by using a Gibbs update for β instead of the Metropolis step. By examining trace plots of the values of α and β against iterate and/or calculating autocorrelation functions determine whether the Gibbs sampler has superior mixing properties.
