
Stochastic Processes: PROBLEMS, ANSWERS, AND SOLUTIONS
TAKIS KONSTANTOPOULOS

I. PROBLEMS

1. LetX be a random variable with Gamma(�) density:f(x) = 1�(�+ 1)x�e�x; x > 0;
for some� > 0. Compute the rate function.

2. Consider the recursion Xn+1 = �Xn + �n; n = 0; 1; 2; : : :
where� is a number withj�j < 1, and�0; �1; �2; : : : are i.i.d. random variables with zero mean and
finite variance. AlsoX0 = 0. Compute an approximate expression forP �����X1 + � � � +Xnn ���� > Æ�
for Æ > 0, in the following two cases:
a) �n is Normal with mean zero and variance 1,
b) �n is any random variable with mean zero and variance 1.
Assume thatn is sufficiently large.

3. There are two boxes,A andB, containingN balls in total. Some are in boxA and some inB. The
balls change position (fromA toB or fromB toA) according to the following rule: A ball remains in
its present box for an amount of time that is exponentially distributed with parameter� > 0. When the
time expires, the ball changes position. This process repeats endlessly. All balls behave completely
independently from each other.
a) Justify the fact thatXt, the number of balls in boxA at timet is a Markov process as a function of
the continuous parametert � 0.
b) Assume thatX0 = 0 (no balls in boxA at time0). Compute, for anyt � 0, the probabilitiesP (Xt = k); k = 0; 1; : : : ; N:

4. Two particles,a; b, perform independent random walks in the two-dimensional integer lattice and in
discrete time (up, down, left or right, at unit steps with equal probabilities,1=4 each). LetXn be the
position of particlea at stepn. Similarly, letYn be the position of particleb at stepn. For largen,
and anyÆ > 0, find an approximate expression for the probabilityP (jXn � Ynj > nÆ)
where, for any two vectorsx = (x1; x2), y = (y1; y2), the quantityjx � yj stands forjx � yj =maxfjx1 � y1j; jx2 � y2jg. Finally, for Æ = 1=2, andn = 10000, express this probability in the form10�" (find the exponent").

5. Consider an experiment with two outcomes (for example, a coin). Let� be the distribution�(1) =0:3, �(2) = 0:7. The experiment is performedn = 106 times, independently, and the empirical
distribution is computed. In other words, the fraction of times that outcome1 occurs is computed, and
so is the fraction of time that outcome2 occurs. It is observed that the first fraction is0:31, and the
second is0:69. Would you accept or reject the hypothesis that the true distribution is�, with a 99%
degree of confidence? (Hint: Use Sanov’s theorem.)
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II. ANSWERS

Problem 1
The rate function is h(t) = (t� (�+ 1) + (�+ 1) log ��+1t �; t > 0+1; t � 0:
Problem 2
a) LetSn = X1 + � � �+Xn. ThenSn is normal, andP (jSn=nj > Æ) �r 2�n 1Æ(1 � �)e�nÆ2(1��)2=2:
b) Leth be the rate function of�1. Let sn = �1 + � � �+ �n. ThenP (jSn=nj > Æ) � P (jsn=nj > Æ(1 � �)) � e�nmin[h(Æ(1��)); h(�Æ(1��))℄:
The results are asymptotic asn!1, in the sense that the logarithms of the probabilities above, divided byn, have a limit asn!1.

Problem 3
The exact answer isP (Xt = k) = 12N �Nk��1� e�2�t�k�1 + e�2�t�N�k; k = 0; 1; : : : ; N; t � 0:
As t!1 the probabilities converge:limt!1P (Xt = k) = 12N �Nk�; k = 0; 1; : : : ; N:
Problem 4 P (jXn � Ynj > nÆ) � �(2 + Æ)2+Æ(2� Æ)2�Æ16 �n:
For Æ = 0:5, n = 10000P (jXn � Ynj > n=2) � � 162:52:5 1:51:5�n � 0:88 � 10�548:67:
Problem 5
The hypothesis should be rejected.
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III. SOLUTIONS

Problem 1
The rate function is given by h(t) = sup� (t� � logE exp �X)
We compute the m.g.f.'(�) = E exp �X of X by:'(�) = 1�(�+ 1) Z 10 e�xx�e�xdx= 1�(�+ 1) 1(1� �)�+1 Z 10 y�e�ydy = 1(1� �)�+1 :
To perform the maximization (assumingt > 0), we solve the equation'0(�) = t'(�);
arising by taking the derivative oft�� logE exp �X with respect to� and setting it equal to zero. This gives� = 1� �+ 1t :
Substituting, we obtain the answer. The complete solution is:h(t) = (t� (�+ 1) + (�+ 1) log ��+1t �; t > 0+1; t � 0:
Problem 2
It is easy to solve the recursion. We obtain:Xn = �n�1 + ��n�2 + �2�n�3 + � � �+ �n�2�1 + �n�1�0; n � 1:
Hence Sn := X1 + � � �+Xn = 11� � nXk=1(1� �k)�n�k:
Case (a): the�n are i.i.d. normal with mean zero and variance1.
ThenSn is normal with mean zero, and variance�2n := ES2n = 1(1� �)2 nXk=1(1� �k)2 = n(1� �)2 � �(1� �n)(2 + �� �n+1)(1� �)3(1 + �) :
LetN be a standard normal random variable. The standard normal approximation says thatP (N > u) � 1p2� 1ue�u2=2; asu!1;
wheref(u) � g(u) asu!1 meanslimu!1[f(u)=g(u)℄ = 1. We apply this to the probability we are
interested in: P (jSn=nj > