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1 Bayesian and likelihood-based inference

1.1 Introduction to Bayesian inference

Given

1. a statistical model for the generation of the observed data y = (y1, . . . , yn)
parametrised by an unknown θ ∈ Θ—which we wish to estimate—and hence
a likelihood function L(θ;y),

2. a prior (probability) distribution for θ, represented by its density or probability
function π(θ) and expressing our (usually subjective) a priori beliefs about the
probability of θ taking different values,

we use Bayes’ Theorem to calculate the posterior distribution of θ given the observed
data y. This has density or probability function

π(θ |y) =
P(θ and y)

P(y)
= k(y)π(θ)L(θ;y) (1)

where the normalising constant k(y) (which may depend on the observed data y,
but not on θ) is such that ∫

θ′∈Θ
π(θ′ |y) dθ′ = 1, (2)

i.e.
k(y) =

1∫
θ′∈Θ π(θ′)L(θ′;y) dθ′

.

(Note that in the case where θ is discrete the integrals above are replaced by sums.)
In general we shall simply write expressions such as (1) as

π(θ |y) ∝ π(θ)L(θ;y). (3)

since the normalising constant may always be calculated by the use of (2).
The posterior distribution π(θ |y) expresses our new belief about the probability
of θ taking different values once the data y have been observed. It summarises
completely the outcome of our inference about θ.
However, if we wished, for example, to supply an point estimate for θ, we might
use the mean, the median, or the mode of this posterior distribution. Similarly
if we wished an interval estimate for θ, we might calculate, for example, a 95%
Bayesian credible interval as a region within which, under the distribution π(θ |y),
the parameter θ lay with probability 0.95. This interval could be forced to be unique
by, for example, the requirement that it be equal-tailed.

Example 1.1 Bayesian estimation of binomial proportion p.
A geneticist wishes to estimate the proportion of the population carrying a certain
gene. They collect DNA from a random sample of 20 individuals, of whom 5 are
found to carry the gene. Carry out an investigation of p using Bayesian techniques.
The first thing we need to do is construct the model for the generation of the data,
and hence determine the likelihood L(p). The model here is simply the distribution
of the number Y of gene-carriers in the sample, and, since the sample is taken from
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Figure 1: Determination of 95% equal-tailed Bayesian credible interval.

a large population, it is reasonable to assume that this is binomial with parameters
20 and p. Hence the likelihood L(p) is given by

L(p) = P (Y = 5 | p) =
(

20
5

)
p5(1− p)15.

Now, we need to specify a prior density for p. Let us suppose that the geneticist
has little information on the value of p. To reflect this they choose for their prior
density, π(p) = 1, that is a uniform distribution on the interval (0, 1). We will later
discuss the extent to which a uniform prior can be considered to represent prior
ignorance.
We can now identify the posterior density of p as

π(p | y) =
π(p)L(p)∫ 1

0 π(p′)L(p′)dp′

Since the denominator above is simply the reciprocal of the normalising constant we
have, more simply,

π(p | y) ∝ π(p)L(p)

=
(

20
5

)
p5(1− p)15

∝ p5(1− p)15.

This functional dependence on p identifies π(p | y) as corresponding to a Beta(6, 16)
distribution.
Self-study exercise: Review the properties of the Beta distribution.
We can therefore identify the posterior mean of p as 3/11, and the mode as 1/4.
Further comment. Note that the choice of a uniform prior distribution for p means
that the mode of the posterior distribution is just the value of p which maximises
L(p), i.e. is the conventional maximum likelihood estimate of p.

Example 1.2 Inference for the Exp(λ) distribution.
Suppose that the lifetime of a particular type of component is believed to be have
an Exp(λ) distribution, where λ is unknown. In order to estimate λ, we select a
random sample of 20 components and measure their lifetimes t1, t2, t3, ..., t20. Carry
out a Bayesian analysis of these data to estimate λ.
We consider first the choice of prior density π(λ) for λ. Again let us assume that we
have little prior knowledge about the value of λ. Therefore we select a prior density
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that ’supports’ a broad range of values of λ. One possibility would be to use an
Exp(α) distribution where α is small in some sense. Suppose we set α = 0.1.
Now suppose that we take the observations and note that

∑20
i=1 ti = 10.0 time

units. Since (we assume) the observed lifetimes are independent of each other, the
likelihood function L(λ) is given by the joint density

L(λ; t) =
20∏
i=1

λe−λti

= λ20e−λ
P20

i=1 ti .

Thus the posterior density is given by

π(λ | t) ∝ π(λ)L(λ; t)

= λ20e−λ(α+
P20

i=1 ti).

We can see that the posterior density of λ must correspond to a Γ(21, 10.1) distri-
bution. In particular the mean of the posterior distribution is given by

E(λ | t) =
21

α+
∑20

i=1 ti
= 2.08,

while its variance is given by

var(λ | t) =
21

(α+
∑20

i=1 ti)2
= 0.21.

Further comments. It is worth studying the effect of varying α on the posterior
distribution. Note in particular that the choice of a small value of α places most of
the ’weight’ of the inference on the data. Note also that the conventional maximum
likelihood estimate of λ is given by λ̂ = 20/

∑20
i=1 ti = 2.00.

Example 1.3 Censored observations
Consider the same problem as that of Example 1.2 but suppose now that the data,
rather than giving the precise times of failure of all components, only record the
times of failure up to t = 0.5, at which time the experiment ceases. Suppose that 14
components (which we label i = 1, . . . , 14) fail within this period with

∑14
i=1 ti = 2.2,

and the remaining 6 components are operational at t = 0.5. To construct the
likelihood for this case we note that Pλ(T > 0.5) = e−0.5λ, and insert this factor
into the likelihood function for each component whose lifetime exceeds 0.5. This
yields a likelihood

L(λ) = λ14e−λ(3.0+
P14

i=1 ti)

= λ14e−5.2λ.

If we again use an Exp(α) distribution with α = 0.1 as the prior distribution for λ,
then the posterior distribution of λ is given by the density

π(λ | t) ∝ π(λ)L(λ; t)

= λ14e−λ(α+5.2),

i.e. the posterior distribution is Γ(15, 5.3). In this case the posterior mean and
variance of λ are 2.83 and 0.53 respectively.
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Notes

1. In comparison to more traditional approaches, the Bayesian approach to in-
ference has the advantages of coherence and consistency. In particular, once
the model for the data and the prior distribution for the unknown parameter θ
are specified, there is no controversy about the probability theory leading to
the posterior distribution.

2. Bayesian inferences are easily updated: let y1 and y2 be two vectors of observa-
tions obtained sequentially and independently of each other. Let L(θ;y1) and
L(θ;y2) be the respective likelihood functions for θ. It follows from the above
independence that the likelihood function, given both vectors of observations
is

L(θ;y1,y2) = L(θ;y1)L(θ;y2).

If π(θ) denotes the prior density for θ, then the posterior density for θ, given
the first set of observations y1, is given by

π(θ |y1) ∝ π(θ)L(θ;y1);

the posterior density for θ, given the both sets of observations y1 y2, is given
by

π(θ |y1,y2) ∝ π(θ)L(θ;y1,y2)
= π(θ)L(θ;y1)L(θ;y2)
∝ π(θ |y1)L(θ;y2).

Thus, given the second set of observations, the posterior distribution for θ is
updated by treating the earlier posterior distribution as a prior for the new
data.

3. The disadvantage of the Bayesian approach is the subjectivity involved in the
choice of a prior distribution. However, all statistical inference involves some
element of subjectivity, and it may be argued that the Bayesian approach
simply places this ‘up-front’.
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1.2 Likelihood-based inference

Given a statistical model for the generation of the observed data y = (y1, . . . , yn)
parametrised by an unknown θ ∈ Θ, likelihood-based inference uses only the likelihood
function L(θ;y), to make inference about θ.
Note that, for the purposes of inference, the observations y are fixed and L(θ;y) is
therefore to be regarded as a function of θ (we may sometimes write simply L(θ) for
L(θ;y)).
The importance of the likelihood is summarised by the likelihood principle, which
(in essence) says the following.

Suppose that two experimental outcomes y1 and y2 define likelihoods
L(θ;y1) and L(θ;y2) that are proportional to each other, that is, for some
C > 0, we have L(θ;y2) = CL(θ;y2), for all θ. Then the conclusions
about θ drawn from y1 and y2 should be identical.

The likelihood principle says that the all the information that the data give you
about the parameters is embodied in the likelihood. A fuller account of the like-
lihood principle—and how it is a logical consequence of two other principles (the
conditionality and sufficiency principles)—can be found in texts such as that by
Casella and Berger. Further support for the likelihood as the most appropriate ex-
pression of information regarding the plausibility of different values of θ can be seen
from the Neyman-Pearson Lemma in classical hypothesis testing.
Thus, in any problem of statistical estimation or inference it is a good idea to try to
write down the likelihood function for the data. This requires the use the rules of
probability theory in order to work out the probability or probability density of the
observations given the parameter θ. Depending on whether the observations y are
discrete, continuous, precisely measured, or censored (known only to lie in certain
intervals) constructing likelihoods will typically require use of probability mass or
density functions and cumulative distribution functions.
We now consider inference based on the use of the likelihood function L(θ;y) alone.
Define also the log-likelihood function l(θ) = l(θ;y) = logL(θ;y)
Point estimation. Choose θ̂ = θ̂(y) to maximise L(θ;y) (or equivalently l(θ;y)).
This is the maximum likelihood estimate of θ.
Interval estimation. We consider interval estimation for a single parameter θ. It
is convenient (see below) to define the deviance

D(θ;y) = −2[l(θ;y)− l(θ̂;y)] (4)

where θ̂ is the maximum likelihood estimate of θ defined above. Then a likelihood
interval for θ is an interval of the form

I = {θ : D(θ;y) ≤ d}

for some appropriately chosen d. This is typically an interval [θl, θu] (where θl and
θu depend on y) and is the interval within which the log-likelihood l(θ;y) is no more
than d/2 below its maximum value.
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Figure 2: Determination of likelihood interval.

In order to associate a particular value of d with a particular confidence level, we can
make use of some of the traditional frequentist theory for determining confidence
intervals: for a given ‘true’ value of θ, it can be shown that, asymptotically and
under mild regularity conditions,

D(θ;y) ∼ χ2
1, (5)

i.e. has a chi-squared distribution with 1 degree of freedom.
For any α ∈ (0, 1) let χ2

1(α) be the percentage point of the χ2
1-distribution such that

P(χ2
1 > χ2

1(α)) = α (6)

(where χ2
1 has a χ2

1-distribution). Define the (random) interval

[θl(y), θu(y)] = {θ : D(θ;y) ≤ χ2
1(α)}

= {θ : l(θ̂;y)− l(θ;y) ≤ χ2
1(α)/2}.

Then, for the given ‘true’ value of θ, it follows from (5) and (6) that

P (θ ∈ [θl(y), θu(y)]) = P
(
D(θ;y) ≤ χ2

1(α)
)

= 1− α.

Thus [θl(y), θu(y)] is, asymptotically, a 100(1− α) confidence interval for θ.
For example, for a 95% confidence interval, we take the deviance d = χ2

1(0.05) ≈ 3.84,
so that the likelihood interval consists of those values of θ for which l(θ;y) is no more
than 1.92 below l(θ̂;y).

Example 1.4 Let y = (y1, . . . , yn) where y1, . . . , yn are independent identically
distributed as N(µ, σ2) and σ is assumed known. We wish to derive a likelihood
interval for µ associated with 95% confidence.
We have

l(µ;y) = − 1
2σ2

n∑
i=1

(yi − µ)2 + k = − n

2σ2
(ȳ − µ)2 + k′,

where ȳ = (
∑n

i=1 yi)/n and k, k′ are terms which do not depend on µ. (Exercise:
check both the identities above.) Hence l(µ;y) is maximised at the maximum likeli-
hood estimate µ̂ = ȳ. Further the likelihood interval for µ is given by

{µ : − 2(l(µ;y)− l(µ̂;y)) ≤ d} =
{
µ : (ȳ − µ)2 ≤ d

σ2

n

}
=

(
ȳ − z

σ√
n
, ȳ + z

σ√
n

)
,

where d = 3.84 (see above) and where z = d1/2 = 1.96. Thus we see that in this
case the likelihood interval agrees with the traditionally derived confidence interval.
The theory of maximum likelihood estimation tells us that for other distributions a
similar result holds asymptotically.
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1.3 Bayesian inference: choice of prior distribution

1.3.1 Conjugate prior distributions

Suppose that we are given a family F of distributions for the data (e.g. binomial,
Poisson, exponential, normal) parametrised by some (possibly vector) θ to be esti-
mated.
Definition. The class P of distributions is conjugate for F , if, for any prior
distribution in the class P, the posterior distribution also belongs to the class P.
A conjugate class P for F is usually sufficiently broad as to allow a wide choice
of possible prior distributions. The advantages of using it are those of analytical
simplicity and of ease of updating the posterior distribution given additional data
(see the second note at the end of Section 1.1).
Conjugate classes P exist for all the main families F of distributions for data. We
give some examples now and further ones subsequently.

Example 1.5 Bayesian estimation of binomial proportion p.
We generalise Example 1.1. Suppose that, in n independent trials, each of which
has a probability of success p, a total of y successes are observed. Then, given the
data, the likelihood function for p is

L(p; y) =
(
n

y

)
py(1− p)n−y.

Suppose that we choose as prior distribution for p a β(a, b) distribution, a > 0,
b > 0, i.e. density

π(p) ∝ pa−1(1− p)b−1 a > 0, b > 0.

(Note that in particular the choice a = b = 1 corresponds to a U(0, 1) prior distri-
bution for p.) Then the posterior distribution for p has density

π(p | y) ∝ π(p)L(p; y)

∝ pa+y−1(1− p)b+n−y−1

and hence is a β(a + y, b + n − y) distribution. It follows that the class of beta
distributions is conjugate for the binomial family.
Note that, provided a and b are small, the posterior distribution depends mostly on
the data. The mean of the posterior distribution is (a+y)/(a+b+n) and its mode is
(a+y−1)/(a+b+n−2). In the case of a uniform prior distribution (β(1, 1)) the mode
of the posterior distribution corresponds to the maximum likelihood estimate—as
would be expected.
Now suppose that a further m independent observations are obtained, of which z
are found to be successes. We may use the previously found posterior distribution
as the prior distribution before the incorporation of the new data, after which the
new posterior distribution is found to be β(a+ y+ z, b+n+m− (y+ z))—the same
as would have resulted had we obtained all the data in one go.
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Example 1.6 Bayesian estimation of Poisson parameter λ.
Suppose that we have n independent (nonnegative integer) observations y = (y1, . . . , yn)
from a Poisson distribution with unknown parameter (mean) λ > 0 to be estimated.
[For example, yi might be the number of insurance claims in week i, if it was con-
sidered that such claims arose as a homogeneous Poisson process.] The probability
function for any single observation y is

pλ(y) = e−λ
λy

y!

and so, given the data, the likelihood function for λ is

L(λ;y) ∝
n∏
i=1

e−λλyi

= e−nλλ
Pn

i=1 yi .

Suppose that we choose as prior distribution for λ a Γ(a, b) distribution, a > 0,
b > 0, i.e. density

π(λ) ∝ λa−1e−bλ a > 0, b > 0.

(Note that in particular the choice a = 1 corresponds to an Exp(b) prior distribution
for λ.) Then the posterior distribution for λ has density

π(λ |y) ∝ π(λ)L(λ;y)

∝ λa−1+
Pn

i=1 yie−(b+n)λ

and hence is a Γ(a+
∑n

i=1 yi, b+ n) distribution. It follows that the class of gamma
distributions is conjugate for the Poisson family.
Note again that, provided a and b are small, the posterior distribution depends
mostly on the data. The mean of the posterior distribution is (a+

∑n
i=1 yi)/(b+ n)

and its mode is (a+
∑n

i=1 yi − 1)/(b+ n) (exercise).
Now suppose that a further m independent observations yn+1, . . . , yn+m are ob-
tained. We may again use the previously found posterior distribution as the prior
distribution before the incorporation of the new data, after which the new posterior
distribution is found to be Γ(a+

∑n+m
i=1 yi, b+n+m)—again the same as would have

resulted had we obtained all the data in one go.

1.3.2 Noninformative prior distributions

When we have little prior knowledge about the likely values of the unknown param-
eter θ, we seek to model its initial distribution by the use of a noninformative,
or flat, prior. Then, in a sense, the posterior distribution depends mostly on the
observed data.
In Example 1.5 (Bayesian estimation of binomial proportion p), the β(a, b) distri-
bution with small values of a and b corresponds to the use of a (relatively) nonin-
formative prior distribution—in particular, as we have already observed, the choice
a = b = 1 corresponds to a uniform prior. Similarly, in Example 1.6 (Bayesian
estimation of Poisson parameter λ), the Γ(a, b) distribution with small values of
a and b again corresponds to the use of a noninformative prior distribution. We
give a further example, which allows us to introduce the idea of an improper prior
distribution.
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Example 1.7 Bayesian estimation for the mean µ of the normal distribution with
known variance σ2.
Suppose that we have n independent observations y = (y1, . . . , yn) from a normal
distribution N

(
µ, σ2

)
with known variance σ2 > 0 and unknown mean µ to be

estimated. [For example, the yi might be temperature measurements, or (for actu-
aries) the sizes of insurance claims.] The probability density function for any single
observation y is

f(y) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
and so, given the data, the likelihood function for µ is

L(µ;y) ∝
n∏
i=1

exp
(
−(yi − µ)2

2σ2

)
= exp

(
−

∑n
i=1(yi − µ)2

2σ2

)
∝ exp

(
−n(ȳ − µ)2

2σ2

)
, (exercise!),

where ȳ = (
∑n

i=1 yi)/n is the sample mean.
Suppose now that we choose as prior distribution for µ a N

(
µ0, σ

2
0

)
distribution,

with density

π(µ) ∝ exp
(
−(µ− µ0)2

2σ2
0

)
Some (tedious) algebra (exercise) shows that the posterior distribution for µ is

N
(
µ0σ

−2
0 + nȳσ−2

σ−2
0 + nσ−2

, (σ−2
0 + nσ−2)−1

)
.

It follows again that the class of normal distributions is conjugate for the normal
family with σ2 known. However, in the case where little is known about µ before
the data y are observed, it is tempting to take σ2

0 as large as possible. As σ2
0 →∞,

the posterior distribution tends (regardless of µ0) to

N
(
ȳ,
σ2

n

)
The density of this posterior distribution is proportional to the likelihood function
above. It is the same as would have resulted from taking the prior distribution
for µ to be uniformly distributed (“flat”) on the entire real line. However such a
“distribution” cannot be normalised so as to correspond to a total probability of 1.
It is an example of an improper prior distribution, which is nevertheless very useful
in practice.

Jeffreys’ prior distribution Jeffreys’ prior distribution is a particular choice of
(relatively) noninformative prior, and is given by the prior density

π(θ) ∝ [J(θ)]1/2,

where J(θ) is the Fisher information for θ given by

J(θ) = Eθ

[(
d logL(θ;y)

dθ

)2
]

= −Eθ

[
d2 logL(θ;y)

dθ2

]
.
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[This has the important property of being invariant under transformation of the
parameter θ, i.e. under any transformation φ = φ(θ) the distribution induced by
π(θ) on φ is just the Jeffreys’ prior for φ.]

Example 1.8 Jeffreys’ prior for estimation of binomial proportion p.
We return to Example 1.5, and again suppose that, in n independent trials, each
of which has a probability of success p, a total of y successes are observed. Then,
given the data, the likelihood function for p is

L(p; y) =
(
n

y

)
py(1− p)n−y.

Hence, the log-likelihood function l(p;y) = logL(p;y) is given by

l(p; y) = y log p+ (n− y) log(1− p) + k

where k does not depend on p. Thus

−d
2l(p;y)
dp2

=
y

p2
+

n− y

(1− p)2

and so

−Ep

(
d2l(p;y)
dp2

)
=
n

p
+

n

1− p

=
n

p(1− p)
.

It follows that the Jeffreys’ prior distribution for p is given by the density

π(p) ∝ p−1/2(1− p)−1/2,

i.e. is a β(1/2, 1/2) distribution.

1.3.3 Prior elicitation

Suppose that we have some beliefs about the probabilities that the unknown pa-
rameter θ will fall within given regions. Then we may reasonably choose a prior
distribution for θ (for example, from within a conjugate class) so as to reflect these
beliefs.

Example 1.9 Example 1.1 again. Suppose now that the geneticist, prior to the
collection of the data, has reason to believe that the probability that the binomial
proportion p is less than 0.1 is (at most) 0.1, and similarly that the probability
that the binomial proportion p is greater than 0.5 is (at most) 0.1. In this case a
reasonable choice of prior distribution π(p) for p would be a β(a, b) distribution such
that ∫ 0.1

0
π(p) dp = 0.1 and

∫ 1

0.5
π(p) dp = 0.1,

i.e. a and b are such that the 0.1-quantile of β(a, b) is 0.1 and that 0.9-quantile of
β(a, b) is 0.5. This is given by taking a = 2.20 and b = 5.50. (Check! )
After the observation of 5 instances of the gene in a random sample of 20 individuals,
the posterior distribution for p is β(7.20, 20.50).
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1.4 Bayesian inference: reporting conclusions

Having derived the posterior distribution of a parameter θ there are several ways
in which we can express the results. For single parameters, a plot of the posterior
density is very informative and shows clearly the range of values consistent with
your posterior beliefs. We can also quote quantities such as the posterior mean or
the posterior variance of θ. Indeed any summary of a distribution can be used.
A natural analogue of the frequentist confidence interval for a parameter is the
Bayesian credible interval. For example, suppose that, given data y you derive
the posterior density of θ as π(θ |y). Then a 95% credible interval (a, b) is any
interval whose posterior probability of containing θ is 0.95. Often we might quote
an equal-tailed interval (obtained by selecting the 97.5% and 2.5% critical points of
π(θ |y)), or a minimum-width interval (obtained by thresholding π(θ |y)) assuming
this can be calculated.
Depending on the circumstances, we may be interested in the posterior probability
of a parameter being greater than or less than some threshold. For example, this
might be the case where the experiment has been done for the purpose of quality
control.

1.4.1 Predictive distributions

Usually when we carry out a Bayesian analysis to obtain π(θ |y) our interest lies
in predicting some other quantity z of practical importance, whose distribution is
determined by θ. (For example, in the case of Example 1.2, our interest may be in
the lifetime of the next component that we select.) Having obtained π(θ |y), what
we really want to do is determine the distribution of z given y, given by the density
(or probability function) f(z |y). This distribution, known as the predictive dis-
tribution of z, is given as a mixture distribution over the possible values of θ. This
has density (or probability function)

f(z |y) =
∫
f(z | θ)π(θ |y) dθ

where f(z | θ) denotes the density (or probability function) of z given θ. In this
section we give some examples of calculating predictive distributions and highlight
some of the mixture distributions that arise in standard problems.

Example 1.10 Following change in regulations, students are suppose to bring their
own calculators to examinations. However, invariably a number forget and invigi-
lators bring a small number of calculators to exams for these individuals. Suppose
that in the first exam after the rule change an invigilator finds that 2 students out of
a class of 30 have forgotten their calculators. The next week she has to invigilate an
exam with 25 students. How many calculators should she bring in order to be 95%
certain that she will have enough? Assume she is a Bayesian who takes a pessimistic
view of the organisational skills of students.
A Bayesian solution. First of all, she needs to assume some statistical model for
the number of students that forget to bring a calculator to an exam. A natural
assumption is that this number follows a Bin(n, p) distribution where n denotes the
number of students taking the exam, and that p is the same for all exams.
Next she needs to identify a prior distribution for p, representing her beliefs before
having seen the data y from the first exam, and hence a posterior distribution for
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p given this data. Being pessimistic she assumes a U(0, 1) prior distribution for p.
Now, as in earlier examples, she immediately calculates that the posterior density
π(p |y) for p given the data is that corresponding to the β(3, 29) distribution.
Finally she must calculate the predictive distribution of Z, the number of students
who forget their calculators in the next exam. Given p, we have Z ∼ Bin(25, p) and
so the probability function of Z given p is

f(z | p) =
(

25
z

)
pz(1− p)25−z, 0 ≤ z ≤ 25. (7)

Thus the predictive probability function of Z given the data y is

f(z |y) =
∫ 1

0
f(z | p)π(p |y) dp (8)

=
∫ 1

0

(
25
z

)
pz(1− p)25−z

Γ(32)
Γ(3)Γ(29)

p2(1− p)28 dp

=
Γ(32)

Γ(3)Γ(29)

(
25
z

) ∫ 1

0
pz+2(1− p)53−z dp

=
Γ(32)

Γ(3)Γ(29)Γ(57)

(
25
z

)
Γ(3 + z)Γ(54− z)

=
31!25!

2!28!56!
(2 + z)!(53− z)!
z!(25− z)!

, 0 ≤ z ≤ 25.

[Note that the various multiplicative constants in the above expressions, which are
independent of z, may be omitted, provided we replace “=” by “∝” and are prepared
to calculate the correct normalising constant at the end of the calculation—in this
case no work is saved by doing this. Note also that, for any integer k ≥ 1, we have
Γ(k) = (k − 1)!.]
Now by examining the associated cumulative distribution function, we find that
P(Z ≤ 5 |y) = 0.931 while P(Z ≤ 6 |y) = 0.966. Therefore she should bring 6
calculators to be 95% certain of having enough.
As an alternative to analysis, note that the expression on the right side of (8) is
the expectation of the binomial probability f(z | p) of z given p with respect to the
posterior distribution of p. Suppose, therefore, that we can simulate a large number n
of values of p from its posterior density π(p |y). For each z, we may calculate f(z | p)
(as given by (7)) for the simulated values of p; the sample mean of these values is
then an estimate of f(z |y). For example, appropriate R code is

p = rbeta(10000,3,29) # 10000 simulations of p
f = rep(0,26) # initialise prob fun f
for(z in 0:25) f[z+1]=mean(dbinom(z,25,p)) # estimate f
sum(f) # check
f # display f
cumsum(fsim) # display cum probs

Exercises. Use R to calculate the exact values f(z |y), 0 ≤ z ≤ 25 of the predictive
probability function (check also that the probabilities sum to 1). Use also simulation
to estimate f(z |y) as above, and compare your results. What would happen if a
more informative prior were used, giving more weight to smaller values of p?

Example 1.11 Consider the component experiment of Example 1.2 above in which
the lifetime of a component was Exp(λ) where the posterior distribution of λ, given
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the observed data t, was Γ(α, β) (with density π(λ | t)) for suitably chosen parame-
ters α and β. Let us suppose that this component is used in a space vehicle which
has to perform a flight of duration 1 day? If the component fails during the flight
then it is replaced immediately from a pool of identical components whose lifetimes
are all independent of each other. How many components in total are needed to
ensure that the vehicle completes the flight with at least 90% certainty?
To solve this we need to consider the predictive distribution, again given the data,
of the number Z of components which fail during a 1-day flight. It follows from the
above assumption that component lifetimes are independent identically distributed
Exp(λ) that, given λ, component failures occur as a Poisson process with rate λ and
so, again given λ, the distribution of Z is Pois(λ) with probability function

f(z |λ) =
e−λλz

z!
, z = 0, 1, 2, . . . . (9)

Therefore the predictive probability function f(z | t) of Z given the observed data t
is given by the expectation of f(z |λ) with respect to the above Γ(α, β) posterior
distribution of λ, i.e. by

f(z | t) =
∫ ∞

0
f(z |λ)π(λ | t) dλ

=
∫ ∞

0

e−λλz

z!
1

Γ(α)
βαλα−1e−βλ dλ,

=
βα

Γ(α)z!

∫ ∞

0
λz+α−1e−(1+β)λ dλ,

=
βαΓ(z + α)

Γ(α)z!(1 + β)z+α

=
Γ(z + α)
Γ(α)z!

pα(1− p)z, z = 0, 1, 2, . . . .

where p = β/(1 + β). Thus the predictive distribution of Z is a (shifted origin)
negative binomial distribution with parameters α and p (when α is an integer this
distribution is the sum of α independent copies of a geometric distribution with
starting value shifted from 1 to 0). By considering the cumulative distribution
function for the case α = 21, β = 10.1 of Example 1.2 we note that, under this
distribution, P(Z ≤ 3) = 0.83, while P(Z ≤ 4) = 0.93. It follows that 5 components
are required to give at last 90% certainty of completing the 1-day flight successfully.
Again an alternative is to simulate a large number n of values of λ from its posterior
distribution (with density π(λ | t)). For each z = 0, 1, 2, . . . , we may calculate f(z |λ)
(as given by (9)) for the simulated values of λ; the sample mean of these values is
then an estimate of f(z | t). This is left as an exercise using R.

These examples of calculating predictive distributions show how mixture distribu-
tions naturally arise. In the cases considered so far, there has been only a sin-
gle parameter and the integrals have been analytically tractable. More generally,
Bayesian inference and prediction can require calculation of integrals that may be
multidimensional (in the case of more complex models), or may fail to be analyti-
cally tractable. One of the barriers to widespread implementation of Bayesian ideas
in the past was the complexity of the integrations that naturally arose. As we see
later in the course, this difficulty has been overcome to a major extent through the
use of stochastic integration techniques, coupled with modern computer power. This
allows such integrals to be estimated numerically.
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1.5 Multiparameter inference

In many practical situations there will be more than a single unknown parameter
to estimate. The Bayesian approach can again be applied except that our one-
dimensional integrals considered before now become multivariate integrals. We il-
lustrate the approach in the case of inference for the normal distribution, and may
consider other situations later.

1.5.1 Joint inference for the normal mean and variance

Suppose that we observe a random sample y = (y1, y2, . . . , yn) from a population
whose distribution we believe to be N (µ, φ) where the mean µ and variance φ are
unknown. Let us suppose that we propose that the joint prior distribution of (µ, φ)
should be the product (corresponding to independence) of a noninformative, im-
proper, uniform prior distribution for µ, and a noninformative, improper, prior
distribution for φ whose density is proportional to φ−1. (This prior distribution for
φ is equivalent to the assumption of a uniform prior distribution for log φ—exercise! )
Then the joint prior distribution for these two parameters has density

π(µ, φ) ∝ 1
φ
, −∞ < µ <∞, 0 < φ <∞. (10)

To carry out a Bayesian analysis we mirror the procedure in the one-dimensional
case. The likelihood function is given by

L(µ, φ;y)) ∝ φ−n/2 exp
(
−

∑n
i=1(yi − µ)2

2φ

)
∝ φ−n/2 exp

(
−

∑n
i=1(yi − ȳ)2 + n(ȳ − µ)2

2φ

)
∝ φ−n/2 exp

(
−(n− 1)s2 + n(ȳ − µ)2

2φ

)
,

where, as usual, ȳ is the sample mean and s2 is the sample variance. Thus the joint
posterior density π(µ, φ |y) can be written as

π(µ, φ |y) ∝ φ−(n+2)/2 exp
(
−(n− 1)s2 + n(ȳ − µ)2

2φ

)
If we wish to make inference on µ and φ separately then we can do this from the
marginal posterior densities of these parameters. This requires us to integrate the
above posterior density with respect to φ and µ respectively. When we do this we
find (see, for example, Gelman et al) that

π(µ |y) ∝
(

1 +
n(µ− ȳ)2

(n− 1)s2

)−n/2
.

Comparing this with the form of the density of the t-distribution (again see, for
example, Gelman et al) we find that, under the posterior distribution,

µ− ȳ

s/n1/2
∼ tn−1,

i.e. has a t-distribution with n − 1 degrees of freedom. Since µ is a linear function
of this quantity, then we can make posterior inferences about it quite easily.
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To get the posterior density of φ we have to integrate the joint posterior density
with respect to µ. We find that (once more see, for example, Gelman et al)

π(φ |y) ∝ ψ
n+1

2 e−
1
2
ψ,

where ψ = (n−1)s2

φ . The posterior density of ψ itself is proportional to π(φ |y)

multiplied by the modulus of dφ
dψ . Therefore we have

π(ψ |y) ∝ ψ
n−3

2 e−
1
2
ψ,

from which we see that (n− 1)s2/φ ∼ χ2
n−1.

For this choice of prior distribution for (µ, φ) we see that the posterior credible
intervals we would calculate for either parameter would correspond exactly with
the corresponding confidence intervals calculated using classical methods. Priors
which lead to posterior inferences that “match” the results of classical analyses are
sometimes called probability matching priors.
The above example is a case where things can be tackled analytically. The posterior
densities for both parameters can be identified and their properties are well known,
and are tabulated in statistical tables. However, in many other situations in Bayesian
analyses the resulting integrals will not be so simple. We will then be forced to resort
to computational methods of working out posterior densities, or to investigate their
properties by simulating directly from them. Simulation methods are at the heart
of many developments in modern statistics.
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2 Introduction to simulation techniques

2.1 Introduction

The use of simulation is to replace difficult or impossible analytical probability
calculations with numerical estimation based on either extended or repeated reali-
sations of appropriate probability models.
In this section we consider (generally) simulation from single probability distribu-
tions on (possibly subsets) of the real line R.
Why is this useful? Suppose that we are able to simulate a large number n of
independent realisations y = (y1, . . . , yn) (i.e. a random sample of size n) from a
distribution with density (or probability) function f on R. Then, for any function g
on R, the (Weak) Law of Large Numbers gives the estimate

Efg :=
∫

R
g(y)f(y) dy ≈ 1

n

n∑
i=1

g(yi). (11)

Here Efg is just a compact notation for Eg(Y ) where Y is a random variable with
distribution given by the density (or probability) function f . Further, it is generally
the case, from the Central Limit Theorem, that the error in (11) is proportional to
n1/2, a result which allows us to estimate how large n needs to be for a given level
of accuracy.
Hence to estimate, for example, the mean of this distribution, or equivalently EY ,
we would take g(y) = y. To estimate the second moment (about 0), or equivalently
EY 2, we would take g(y) = y2.
To estimate P(Y ≤ y0) for some given y0, we would take g to be the indicator
function given by

g(y) =

{
1, y ≤ y0

0, y > y0.

Thus we need techniques for simulating independent realisations from given distri-
butions. Usually this is done with a computer package which is able to simulate from
a small number of given distributions. The challenge is then to use this capability
to simulate from any required target distribution.
The standard situation is that the package is only able to simulate from the U(0, 1)
distribution. However, R is able to simulate directly from a wide range of standard
distributions, in each case for all values of their parameters.
In practice computer packages generate sequences of pseudorandom random num-
bers. In the case of the U(0, 1) distribution, any such sequence (u1, u2, u3, . . . ) is
in fact a deterministic function of its initial seed u0, but behaves for all practical
applications as if it were a sequence of independent realisations from the U(0, 1)
distribution.
It is therefore extremely important to be able to have confidence in the quality of the
package’s “random” number generator. In the case of a well-established and tested
package such as R, there is generally no need for any concern.
In the rest of this section we consider various methods of simulating from given
target distributions.
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2.2 Inverse transform method

Define the generalised inverse of a distribution function F by

F−1(u) = min{y : F (y) ≥ u}, u ∈ (0, 1). (12)

Note that F−1 is essentially the quantile function of the distribution given by F ,
and that in the case where F is continuous and strictly increasing, F−1 is just the
usual inverse of F .

F

0

u1

u2

1

F−1(u1) F−1(u2) y

u

Figure 3: Definition of the generalised inverse function.

Then, since F is increasing, for any u ∈ (0, 1) and any y ∈ R,

F−1(u) ≤ y ⇐⇒ u ≤ F (y). (13)

Result 2.1 Let F be any given target distribution function, and let U be a ran-
dom variable such that U ∼ U(0, 1). Then the random variable Y := F−1(U) has
distribution function F .

Proof. For any y ∈ R, from (13),

P(Y ≤ y) = P(F−1(u) ≤ y) = P(U ≤ F (y)) = F (y)

(where the last equality above follows since U ∼ U(0, 1)).
Hence we can, in principle, simulate any distribution on R by this method.
Limitation: F−1 may be too difficult to routinely calculate for some distributions,
e.g. the normal.

Example 2.1 Simulation of the Exp(λ) distribution. Here we have F (y) = 1−e−λy
and so

F−1(u) = − 1
λ

ln(1− u), u ∈ (0, 1).

Hence, if U ∼ U(0, 1), then Y := − 1
λ ln(1 − U) has an Exp(λ) distribution. (Note

that here Y ′ := − 1
λ lnU also has an Exp(λ) distribution (why? ).)

Example 2.2 Simulation of the Bernoulli distribution with parameter p, i.e. Bin(1, p).
This distribution has an atom of probability of size 1− p at 0 and an atom of prob-
ability of size p at 1. Hence

F−1(u) =

{
0, 0 < u ≤ 1− p

1, 1− p < u < 1.

Hence, if U ∼ U(0, 1), we may simulate the required Bernoulli random variable Y
by taking Y = 0 if U ≤ 1− p and Y = 1 otherwise. (Note that it is easy to see this
directly (why? ).)
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Note that the method of Example 2.2 is easily seen to apply to the simulation of
a random variable Y with any given discrete distribution: divide the interval (0, 1)
into intervals with lengths equal to the probabilities associated with the distribution,
generate U ∼ U(0, 1) and choose Y according to the interval within which U falls.

2.3 Rejection sampling

This is mainly useful in simulation from continuous distributions, in the case where
it is not easy to simulate directly from the target distribution, and we will consider
the continuous case.

Result 2.2 Suppose that

1. we wish to simulate a realisation of a continuous random variable Y with a
given target distribution on R whose density is proportional to some func-
tion f ;

2. we have available a method for simulating from a continuous envelope distri-
bution on R with density proportional to some function g and such that, for
some constant M <∞,

f(y)
Mg(y)

≤ 1, for all y. (14)

Consider the following algorithm:

1. Simulate a realisation z of a random variable Z with the given envelope
distribution (density proportional to g);

2. set Y = z, i.e. accept z, independently with probability
f(z)
Mg(z)

;

otherwise reject z, go back to step 1, and perform as many independent rep-
etitions as are necessary to obtain an acceptance.

The Y has the required target distribution.

Proof. Suppose that the envelope distribution has exact density kg for some (pos-
sibly unknown) constant k. From the above construction, based on independent
repetitions, we have, for any y,

P(Y ≤ y) = P(Z ≤ y |Z is accepted)

=
P(Z ≤ y and Z is accepted)

P(Z is accepted)

=
∫ y

−∞

f(z)
Mg(z)

kg(z) dz
/∫ ∞

−∞

f(z)
Mg(z)

kg(z) dz

=
∫ y

−∞
f(z) dz

/∫ ∞

−∞
f(z) dz .

But this implies that Y has density proportional to f as required.
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Notes.

1. At each attempt, i.e. each repetition, in the above procedure, it is necessary
to perform two simulations, one to generate z, and one to decide whether to
accept z. (For the latter we may simulate U ∼ U(0, 1) and accept if and only
if U ≤ f(z)/Mg(z).)

2. The condition (14) ensures that, conditional on the value z of Z obtained in
step 1 of the above algorithm, the acceptance probability never exceeds one.
Clearly, given the density g of the envelope distribution, acceptance probabili-
ties are maximised by choosing M as small as possible, i.e.

M = sup
y

f(y)
g(y)

and further the unconditional acceptance probability is maximised by choosing
g so that the ratio f(y)/g(y) varies as little as is reasonably possible. (In
particular g may not have tails which are essentially lighter than those of f .)
The limitation of rejection sampling is that, for some target distributions, it
may be difficult to find an envelope distribution satisfying these conditions,
and from which it is possible to simulate easily.

3. Clearly, in order to obtain a large sample of independent realisations form the
target distribution, our practical procedure is to obtain a, necessarily even
larger sample of independent realisations form the envelope distribution and
to keep just those which are accepted.

Example 2.3 Suppose that we wish to simulate from the β(2, 2) distribution, i.e.
with density proportional to the function f defined by

f(y) =

{
y(1− y), y ∈ [0, 1]
0, otherwise.

Then we could take

g(y) =

{
1, y ∈ [0, 1]
0, otherwise.

Since f(y)/g(y) ≤ 1/4 for all y (clearly we may restrict y to the interval [0, 1]) we
could then take M = 1/4, so that in this case our rejection sampling algorithm
becomes

1. Simulate a realisation z of a random variable Z ∼ U(0, 1) (density g);

2. accept z, independently with probability 4z(1− z);
otherwise reject z, go back to the first step, and perform as many independent
repetitions as are necessary to obtain an acceptance.

Some R code:

z = runif(10000) # sample from U(0,1) distribution (density g)
u = runif(10000)
accept = u < 4*z*(1-z) # logical vector of acceptance decisions
sample = z[accept] # sample (mean size 6667) with density f

plot(qbeta(ppoints(sample),2,2), sort(sample)) # Q-Q plot to check
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Example 2.4 Suppose that we wish to simulate a random variable Y with a target
N (0, 1) distribution.
Since this distribution is symmetric about 0, it is convenient to use rejection sampling
to simulate |Y |; the random variable Y itself is then obtained by multiplying |Y |
by an independent random variable which takes the values 1 and −1 with equal
probabilities 1/2.
The random variable |Y | has density proportional to the function f on R+ = [0,∞)
defined by

f(y) = e−y
2/2.

We take as envelope the Exp(1) distribution. This has density g on R+ given by

g(y) = e−y

and so we make take

M = sup
y∈R+

f(y)
g(y)

= sup
y∈R+

ey−y
2/2

= e1/2.

Thus our rejection sampling algorithm to simulate Y becomes

1. Simulate a realisation z of a random variable Z ∼ Exp(1) (using, e.g. the
inverse transform method, i.e. Z = − lnU where U ∼ U(0, 1));

2. accept z, independently with probability e−1/2+z−z2/2 = e−(z−1)2/2;
otherwise reject z, go back to the first step, and perform as many independent
repetitions as are necessary to obtain an acceptance.

3. Finally the accepted random variable is multiplied by an independent random
variable which takes the values 1 and −1 with equal probabilities 1/2.

As usual we generate a large sample of independent realisations of Y (i.e. from the
N (0, 1) distribution) by generating an even larger sample of independent realisations
of Z and keeping only those which are accepted.
Note also that the unconditional acceptance probability here is given by∫ ∞

0
e−(z−1)2/2 e−z dz =

( π
2e

)1/2
= 0.7602

Some R code:

z = -log(runif(10000)) # sample from Exp(1) distribution
u = runif(10000)
accept = u < exp(-(z-1)^2/2) # logical vector of acceptance decisions
sample = z[accept] # sample (mean size 7602) from dist of |Y|
flip = runif(10000) < 0.5 # logical vector of sign change decisions
sample[flip] = - sample[flip] # change signs

qqnorm(sample) # Q-Q plot to check
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2.4 Composition method

Result 2.3 Suppose that the distribution function F of the target distribution has
a representation of the form

F (y) =
n∑
i=1

piFi(y), (15)

where, for each i, Fi is a distribution function (for a distribution from which we can
easily simulate), and where each pi > 0 and

∑n
i=1 pi = 1.

Consider the following algorithm:

1. Choose i with probability pi.

2. Conditional on the choice i, simulate the random variable Y to have distribu-
tion function Fi.

Then the unconditional distribution of Y is given by the target distribution func-
tion F .

Proof. We have, for any y,

P(Y ≤ y) =
n∑
i=1

P(i chosen)P(Y ≤ y | i chosen)

=
n∑
i=1

piFi(y)

= F (y), by (15).

Example 2.5 Suppose that a random variable Y with probability 0.9 is sampled
from a N

(
6, 12

)
distribution and with probability 0.1 is sampled from a N

(
8, 42

)
distribution (a typical ‘contaminated’ distribution). Suppose further that we wish
to simulate 10000 independent realisations of Y . Then the following R code would
be sufficient.

y1 = rnorm(10000,6,1) # sample from N(6,1)
y2 = rnorm(10000,8,4) # sample from N(8,16)
choice = runif(10000) < 0.9 # logical vector to indicate choice
y = y1*choice + y2*(!choice) # R converts choice to vector of 1’s and 0’s !

qqnorm(y) # a normal Q-Q plot is instructive
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2.5 Techniques for particular distributions

1. Exponential with mean λ−1: Exp(λ).

Set Y = − ln(U) where U ∼ U(0, 1).

(Inverse transform method with 1− U replaced by U .)

R: use rexp.

2. Bernoulli with parameter p: Bin(1, p).

Generate U ∼ U(0, 1) and set

Y =

{
0, U ≤ 1− p

1, otherwise.

(This is just the implementation of the discrete inverse transform method.)

R: use rbinom.

3. Binomial with parameters n and p: Bin(n, p).

If n is not too large Y ∼ Bin(n, p) may be conveniently simulated as the sum
of n independent Bernoulli random variables each with parameter p.

Alternatively, we may use the discrete inverse transform method: generate
U ∼ U(0, 1) and set Y = F−1(U) where F−1 is the inverse of the distribution
function F of the Bin(n, p) distribution, i.e. is the quantile function. This
reduces to dividing (0, 1) into intervals according to the required binomial
probabilities, and choosing Y according to the interval in which U falls.

R: use rbinom.

4. Geometric with parameter p: Geo(p).

Here we require P(Y = k) = (1 − p)k−1p, k = 1, 2, 3, . . . . One possible
algorithm is:

(a) Generate Z = Exp(λ) where λ = − ln(1− p);
(b) set Y = 1 + [Z], where [Z] denotes the integer part of Z.

Proof. We have, for integer k ≥ 1,

P(Y ≥ k) = P(Z ≥ k − 1) = e−λ(k−1) = (1− p)k−1,

which implies that Y has the required distribution (why? ).

R: use rgeom. However, note that this simulates from the geometric distri-
bution with ‘origin’ at 0 (rather than 1), i.e. the distribution with probability
function p(k) = (1 − p)kp, k = 0, 1, 2, . . . . Hence for the more usual Geo(p)
distribution we need to add 1 to each of the realisations produced by rgeom.

5. Poisson with parameter (mean) λ: Pois(λ).

Y ∼ Pois(λ) can be simulated as the number of events by time λ in a Poisson
process with rate 1: thus, for a sequence U1, U2, . . . of independent U(0, 1)
random variables, we may take

Y = max{k : −
k∑
i=1

lnUi ≤ λ}

= max{k :
k∏
i=1

Ui ≥ e−λ}.
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To implement this, we need to form the successive products
∏k
i=1 Ui, until we

first obtain N such that
∏N
i=1 Ui > λ, and then take Y = N − 1.

Here is a simple (but not very efficient) R function to generate a random
sample of a Pois(λ) random variable:

spois = function(n, lambda){
expl = exp( - lambda)
z = numeric(n) #create vector to hold result
for(i in 1:n) { #loop of size size

m = 0 #initialize Poisson count
prod = 1 #initialize product
while(prod > expl) { #loop to create count

m = m + 1
prod = prod * runif(1)

} #end of while loop
z[i] = m - 1 #define value of realisation i

} #end of for loop
return(z) #return value of function

} #end of function definition

Simulations from the Pois(λ) distribution are also readily obtained via the
discrete inverse transform method.

In practice it is simpler to use the built-in R function rpois, which allows us
to simulate a sample of arbitrary size.

6. Normal with mean µ and standard deviation σ: N (µ, σ).

Note first that if Z ∼ N (0, 1), and Y = µ+ σZ, then Y ∼ N (µ, σ), so that it
is sufficient to consider simulation from the N (0, 1) distribution.

One possibility is to use rejection sampling as in Example 2.4.

Another possibility is the Box-Müller method for simulating a pair of inde-
pendent N (0, 1) random variables:

(a) Generate independent U(0, 1) random variables U1, U2.
(b) Set Θ = 2πU1 and R = (−2 lnU2)1/2.
(c) Then X := R cos Θ and Y := R sinΘ are independent N (0, 1) random

variables.

Proof. (Outline.) Clearly Θ and R are independent, Θ ∼ U(0, 2π), and (by
the inverse transform method) R has distribution function F given by F (r) =
1 − e−r

2/2. Consideration of the transformation (R,Θ) −→ (X,Y ) (polar
to Cartesian coordinates) now gives that X and Y are independent N (0, 1)
random variables. (Exercise! )
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3 Markov chain Monte Carlo

3.1 Introduction to Markov chains

3.1.1 Definitions and examples

A discrete time stochastic (i.e. random) process {Xn}n≥0 taking values in a discrete
state space S (whose states are typically labelled by the integers or some subset of
the integers) is a Markov chain if and only if

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j |Xn = i)

for all n ≥ 0 and for all j, i, in−1, . . . , i1 ∈ S.
Thus, given the evolution of the process {Xn}n≥0 up to any “current” time n,
the probabilistic description of its behaviour at time n + 1 (and, by induction, the
probabilistic description of all its subsequent behaviour) depends only on the current
state {Xn = i}, and not on the previous history of the process. This is the Markov
property.
Additionally the Markov chain {Xn}n≥0 is time homogeneous, if, for all i, j ∈ S,
there is some probability pij such that

P(Xn+1 = j |Xn = i) = pij

independently of n.
The matrix P = (pij)i,j∈S is then referred to at the transition matrix of the
Markov chain.
Note that necessarily

pij ≥ 0 for all i, j ∈ S,
∑
j∈S

pij = 1 for all i ∈ S,

i.e. P is a stochastic matrix.
For a time homogeneous Markov chain {Xn}n≥0, given its evolution up to any “cur-
rent” time n, the probabilistic description of its behaviour at time n + 1 (and, by
extension, the probabilistic description of all its subsequent behaviour) depends only
on the current state {Xn = i}, and not on the previous history of the process nor
on the time n itself.
Except where explicitly stated otherwise, we shall assume that all Markov chains
are time homogeneous.

Example 3.1 Device state. Suppose that a device can be in one of three states:
1 = working properly; 2 = working badly; 3 = broken. Its states on successive days
might form a Markov chain with transition matrix

P =

1
2

1
4

1
4

0 3
4

1
4

1 0 0

 .

Thus, given the states of the device up to any day n, its state on day n+ 1 depends
(statistically) only on its state on day n and not on its state on earlier days. Note
that if the device is broken on one day, it has been replaced and is working properly
the next day.
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Interesting questions:

1. if the device is in state 1 on day 0, what is the probability it is in state 1 on
day n?

2. if the device is in state 1 on day 0, what is the probability it remains in state 1
every day up to and including day n?

3. what is the average time between successive replacements of the device (note
that this is here the reciprocal of the long-run frequency of time spent in
state 3)?

4. what are the long-run proportions of time spent in each of the three states?

Note: the last two quantities above are in principle random variables, though we
shall see later that, for this example, they are (almost surely) constant.

Example 3.2 Device with absorbing state. Consider again Example 3.1, but sup-
pose instead that when the device is broken it is not repaired. Then the process of
successive states remains a Markov chain with new transition matrix

P ′ =

1
2

1
4

1
4

0 3
4

1
4

0 0 1

 .

Thus once the device enters state 3 it remains within that state forever, and can
never again reach either state 1 or state 2. The state 3 is referred to as absorbing.

Example 3.3 Random walk on the integers. Let a be a integer constant and let
ξ1, ξ2, . . . be a sequence of independent identically distributed integer-valued random
variables. Define the process {Xn}n≥0 by

X0 = a, Xn = a+
n∑
i=1

ξi, n ≥ 1.

Then {Xn}n≥0 is a random walk.
To see that {Xn}n≥0 is a Markov chain, observe that, for any n and any set of states
i0, . . . , in−1, i, j

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(ξn+1 = j − i) (by independence)
= P(Xn+1 = j |Xn = i).

The random walk {Xn}n≥0 is simple if the random variables ξi can only take the
values +1 or −1, in which case there is some probability p between 0 and 1 such
that

P(ξi = 1) = p

P(ξi = −1) = q,

where q = 1− p.
Interesting questions: perhaps the most interesting question for the simple random
walk is to determine the probability, starting at X0 = a, where a > 0, that the
process {Xn} ever hits the state 0 (at some random future time). This is the
probability of ruin.
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Example 3.4 Random walk with reflecting barrier(s). Consider again the simple
random walk {Xn}n≥0 defined above, but with state space S restricted to the non-
negative integers, i.e. S = {0, 1, 2, . . . }. Suppose further that the behaviour of the
random walk is modified so that whenever the process is in state 0, its next step is
to remain in state 0 with probability q or to go to state 1 with probability p (where
p and q are as defined above), independently of all previous moves. Then it is again
easy to see that this modified process is a Markov chain. The state 0 is referred to
as a reflecting barrier for the chain. Markov chains of this sort arise frequently
in queueing theory and in the theory of population processes.
A further possible modification is to have an additional (downwards) reflecting bar-
rier at some state a > 0, so that the state space becomes S = {0, 1, 2, . . . a}
Interesting question: in either case calculate the long-term proportion of time spent
in each state.

3.1.2 Simple probability calculations

Suppose that {Xn}n≥0 is a time homogeneous Markov chain with transition matrix
P = (pij)i,j∈S .
Further, let µ = (µi)i∈S be the distribution of the initial random variable X0, i.e.
µi = P(X0 = i).
Then the probabilistic description of the entire process {Xn}n≥0 is determined by
µ and P . We may think of µ as representing ( the probability of) the initial state
of the process, and P as representing its subsequent dynamics.
In particular we have, for any sequence of states i0, . . . , in,

P(X0 = i0, X1 = i1, . . . , Xn = in) = µi0pi0i1 . . . pin−1in , (16)

and so more general probabilities can also be calculated by summing the probabilities
of elementary events of this form.
For any n ≥ 0, define the n-step transition probabilities

p
(n)
ij = P(Xm+n = j |Xm = i), i, j ∈ S.

These are independent of m by time homogeneity. Note also that p(0)
ij = δij where

δij = 1 if i = j and δij = 0 if i 6= j. Then, from (16), writing i for i0, j for in, sum-
ming probabilities over all intermediate states i1, . . . , in−1, and finally conditioning
on X0 = i (or equivalently taking P(X0 = i) = 1), we have

p
(n)
ij = (Pn)ij , i, j ∈ S,

i.e. the n-step transition probabilities p(n)
ij , are given by (the components of) the

matrix Pn. This is also necessarily a stochastic matrix. Further it should also be
possible to see the above result directly.
Similarly, from (16), writing j for in, and summing probabilities over all intermediate
states i0, i1, . . . , in−1, we have

P(Xn = j) = (µPn)j , j ∈ S,

i.e. the distribution of Xn is given by the vector µPn.
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Finally we have the Chapman-Kolmogorov equations: for any m > 0, n > 0,
and i, j ∈ S,

p
(m+n)
ij = P(Xm+n = j |X0 = i)

=
∑
k∈S

P(Xn = k, Xm+n = j |X0 = i)

=
∑
k∈S

P(Xn = k |X0 = i)P(Xm+n = j |X0 = i,Xn = k)

=
∑
k∈S

P(Xn = k |X0 = i)P(Xm+n = j |Xn = k) (by the Markov property)

=
∑
k∈S

p
(m)
ik p

(n)
kj

and the Chapman-Kolmogorov inequalities: for any m > 0, n > 0, and i, j, k ∈
S,

p
(m+n)
ij ≥ p

(m)
ik p

(n)
kj ,

which follow immediately from the Chapman-Kolmogorov equations.

