1. Let X be a random variable with $\operatorname{Gamma}(\alpha)$ density:

$$
f(x)=\frac{1}{\Gamma(\alpha+1)} x^{\alpha} e^{-x}, \quad x>0
$$

for some $\alpha>0$. Compute the rate function.
2. Consider the recursion

$$
X_{n+1}=\rho X_{n}+\xi_{n}, \quad n=0,1,2, \ldots
$$

where ρ is a number with $|\rho|<1$, and $\xi_{0}, \xi_{1}, \xi_{2}, \ldots$ are i.i.d. random variables with zero mean and finite variance. Also $X_{0}=0$. Compute an approximate expression for

$$
P\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}\right|>\delta\right)
$$

for $\delta>0$, in the following two cases:
a) ξ_{n} is Normal with mean zero and variance 1 ,
b) ξ_{n} is any random variable with mean zero and variance 1 .

Assume that n is sufficiently large.
3. There are two boxes, A and B, containing N balls in total. Some are in box A and some in B. The balls change position (from A to B or from B to A) according to the following rule: A ball remains in its present box for an amount of time that is exponentially distributed with parameter $\lambda>0$. When the time expires, the ball changes position. This process repeats endlessly. All balls behave completely independently from each other.
a) Justify the fact that X_{t}, the number of balls in box A at time t is a Markov process as a function of the continuous parameter $t \geq 0$.
b) Assume that $X_{0}=0$ (no balls in box A at time 0). Compute, for any $t \geq 0$, the probabilities

$$
P\left(X_{t}=k\right), \quad k=0,1, \ldots, N .
$$

4. Two particles, a, b, perform independent random walks in the twodimensional integer lattice and in discrete time (up, down, left or right, at unit steps with equal probabilities, $1 / 4$ each). Let X_{n} be
the position of particle a at step n. Similarly, let Y_{n} be the position of particle b at step n. For large n, and any $\delta>0$, find an approximate expression for the probability

$$
P\left(\left|X_{n}-Y_{n}\right|>n \delta\right)
$$

where, for any two vectors $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, the quantity $|x-y|$ stands for $|x-y|=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$. Finally, for $\delta=1 / 2$, and $n=10000$, express this probability in the form $10^{-\epsilon}$ (find the exponent ϵ).
5. Consider an experiment with two outcomes (for example, a coin). Let μ be the distribution $\mu(1)=0.3, \mu(2)=0.7$. The experiment is performed $n=10^{6}$ times, independently, and the empirical distribution is computed. In other words, the fraction of times that outcome 1 occurs is computed, and so is the fraction of time that outcome 2 occurs. It is observed that the first fraction is 0.31 , and the second is 0.69 . Would you accept or reject the hypothesis that the true distribution is μ, with a 99% degree of confidence? (Hint: Use Sanov's theorem.)

