Stochastic Processes: PROBLEMS, ANSWERS, AND SOLUTIONS
TAKIS KONSTANTOPOULOS

I.PROBLEMS

1. LetX be arandom variable with Gamifag density:

1 o _—T
= 0
f(x) F(a+1)xe , x>0,
for somea > 0. Compute the rate function.

2. Consider the recursion
Xn+1:an+§nu n:071727"'
wherep is a number withp| < 1, and¢, &y, &, ... are i.i.d. random variables with zero mean and
finite variance. AlsaX, = 0. Compute an approximate expression for
for § > 0, in the following two cases:

X e X
P (‘ L X 5)
n
a) &, is Normal with mean zero and variance 1,
b) &, is any random variable with mean zero and variance 1.
Assume that is sufficiently large.

3. There are two boxes} and B, containing/N balls in total. Some are in boX and some inB. The
balls change position (from to B or from B to A) according to the following rule: A ball remains in
its present box for an amount of time that is exponentialggributed with parametex > 0. When the
time expires, the ball changes position. This process tepallessly. All balls behave completely
independently from each other.

a) Justify the fact thak’;, the number of balls in boX at timet is a Markov process as a function of
the continuous parameter> 0.
b) Assume thaXy, = 0 (no balls in boxA at time0). Compute, for any > 0, the probabilities

P(X,=k), k=0,1,...,N.

4. Two particlesga, b, perform independent random walks in the two-dimensionggdger lattice and in
discrete time (up, down, left or right, at unit steps with alrobabilities,1/4 each). LetX,, be the
position of particlea at stepn. Similarly, letY,, be the position of particlé at stepn. For largen,
and anys > 0, find an approximate expression for the probability

P(|X,, — Y,| > nd)

where, for any two vectors = (z1,z2), y = (y1,y2), the quantity|x — y| stands forlz — y| =
max{|z1 — y1/, |z2 — y2|}. Finally, foré = 1/2, andn = 10000, express this probability in the form
10~¢ (find the exponent).

5. Consider an experiment with two outcomes (for examplegia)c Let i, be the distributionu (1) =
0.3, u(2) = 0.7. The experiment is performed = 10° times, independently, and the empirical
distribution is computed. In other words, the fraction ofi¢is that outcomé occurs is computed, and
so is the fraction of time that outcon®eoccurs. It is observed that the first fraction0ig1, and the
second i€).69. Would you accept or reject the hypothesis that the trugibligion is ., with a 99%
degree of confidence? (Hint: Use Sanov’s theorem.)



1. ANSWERS

Problem 1
The rate function is

W) = t—(a+1)+ (a+1)log (2), t>0
R NS t < 0.

Problem 2
a)LetS, = X; +--- + X,,. ThenS,, is normal, and

2 1 s
P(|S"/n|>6)%’/ﬁ5(1,p)e 62(1-p) /2.

b) Leth be the rate function of;. Lets, =& + - + &,. Then

P(|Sn/n| > 8) = P(|sp/n| > 6(1 — p)) x e nminth(0(1=p)), h{(=3(1=p))]

The results are asymptotic as+oc, in the sense that the logarithms of the probabilities apdiveded by
n, have a limit ag—oo.

Problem 3
The exact answer is

P(X,=k) = QLN(]ID(l —e PN eV E =01, N, £>0.

As t— o0 the probabilities converge:

. 1 (N
ggpugmﬁﬁ(k> k=0,1,...,N.

Problem 4

P(‘X" B Yn| > ’I”I(S) I~ <(2 + 5)2+5(2 — 5)26>n.

16
Fordé = 0.5, n = 10000

16

n
> ~ (.88 ~ 10 248:67

Problem 5
The hypothesis should be rejected.