Example 3.5 Consider again Example 3.1 (device state). The matrices of the n-
step transition probabilities, for n = 1, 2, . . . , 6, are given (to 3 sig. figs.) by

P =

0.500 0.250 0.250
0.000 0.750 0.250
1.000 0.000 0.000

P 2 =

0.500 0.312 0.188
0.250 0.562 0.188
0.500 0.250 0.250

P 3 =

0.438 0.359 0.203
0.312 0.484 0.203
0.500 0.312 0.188


P 4 =

0.422 0.379 0.199
0.359 0.441 0.199
0.438 0.359 0.203

P 5 =

0.410 0.390 0.200
0.379 0.421 0.200
0.422 0.379 0.199

P 6 =

0.405 0.395 0.200
0.390 0.410 0.200
0.410 0.390 0.200


Note the rapidity with which, for any fixed j, the dependence on i of p(n)

ij declines
as n increases—the chain tends to quickly “forget its initial state”.

3.2 Stationary distributions

Throughout this and the succeeding sections {Xn}n≥0 continues to be a time homo-
geneous Markov chain with state space S and transition matrix P = (pij)i,j∈S .
We further assume throughout that the Markov chain {Xn}n≥0 is irreducible. This
is defined by the requirement that all states of the chain intercommunicate, i.e.
that for every i, j ∈ S, there is some n ≥ 0 such that p(n)

ij > 0, so that it is possible to
reach every state of the chain from every other state of the chain in some number of
steps with strictly positive probability. Equivalently, the entire state space S of the
chain is said to form a single (closed) class in this case. Irreducible chains feature
in many applications.
Finally we assume—mainly for simplicity—that the Markov chain {Xn}n≥0 is ape-
riodic. [A chain is periodic if there is some d > 1 such that, starting in any given
state, the chain can only return to that state at multiples of the time d; otherwise
it is aperiodic. Periodicity is just a nuisance, both for theory and practice. It is
easy to see how to deal with it once the aperiodic case is well-understood.]
Recall also that a vector π = (πi)i∈S on S is a (probability) distribution if and
only if πi ≥ 0 for all i and

∑
i∈S πi = 1.
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Definition. A (probability) distribution π on S is stationary for the Markov
chain {Xn}n≥0 if and only if

πP = π or equivalently
∑
i∈S

πipij = πj , j ∈ S. (17)

We then have also, for all n ≥ 1,

πPn = π or equivalently
∑
i∈S

πip
(n)
ij = πj , j ∈ S. (18)

i.e. if the distribution of X0 is π, then, for all n ≥ 1, the distribution of Xn is also
π.
A stationary distribution is also known as an equilibrium distribution for the
chain. An informal interpretation (which will be made formal in Section 3.5) is that
it gives the long-term proportion of time spent in each of the states.

Important results. (See Section 3.4 for more details.)

• The Markov chain {Xn}n≥0 may or may not have a stationary distribution;

• (under our assumption that the chain is irreducible) when the chain does have
a stationary distribution this is unique;

• when S is finite, the chain always has a stationary distribution.

Note also that if a distribution π is stationary, then πj > 0 for all j ∈ S. This
follows since there is clearly some i such that πi > 0 (since

∑
i∈S πi = 1), and then,

since the chain is assumed to be irreducible, for any other j ∈ S, there is some n
such that p(n)

ij > 0, and so, from (18), πj > 0.
To find the stationary distribution (given the transition matrix P ) we may either
solve the equations (17), or simply guess the answer (which is often possible) and
verify that it satisfies the equations (17).
In Section 3.3 below we consider a further possibility, which only works for certain
transition matrices P .

Example 3.6 No-claims discount scheme. Consider the transition matrix

P =

p 1− p 0
p 0 1− p
p 0 1− p

 ,

which might be appropriate to modelling the levels of an individual in successive
years in a simple no-claims discount scheme.
The equations (17) for the stationary distribution π here become

pπ1 + pπ2 + pπ3 = π1

(1− p)π1 = π2

(1− p)π2 + (1− p)π3 = π3

While this looks like 3 equations in 3 unknowns, any given one of these equations is
implied by the remainder (as is always the case with the equations (17)—add them
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up to see this), and we must add the further requirement that π be a distribution,
i.e.

π1 + π2 + π3 = 1.

We thus obtain that the Markov chain corresponding to the transition matrix P has
the unique stationary distribution

π = (p, p(1− p), (1− p)2).

Example 3.7 Simple random walk. For the simple random walk we can check
directly from the equations (17) that there is no stationary distribution (exercise, if
you like—you will need to remember that the components of a stationary distribution
sum to 1). However, suppose the contrary, i.e. that a, necessarily unique, stationary
distribution π does exist. Then by the (spatial) translation invariance of the random
walk, πi is constant for all i ∈ S and also

∑
i∈S πi = 1, which is impossible since

S is infinite. Indeed this argument shows that any random walk fails to have a
stationary distribution.

3.3 Detailed balance

We continue to assume that the time-homogeneous Markov chain {Xn}n≥0 is irre-
ducible and aperiodic.
Implicit in the ideas of the Section 3.2 is that we wish to solve the following problems:

1. determine whether there is a stationary distribution for the Markov chain
{Xn}n≥0; (this always exists when S is finite);

2. find it.

Both these problems may always be solved, in principle, by looking for a distribu-
tion π (πi ≥ 0 for all i and

∑
i∈S πi = 1) which satisfies the equations (17).

The solution of the equations (17) can be relatively difficult. However, sometimes
there is an alternative approach to the solution of both the above problems.
We shall say that the transition matrix P possesses the detailed balance property if
there is a strictly positive vector π on S satisfying the detailed balance equations

πipij = πjpji for all i, j ∈ S. (19)

We now have the following result.

Theorem 3.1 Suppose that the transition matrix P possesses the detailed balance
property, i.e. there exists a strictly positive vector π on S satisfying the equa-
tions (19).

(a) If
∑

i∈S πi <∞ (which is always the case when S is finite), then we can then
choose (normalise) π so that

∑
i∈S πi = 1, and π is then the, necessarily

unique, stationary distribution for the chain.

(b) If
∑

i∈S πi = ∞, then there is no stationary distribution for the chain.

Proof. We prove (a) only. This follows from the observation that if a distribution π
satisfies the detailed balance equations (19), then, for each fixed j,∑

i∈S
πipij = πj

∑
i∈S

pji

= πj .
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and so, by (17), π is stationary.
Only some transition matrices possess the detailed balance property—in (19) there
are typically far more equations than unknowns. When the transition matrix P
does possess detailed balance, the equations (19) are much simpler to solve than the
usual equations (17) for the stationary distribution. However, when the transition
matrix P does not possess detailed balance, we can conclude nothing by the approach
of this section (not even whether a stationary distribution exists), and must revert
to the approach of the previous section.
One case where the transition matrix P always possesses detailed balance is where it
is possible to order the states of S so that one-step transitions are possible between
and only between neighbouring states. The equations (19) may then be solved
recursively.
A Markov chain for which the detailed balance equations have a solution π with∑

i∈S πi < ∞, which may then be normalised to the stationary distribution, and
which is started with this stationary distribution, is often referred to as reversible.

Example 3.8 No-claims discount scheme. Consider again the Example 3.6 with
the transition matrix

P =

p 1− p 0
p 0 1− p
p 0 1− p

 .

The detailed balance equations (19) are here

π1(1− p) = π2p

0 = π3p

π2(1− p) = 0

and it is clear that we cannot find a probability distribution π satisfying these
equations. Nevertheless we have already shown that the distribution

π = (p, p(1− p), (1− p)2)

is stationary for this chain.

Example 3.9 n-state system with cyclic symmetry. We shall take n = 3; the argu-
ment for any n > 3 is the same. Consider a 3-state Markov chain with transition
matrix

P =

0 p q
q 0 p
p q 0

 .

where 0 < p < 1 and p+ q = 1. The detailed balance equations (19) are here

π1p = π2q

π2p = π3q

π3p = π1q,

which have a solution if and only if p = q = 1/2, giving the stationary distribution
π = (1/3, 1/3, 1/3) in this case. If p 6= q, the detailed balance equations do not
have a solution, and the equations (17) must be solved instead to find the stationary
distribution (which is still π = (1/3, 1/3, 1/3)).
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Example 3.10 Simple random walk with reflecting barrier at 0. In Example 3.4
we introduced the simple random walk on the nonnegative integers modified so that
the state 0 is a reflecting barrier. This has transition matrix P = (pij) where

pi,i+1 = p, i ≥ 0
pi,i−1 = q, i ≥ 1
pij = 0, for all other pairs i, j,

where, as usual, p+ q = 1. The (nontrivial) detailed balance equations are here

πip = πi+1q, i ≥ 0,

which may be solved recursively to give

πi = π0

(
p

q

)i

, i ≥ 0.

Hence we have
∑

i≥0 πi < ∞ if and only if p < q, i.e. p < 1/2. In this case for∑
i≥0 πi = 1 we require π0 = 1 − p/q. We deduce that a stationary distribution

exists if and only if p < 1/2 and is then given by π where

πi =
(

1− p

q

) (
p

q

)i

, i ≥ 0.

Example 3.11 Markov chain Monte Carlo. Suppose that we have a target distri-
bution π on a state space S such that πi > 0 for all i ∈ S. We wish to construct a
Markov chain on S for which π is the stationary distribution.
Let Q = (qij)i,j∈S be any stochastic matrix which would itself define an irre-
ducible chain; thus, for each i, the vector of probabilities (qij)j∈S forms a probability
distribution—the proposal distribution. Define the Markov chain {Xn}n≥0 with
transition matrix P = (pij)i,j∈S given by, for all i,

pij = min
(
qij ,

πjqji
πi

)
, j 6= i,

pii = 1−
∑
j 6=i

pij .

Then, for any i, j with j 6= i, we have

πipij = min(πiqji, πjqji)
= πjpji,

and so the distribution π here satisfies the detailed balance equations for the chain {Xn}n≥0,
and so is the stationary distribution of this chain.

3.4 Stationary and limiting distributions

Recall that the Markov chain {Xn}n≥0 is assumed to be irreducible (S is a single
closed class), and that it is also assumed to be aperiodic.
The following result summarises the connection between stationary and limiting
distributions for the chain.

Theorem 3.2 Either
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(a) there is a unique stationary distribution π for the chain {Xn}n≥0, and then

lim
n→∞

p
(n)
ij = πj for all i, j ∈ S;

in this case the chain is said to be ergodic; or

(b) there is no stationary distribution for the chain, and then

lim
n→∞

p
(n)
ij = 0 for all i, j ∈ S.

In the case where S is finite the case (a) always holds, i.e. when S is finite, an
irreducible aperiodic chain is always ergodic.

Proof. We give a outline proof for the case where S is finite, i.e. we show that here
the result (a) follows.
First, since the chain is irreducible and aperiodic a coupling argument, discussed in
the lectures, shows that there is some vector π such that, for all i, j ∈ S,

lim
n→∞

p
(n)
ij = πj . (20)

independently of i. (This implies in particular that the chain “eventually forgets its
initial state”.) Since, for any i and for all n,

∑
j∈S p

(n)
ij = 1, letting n → ∞ and

using (20), we obtain ∑
j∈S

πj = 1.

Further, for any n ≥ 1 and for any i, j ∈ S, we have, by the Chapman-Kolmogorov
equations (or just see it directly)

p
(n+1)
ij =

∑
k∈S

p
(n)
ik pkj .

Again letting n→∞ and using (20), we obtain, for all j,

πj =
∑
k∈S

πkpkj .

Hence π is a stationary distribution.
To prove uniqueness, suppose that π′ is any stationary distribution for the chain.
Then, letting n→∞ in equation (18), we obtain, for all j,

π′j =
∑
i∈S

π′iπj

= πj
∑
i∈S

π′i

= πj

since
∑

i∈S π
′
i = 1.
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Note. When the Markov chain is ergodic, i.e. the case (a) of Theorem 3.2, it follows
that all states of the chain are positive persistent (or positive recurrent). In the case
(b) it turns out that either all states are transient or all states are null persistent.

Example 3.12 No-claims discount scheme. In the earlier Example 3.8 it is clear
that the Markov chain is aperiodic and well as being irreducible, and we conclude
that, for all i, j ∈ S, limn→∞ p

(n)
ij = πj , where π = (p, p(1− p), (1− p)2).

3.5 The ergodic theorem for Markov chains

We suppose now that the chain {Xn}n≥0 is ergodic, i.e that it is irreducible and
aperiodic, and there exists a (necessarily unique) stationary distribution π.
From Theorem 3.2, for all i, j ∈ S we have

lim
n→∞

p
(n)
ij = πj , (21)

and also πj > 0 for all j. It follows from the positive persistence (positive recurrence)
of S in this case that, with probability 1, all states of the chain are visited infinitely
often. We might expect from (21) that, for each j, πj would correspond to the
long-term proportion of time spent in state j. That this is true is a special case of
the Ergodic Theorem below.

Theorem 3.3 (Ergodic theorem for Markov chains) Suppose that {Xn}n≥0

is ergodic with stationary distribution π. Then, for any function f on the state
space S such that

∑
i∈S πi|f(i)| <∞ (i.e. f has a finite expectation with respect to

the stationary distribution π),

lim
N→∞

1
N

N−1∑
n=0

f(Xn) =
∑
i∈S

πif(i) with probability 1. (22)

For the special case referred to above, fix any j ∈ S and define the function fj on S
by

fj(i) =

{
1 if i = j

0 otherwise.

Then the left side of equation (22) is precisely the long-term proportion of time spent
in state j, while the right side is simply πj , so that the ergodic theorem here does
indeed assert that, with probability 1, the long-term proportion of time spent in
state j is equal to πj .
Proof. We give a brief outline of the proof of the ergodic theorem. It is sufficient to
prove it for every function fj of the form defined above—the result for more general
functions f (with finite expectation with respect to π) is then easily deduced.
The strong law of large numbers is a key result of basic probability theory which
asserts that, with probability 1, the average of a sum of n independent identically
distributed random variables converges, as n→∞, to their common expectation. It
follows fairly simply from this that, for any j ∈ S, there is some constant π′j such
that, for any initial distribution of the chain,

lim
N→∞

1
N

N−1∑
n=0

fj(Xn) = π′j with probability 1. (23)

Taking the initial distribution to be π, and taking expectations in (23), it follows
that π′j = πj as required.
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3.6 MCMC: Introduction

3.6.1 Objective

Often we wish to calculate functions of a distribution π, as given by its probability
function or density function π(·), and defined on some space S. For example, π
might be a Bayesian posterior distribution, and we might wish to calculate its mean,
its variance, or the probability it takes a particular value or lies within a given range.
In general such quantities can be expressed as the expectation

Eπg =

{∫
x∈S π(x)g(x) dx if S is continuous∑
x∈S π(x)g(x) if S is discrete

of some function g on S with respect to π.

Examples

1. For the mean µ of π, we take g(x) = x.

2. For the variance of π, we could take g(x) = (x − µ)2, where the mean µ has
been previously calculated or estimated.

3. For the probability assigned by π to the interval [a, b], we take g(x) = 1 if
a ≤ x ≤ b and g(x) = 0 otherwise.

4. For the probability assigned by π to any particular value a we take g(x) = 1
if x = a and g(x) = 0 otherwise (this is really a special case of the previous
example).

Suppose now that π(·) is only known up to a multiplicative constant—the exact value
of the normalising constant being too difficult to calculate. This is often the case
in applied probability models with complex constraints and in Bayesian statistics
(where π is the posterior distribution of the parameters to be estimated.)
We regard π as a target distribution, and construct an irreducible Markov
chain {Xn}n≥0 with transition matrix or kernel P = (p(x, y))x,y∈S for which π
is the stationary or invariant distribution.
Then, by the ergodic theorem, for any function g on S such that Eπg is finite,
and for any time k

lim
N→∞

1
N

k+N∑
n=k+1

g(Xn) = Eπg (24)

Hence we can estimate Eπg by simulating the chain for a sufficiently long period of
time to obtain a good approximation to the left side, and so also the right side, of
(24). Note that we typically neglect an initial segment of the chain of length k—see
below.
Recall also that, when the chain is aperiodic, the distribution of Xn converges to π.
This remains true, in a suitably time-averaged sense, in the periodic case.
Note that for a given distribution π, there is a huge choice of Markov chains which
have π as their stationary distribution.
Notation: as previously we will use a common notation for the discrete and con-
tinuous cases. In particular, in the continuous case p(x, ·) represents the density of
the distribution of Xn+1 conditional on Xn = x, while in the discrete case p(x, ·)
represents the probability (mass) function of the distribution of Xn+1 conditional on
Xn = x (so that here P = (p(x, y))x,y∈S is just the usual transition matrix of the
chain).
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3.6.2 Notes

1. Burn-in. It is desirable to choose k sufficiently large that the distribution of
Xk, i.e. of the chain at time k, has converged close to its stationary distribu-
tion π. This greatly increases the accuracy of approximations based on (24).
There is a huge literature on this, but in summary approaches to the choice of
k are:

(a) Theoretical. If possible the chain {Xn}n≥0 (i.e. the kernel of transition
probabilities P ) should be chosen so that the convergence of the distribu-
tion of Xn to π is geometrically (exponentially) fast—ideally uniformly
over all starting points. Then k can be taken to be small.

(b) Diagnostic. In particular appropriate plots (e.g. simple plots of Xn, or
g(Xn), against n) may be used to assess whether, by some time k, the
distribution of Xn has settled sufficiently close to π for all n ≥ k.

The length of the burn-in period depends crucially on the choice of chain.
However, in most situations the length N of the simulation required for rea-
sonably accurate estimation is such that the burn-in period k need not exceed
more than 1–2% of the total length k +N of the simulation.

2. Efficiency. It is important that the chain should mix reasonably rapidly, and
in particular that it should not get stuck in particular states for lengthy periods
of time (because of low acceptance probabilities—see below). The ideal situa-
tion is when, for all x, p(x, ·) is reasonably close to the target distribution π, so
that successive observations of the chain are close to being independent iden-
tically distributed. (Of course if this could be achieved exactly there would be
no need to think in terms of MCMC!)

In good situations (e.g. when S is finite, and under stationarity)

1
N

k+N∑
n=k+1

g(Xn)

is an, at least asymptotically, unbiased estimator of Eπg with standard error
proportional to 1/

√
N . However, when the mixing is poor, the constant of

proportionality will be much greater than in the case of i.i.d. sampling.

3. Mixing kernels. Frequently, in order to achieve ergodicity and good mixing,
it is necessary to choose at each time step from one of a number of kernels,
typically either in rotation or randomly (in the latter case we are really using
a single more general kernel). An example occurs in the use of the Gibbs
sampler—again see below. At each time step the kernel P must be such that
πP = π.

4. Auxiliary variables. Sometimes it is desirable to run the Markov chain
{Xn}n≥0 on a state space S which has been enlarged by the introduction of
an additional auxiliary variable z, say.

For example, suppose that x represents the parameter(s) of interest in a
Bayesian model. Suppose also that (a) the prior distribution of x is given
by π0; (b) for any given values of the parameter(s) x, unobserved random
variables z are generated in accordance with a density f(x, z); (c) for given
z, the observed data y are generated in accordance with a density h(z, y).
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Then the posterior distribution of x, given the observations y, is given by the
probability function or density

π(x) = Kπ0(x)
∫
z
f(x, z)h(z, y) dz

for some (usually incalculable) normalising constant K. The difficulties in-
volved in the integration are typically such that it is simpler to observe that
the posterior joint distribution of (x, z) is given by

π̂(x, z) = K̂π0(x)f(x, z)h(z, y)

(where again K̂ is the appropriate normalising constant). A Markov chain
(Xn, Zn)n≥0 may then be constructed on the space S of all (x, z) with the
above joint distribution of (x, z) as its target. Since what is of interest is the
marginal distribution π of x, any quantity of the form Eπg , where g depends
only on x, may be estimated via (24) as usual, i.e. by ignoring the observed
values of Zn.

3.7 MCMC: Algorithms

3.7.1 The Metropolis-Hastings algorithm

This is a method of constructing a Markov chain kernel P = (p(x, y))x,y∈S such
that, for the given target distribution π (with probability function or density π(·))
we have πP = π. The constructed kernel possesses the detailed balance property,
indeed it is this that makes its construction possible.
The algorithm is completely defined by the specification, for each x ∈ S, of a pro-
posal distribution, given by its probability function (or density) q(x, ·). The kernel,
i.e. effectively the chain, is then defined by the two-step procedure:

1. given the value x of the chain at the current time n, say, choose a candidate y
according to the proposal probabilities q(x, ·), i.e. choose y with probability
(density) q(x, y).

2. accept the candidate y as the next value of the chain (at time n+1) with the
acceptance probability

α(x, y) = min
(

1,
π(y)q(y, x)
π(x)q(x, y)

)
; (25)

otherwise (with probability 1 − α(x, y)) the next value of the chain (at time
n + 1) is again taken to be x. Note that it is crucial that if the candidate
is not accepted, the chain nevertheless moves forward one time step—while
remaining in the same state.

Note also that if the candidate y is the same as the current state x, then it
is accepted with probability 1, and the chain again moves forward one time
step while remaining in the same state—again it is crucial that the chain does
moves forward one time step.

Finally, note that in (25) it is indeed only necessary to know the target prob-
ability function or density π(·) up to a multiplicative constant, since the ac-
ceptance probability α(x, y) involves only the ratio π(y)/π(x).
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The transition probabilities of the resulting Markov chain are then given by, for
y 6= x,

p(x, y) = α(x, y)q(x, y) = min
(
q(x, y),

π(y)q(y, x)
π(x)

)
,

and so, again for y 6= x,

π(x)p(x, y) = min (π(x)q(x, y), π(y)q(y, x)) = π(y)p(y, x),

so that the kernel P = (p(x, y))x,y∈S does indeed possess the detailed balance prop-
erty.
Additionally, in order for the result (24) to hold, we require the proposal to be such
that the chain defined by the kernel P is irreducible. In some cases the property is
obvious, while in others it requires careful checking.
Ideally the proposal distribution should be reasonably close to the target distribution,
but in many problems the chain will instead have to move in fairly small steps.

3.7.2 Special cases of the Metropolis-Hastings algorithm

We mention some special cases, corresponding to particular choices of the proposal
distribution q(x, ·).

The Metropolis algorithm. In this case the proposal distribution is such that
q(x, y) = q(y, x) for all x, y ∈ S, so that the acceptance probability (25) becomes

α(x, y) = min
(

1,
π(y)
π(x)

)
. (26)

Frequently we have q(x, y) = q(|y − x|), i.e. the proposal is to move a distance from
x which is chosen independently of the current state x. This is known as random
walk Metropolis.

The independence sampler. Here, for all x, y ∈ S, we have q(x, y) = q̄(y) for
some function q̄ on S, i.e. the proposal probabilities q(x, ·) are independent of the
current state x. The acceptance probability (25) then becomes

α(x, y) = min
(

1,
π(y)q̄(x)
π(x)q̄(y)

)
.

Example 3.13 Suppose that the state space S is the set of all n! permutations
δ = (δ1, . . . , δn) of the integers 1 to n for some n sufficiently large that n! is a
big number. Suppose further that the target distribution is given by its probability
function π(·) on S, typically known only up to some multiplicative constant which
cannot be calculated on account of the huge size of S.
Consider the following proposal for the simulation of a Markov chain on S with
stationary distribution given by π(·) by the use of the Metropolis-Hastings algorithm:
whatever the current state δ of the chain (δ is some permutation of {1, . . . , n}), two
indices i and j are chosen at random from (1, . . . , n), all pairs being equally likely.
The new candidate state is then given by swapping δi and δj . Thus the proposal
probabilities are given by

q(δ, δ′) =

{(
n
2

)−1 if δ and δ′ differ at exactly 2 places
0 otherwise.
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Since q(δ, δ′) = q(δ′, δ) for all δ, δ′ this is an instance of the Metropolis algorithm.
The acceptance probability α(δ, δ′) is given by (26) (with x and y replaced by δ and
δ′). In the case where π(δ) > 0 for all δ ∈ S it is clear the the resulting Markov chain
is irreducible (since every permutation can be obtained from every other through
some finite number of swaps). The mixing of the chain is relatively slow, so that
many steps of the chain are required for accurate estimation of quantities of interest,
but this is compensated for by the simplicity of implementation of the algorithm.
An interesting particular case arises when S is composed of a set A of equiprobable
allowed states and the remaining set S \A of forbidden states, so that we may take

π(δ) =

{
k−1 if δ ∈ A
0 if δ /∈ A,

where k = |A| is typically unknown. For example, the set {1, . . . , n} might corre-
spond to n individuals and the permutation δ = (δ1, . . . , δn} might correspond to
their ranks (according to some ordering). Under the target distribution π on S, all
permutations (rankings) might be equally likely provided only that they satisfied
some constraints of the form δi < δj (individual i ranks ahead of individual j) for
certain specified ordered pairs (i, j). Thus A would here be the set of permutations
satisfying these constraints. For n of even moderate size (e.g. n = 30) such con-
straints might well ensure that the size of the set A of allowed permutations is too
large and too difficult to calculate. Here the Markov chain, if started in A, remains
within A thereafter, the acceptance probabilities being 1 for proposed swaps such
that the new state also belongs to A, and 0 otherwise. It is necessary to ensure
that the set A is such that the corresponding chain is irreducible, i.e. that every
state within A can be reached from every other by a sequence of simple swaps while
remaining within the set A (otherwise it will be necessary to use a more sophisti-
cated proposal). A typical quantity of interest might be the probability, under the
distribution on S given by π(·), of the event {δi = j} for some i, j ∈ {1, . . . , n}. This
would be estimated by the long-run proportion of those states of the chain for which
this event occurred.

3.7.3 The Gibbs sampler

Frequently the space S (on which the target distribution π of interest is defined) is
multidimensional (this is where MCMC is most useful). This happens in Bayesian
estimation whenever there is more than one parameter to be estimated, and, for
example, in spatial processes.
For simplicity, we shall assume that S is two-dimensional so that we may write a
typical state x ∈ S as x = (x1, x2). In many cases, while the target probabilities (or
density) π(·, ·) is known only up to a multiplicative constant, the one-dimensional
conditional probabilities π2|1(x2 |x1) of x2 given x1 and π1|2(x1 |x2) of x1 given x2

can easily be calculated exactly. The Gibbs sampler is then a simulation of a
Markov chain on S in which the two coordinates of x are updated alternately by
the use of these two conditional probability (density) functions. Thus, if the current
state of the chain is x = (x1, x2) and x1 is to be kept fixed, then x2 is updated in
accordance with the conditional probability (density) function π2|1(· |x1) (to obtain
a new state (x1, x

′
2)) while if x2 is to be kept fixed, then x1 is updated in accordance

with the conditional probability (density) function π1|2(· |x2) (to obtain a new state
(x′1, x2)). We thus obtain an instance of a Markov chain, which is not quite time-
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homogeneous, but which has two kernels P1 and P2, say, which are used alternately
at successive steps of the chain.
To show that the target distribution π is a stationary distribution of this chain, it
is necessary to verify that πPi = π for both i = 1 and i = 2. For this it will be
sufficient to verify the detailed balance equations

π(x1, x2)π2|1(x
′
2 |x1) = π(x1, x

′
2)π2|1(x2 |x1)

π(x1, x2)π1|2(x
′
1 |x2) = π(x′1, x2)π1|2(x1 |x2)

corresponding to each of the alternating steps of the chain. But these equations
are immediate simply from the definition of conditional probability. Thus, provided
we have irreducibility of the chain so that the ergodic theorem again holds (the
extension to the alternating chain follows easily by considering the homogeneous
chain {X2n}n≥0), expectations with respect to π may be estimated as usual by
considering long-run frequencies and using (24).
Figure 4 shows the alternate updating procedure in the state space S.

x2

x

x1

Figure 4: Two-dimensional state space: alternate updating of x1 and x2.

An alternative is, at each step, to make a random choice of the coordinate of S to
be updated, resulting in a Markov chain which is now again time-homogeneous.
We observe that the Gibbs sampler may also be viewed as an instance of the
Metropolis-Hastings algorithm, with the use of the conditional distributions as al-
ternating proposals and with acceptance probabilities which always turn out to be
equal to 1. [Exercise!]
Finally we remark that the above ideas extend naturally to a space S of any finite
number of dimensions: at each step of the chain one coordinate of the state is
updated, using the conditional distribution of that coordinate given the current
values of the remaining coordinates. The coordinates may be chosen cyclically or
randomly.

Example 3.14 A spatial process. Consider an N ×N lattice in which each vertex
(i, j) (where 1 ≤ i ≤ N , 1 ≤ j ≤ N) is in either state 0 or state 1. The state of the
entire system is therefore x where x = (xij)1≤i≤N,1≤j≤N and each xij is either 0 or
1 according to the state of vertex (i, j). Figure 5 shows a possible state x of the
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Figure 5: Spatial model: possible state x of 6× 6 lattice

system. The probability distribution π on the space S of all such x is such that the
conditional probability that vertex (i, j) is in state 1, given the states of all other
vertices, is

αβyij

1 + αβyij
(27)

where
yij = xi−1,j + xi+1,j + xi,j−1 + xi,j+1

is the total number of 1s at immediately neighbouring vertices. Thus, for β < 1,
the state 1 at any vertex is less likely to occur the more the number of 1s at
neighbouring vertices (repulsion), while, for β > 1, the state 1 is more likely to
occur the more the number of 1s at neighbouring vertices (attraction). (In the special
case β = 0 (extreme repulsion), no vertex may be in state 1 if any of its neighbouring
vertices is in state 1. Also the case β = 1 corresponds to independent states at each
vertex.) Repulsion is natural in, for example, models of plant competition (where the
probability of a plant at a given location decreases with the total number of plants
at neighbouring locations), while attraction is natural in, for example, models of
ferromagnetism (where the magnetic polarity at one location is likely to line up with
that at neighbouring locations). There are many further examples of this model.
It turns out that the distribution π is given uniquely by

π(x) = Kαn1(x)βn2(x) (28)

where n1(x) =
∑

i

∑
j xij is the total number of 1s, n2(x) is the total number of

pairs of immediately neighbouring vertices for which both vertices in the pair are in
state 1, and K is the appropriate normalising constant, which, for even moderately
large N is too difficult to calculate. (Exercise: verify that the distribution π given
by (28) does indeed lead to the conditional distributions (27).)
A Markov chain for which the target distribution π is stationary may be simulated
by the use of the Gibbs sampler, using the conditional distributions (27) to update
one component of x (i.e. the state xij at one vertex (i, j) of the lattice) at a time.
The vertices may be taken in any order, or, at each step, a vertex might be chosen
at random.
Typically we might be interested in the probability (under the distribution π) of a
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1 at some particular vertex (i, j). We would thus require Eπgij where

gij(x) =

{
1 if xij = 1
0 if xij = 0.

Under the simulation the required probability would thus be estimated by the long-
run proportion of 1s at the vertex (i, j).
Note that when β is far from 1 and when N is even moderately large (e.g. N = 10),
the length of simulation required for accurate estimation may be impossibly long.
In this case matters may be improved by, at each step of the chain, simultaneously
updating the state at several vertices, using the joint conditional distribution at
these vertices, given the state at the remaining vertices.

3.8 MCMC: Assessment of uncertainty

Since the successive observations of the Markov chain are not independent identically
distributed, assessments of uncertainty, e.g. standard errors, are more difficult to
determine. We mention two possibilities.

1. Blocking. This idea applies to many instances of estimation where we have
a long sequence of dependent observations, in which the degree of dependence
decreases with increasing separation of the observations. Let

ḡN =
1
N

k+N∑
n=k+1

g(Xn) (29)

be the estimate of Eπg based on observation of the segment of the chain from
time k+1 to time k+N (where k corresponds to the burn-in time). For good
estimation we require N to be large. Suppose that it is sufficiently large that
we may divide this segment of the chain into b nonoverlapping blocks, each of
length M where both b and M are reasonably large. Let ḡM,i denote the usual
estimate of Eπg based on the observations in the ith block, 1 ≤ i ≤ b. Then,
since M is reasonably large, the b estimates ḡM,i may reasonably be treated
as independent identically distributed observations, each with mean Eπg (each
is unbiased). Further the mean of these estimates is just ḡN . Hence, by the
usual theory of estimation based on the use of the sample mean, since also b
is reasonably large, ḡN is an unbiased estimator of Eπg with variance

var ḡN ≈ 1
b(b− 1)

b∑
i=1

(ḡM,i − ḡN )2

and so the standard error of ḡN (as an estimator of Eπg) is just (var ḡN )1/2.

2. Regeneration. Suppose for example that the state space S is discrete, so
that, in the constructed Markov chain, which is ergodic, return to any given
fixed state occurs infinitely often. Since the chain is Markov, its behaviour be-
tween any two successive returns is independent of that between all other pairs
of successive returns, both with regard to the return times and with regard to
the states visited. If the segment of the chain from time k+1 to time k+N on
which estimation of Eπg is based starts and finishes at the given state, both
N and

∑k+N
n=k+1 g(Xn) may be expressed as sums of independent identically

distributed random variables. This gives another approach to calculation of
the standard error of the estimator ḡN defined by (29).
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