1. SOLUTIONS

Problem 1
The rate function is given by
h(t) = sup(tf — log E exp 6X)
0

We compute the m.g.fp(0) = Eexp X of X by:

1 o0 0
) = —— e’Tr%e Tdx
»(0) Na+UA

1 1 /maw 1
TTlarn(d-get f, LT A gt

To perform the maximization (assuming> 0), we solve the equation
¢'(0) = to(0),
arising by taking the derivative @b — log F exp 6 X with respect t@ and setting it equal to zero. This gives

1
p—1 11
¢

Substituting, we obtain the answer. The complete solugon i

W) = t—(a+1)+ (a+1)log (2), t>0
) - +OO, t S 0

Problem 2
It is easy to solve the recursion. We obtain:

Xy =bn1 4 pbno+p’&n s+ +p" 26+ p" ', n > 1.
Hence .
1 )
S, =X14+---+X, = ﬁ;(l - pk)gnfk-

Case (a): the, are i.i.d. normal with mean zero and variante
Then.sS,, is normal with mean zero, and variance

n

1 n p(l—p")(2+p— p"H!
O'% = ESZ = Z(l —pk)2 = ( )( )

(1—p)? = (1-p)? (1—=p31+p)

Let N be a standard normal random variable. The standard norrpabéimation says that

11 2
P(N > u) ~ —2—671‘ /2, asu—oo,
T U

where f(u) ~ g(u) asu—oo meanslim, . [f(u)/g(u)] = 1. We apply this to the probability we are
interested in:

P(|Sp/n| > 6) = P(lon,N/n| > §) =2P(N > nd/oy).



Sinceu := nd /o, —00, asn—o0, the normal approximation applies and gives

2 oy, 1 n?6? 2 1 [n?26? n?6?
P(|Sp/n| > §) ~ \/;%exp{ 3 } = \/;exp{ — 5[ p + log p ]}, asn—oo.

n n

To understand this better, write

2 — an — by,
1 p(1 —p")2+p—p"t)

where a=—+—-., b, =
(1-p)?

andb,, converges to a constant, assoc. Then

g

2 1[nd? né> b,
P(|Sp/n| > §) ~ \/;exp{ - 5[7 +10g7 + ” +0(1)} }

This is a very precise answer for large But, for all practical purposes, the last two terms in thackets
are negligible, and so we can approximately write

1
P(|Sn/’n| > (S) ~ %5(1 — p)e 62(1 p)2/2‘

Case (b): thet,, are general i.i.d.
We write

. 1 — 1 —
S :_E B V:_E: ke
n 1_pk:1£n k> n 1_pk:1p£’n k>

and show that (in an asymptotically logarithmic serigeran be omitted. Lef, ¢ > 0.

P(|S,/n| > 8) = P(Sp > nd + V,,) + P(S, < —nd +V,,)
> P(S, >nd + V,,,V, < ne) + P(S,, < —nd + Vi, Vyy > —ne)
> P(S,/n >0+ Vy/n<e)+ P(S,/n < —(0+¢),Vu/n > —e).

But V,,/n—0, asn—oo, almost surely. Henc®(V,,/n < €)—1, andPV,/n > —¢)—1, asn—oo. We
obtain

1 1 N
lim inf — log P(|S,,/n| > §) > liminf —log P(|S,/n| > § +¢),
n—oo 1 n—oo n

forall e > 0, and so

1 1 .
lim inf —log P(| S, /n| > §) > liminf —log P(|S,/n| > 9)

~ Jiminf - logP(%‘ PRAEEIE p)) = —min[A(6(1 — p)), h(=6(1 — p))],
k=1

n—oo 1,



where
h(z) := sup [0z — log p(0)], =z € R,
0
©o(0) := Eexp(0&)

To obtain an upper bound, we use Chernoff's inequality.d,et 1 — p*. Foralld > 0,

n

P(S,/n >§) = P(chﬁk > nd(l — p)> < exp(—mbi(l — p))E exp()ché’k

k=1 k=1

—exp{—n%l— Zlogw Hck}

=exp{ —nb5(1 — p) + nlogp(d)} exp { Z log ¢(Ocy) — nlog 90(9)}.
k=1

Minimizing the first exponential with respect o we have

P(Sp/n > 8) < e MO0 exp { 3 log p(fex) — nlog e0(9)}
k=1

This inequality is true for alb > 0. So

lim sup — logP(S /n>38) < —h(6(1 - p))+ limsup — Z log ¢(fcy,) — log ().

n n
n—00 n—00 k1

By the continuity ofyp, and the fact that, = 1 — p"—1, we have
lim [log p(f¢y) — log p(6)] = 0,

and so the Cesaro limit is also zero:

n

.1
77ll_g)lO - ; (log ¢(Ock) — logp(B)) = 0.
Thus,
hmsup log P(S,/n > d) < —h(6(1 — p)).

n—oc TN
Similarly,
lim sup — logP(S /n < —=§) < —h(=46(1 — p)).

n— 00

This means that

lim sup — logP(|S /n| > d) < —min[h(5(1 — p)), h(=6(1 — p))].

n— 00

We proved thatim sup andlim inf coincide. Hence

Tim log P([Sy/nl > 8) =~ minh(5(1 — p)), h(-5(1 — p))].



The answer then to the problem is that

P(|S,/n| > 6) ~ e~ min[h(6(1—=p)),h(=0(1=p))].

)

whereh is the rate function of;.
Let’'s compare the two approximations:
If £ is normal(0,1), ther(5) = 62 /2. Hence the last approximation of Case (b) gives

P(|Sn/n| > 6) m e "7 0-0)/2,

This is slightly worse than the standard normal approxiorawf Case (a), but, asymptotically, they are
equivalent (their logarithms, that is). O

Problem 3

a) The Markov property is based on the fact that the randomhias involved are exponentially distributed,
and independent of each other.

b) Consider the motion of specificball, say balli (1 < i < N). Let¢! be its position at time:

¢ — 1, ifball7isinboxA at timet,
7)o, ifitisin B.

Itis clear that

are independent processes. (The balls move completelpéndently of each other.) Furthermore, they are
identical in distribution. Also, their sum is

Xy =&+
that is, their sum is the process we are interested in. Let
pe=P(& =1)
be the probability that ball is in box A at timet. Then, for each, X; has binomial distribution. So

Pex =1 = ()t " -

To computep; notice thatt! itself is Markovian. Hence

Pras = P(ELs =11 & =0)P(& =0) + P(¢y5 = 11§ = 1)P(§ =1)
= (A0 +0())(1 = ps) + (1 = A0 + 0(0))ps,

asé | 0. Dividing by ¢, and letting it go to zero, we obtain the differential eqoati

dpy
— = A=2X
dt Dt,

with initial conditionpy = 0 (given by the problem). The solution is

P = (1 B 672)\1‘,).

N —



The complete answer to the problem is:

P(X; = k) I(N)(leQ’\t)k(l+62’\t)Nk, k=0,1,...,N, t>0.

T2V k&
Notice that LN
tlggoP(Xt =k) = Q_N(k)’
as should be expected! O
Problem 4

There are two ways we can proceed: the hard way, and the egsy wa

THE HARD WAY:

Let e, ey be the standard unit vectorsR?, i.e. e; = (1,0), e; = (0,1). Note thatX,, — Y, is a random
walk itself, i.e. X;, — Y, = & + & + - - + &, where the vector§; are the combined steps. These are i.i.d.
random variables with values and probabilities as below:

& = 0 2e 2e9 —2e1 —2e9 e1+es e —ey —e;j+e —ep —en
. 4 1 1 1 1 2 2 2 2

We compute the moment generating functiorg,p{with components,. , ¢2):

0(01,0:) = Eexp(01&), + 0262)

1
_ E[4+6201 + 6292 + 67201 _i_ef?lgz +2€91+92 _*_2601702 +2€701+02 + 26701792].

To find the rate function

h(fE],fEQ) = sup [91:132 + 0229 — log <p(9] , 92)]

(01,02)ER2
we need to solve the equations
dyp dyp
——(01,02) = x10(01,60), ——(01,02) = x90(01,60).
891( 1,02) = 210(61,02) 892( 1,02) = 2200(61, 02)
Andsoon.......cceceuvnnenen. But, there is...

AN EASY WAY:
We look at each of the coordinates separately. Xgt= (X}, X2), Y, = (,,Y,%). Then

P(|X, — Yu| >nd) = P(IX) — Y} >ndor|X2 — Y?| > nd)
= P(|X, = Y, | > nd) + P(IX7 = Y| > nd) — P(1X, = Y| > nd, | X7 = V7| > nd)
= P(A)) + P(A%2) — P(A} n A2).
Let
p(n) = P(A,) = P(47), q(n) = P(A, NA7).
HenceP(|X,, — Y,| > nd) = 2p(n) — ¢(n), and so

1 1 1
—log P(|X,, — Yy,| > nd) = —logp(n) + —log (2 — —).
n n n



By the Large Deviation Principle for 1-dimensional randoralky

lim 1 logp(n) = —h(d),

n—oc n,

whereh(d) > 0 will be computed below. On the other hand, it can be deducatd th

) _ p(az | al)

p(n)

also obeys a Large Deviation Principle, and so it converge=to (exponentially fast). Hen(%elog (2 -

%)—ﬂ). We thus conclude that

.1 .1
Jim —log P(| X, — Ya|) = lim —logp(n) = —h(d),
whereh(§) is the rate function of the first componegit of the increment vectd,,. As before, we see that

&n =

with prob.

-2

| ©
—
[= o

1
4 4 L
6 16 16 6"

(=2}
—
(=2}

The moment generating function is
1
p(6) = Bexp(06)) = 75 [6+4¢’ +4e ! + ¥ + 7).

To computeh(§) we solve

©'(0) = dp(0)
& de? —de7? 4262 — 27 = (5[6 +4e? + 4070 4% + 6’726]
& dy—4dy ' 4297 — 2972 =60 4 40y + 46y~ + 6y + 6y~ 2,  wherey := ¢’

e HO(y) =2 -8y* +4(1 — 0)y® — 60y> —4(1 +0)y — (2+0) =0.
The above polynomial has a double rooyat —1. Hence, by Euclidean division by + 1)?, we find
I(y) = (y + 1)*[(2 - d)y* — 20y — (2+9)].

The quadratic in brackets has roots
Y
L

Only the positive one is acceptable, and this gives

240 2446
= —— =1 .
Yy 5 5 and sod 0g27(s

Substituting thig) into §6 — log ¢ (#) we obtain

2496
h(d) = (510g% — 2log

4 B (2+0)210(2 —6)>°
(2®@+ﬁ)_bg( 16 )

And finally we have the approximation (a very good oneridarge!)

(2 + 5)2+5(2 _ 5)276 n
)

P(|X, =Y, >ni) =~ <

8



so, foré = 0.5, n = 10000

16

P(|1X, — Y, >n/2) ~ (W

)n ~ (0.88" = 0_8810000 ~ 107548.67.

Problem 5
Suppose we perform the ideal experiment, tossing a coill, pvitbability of heads equal o= 0.3. If u,
denotes the fraction dfs in n trials, then, by Sanov’s theorem,

P(Mn > ’I') ~ e*nh(fr,)

where h(z) = zlog <E> (1 2)log (1 — x)
P

-p
whenever: > p. Similarly,
P, < y) ~e "W,

whenevery < p. With z = 0.31 andy = 0.29 we find

0.31 0.69
h(0.31) = 0.311og (W) +0.69 log (W)

~ 0.31 x 0.03279 + 0.69 x (—0.01439) =~ 2.36616 x 1074,

This gives
P(up > 0.31) ~ 67106><2.36616><10*4 ~ o 237 10103
mn - ~~ ~~ ~~ .
Similarly,
0.29 0.71
h(0.29) = 0.291 — 0.711 —
(029) ©8 (0.30) T 0118 (0.70)
~ 0.29 x (—0.03390) + 0.71 x 0.01418 ~ 2.39641 x 10~ *.
This gives

P(uy < 0.29) ~ e 109x2.39641x 107 =240  1—104

In other words,
P(|ptn — 0.3] > 0.1) ~ 107103,

We thus reject the hypothesis that the true valug isf0.3. O



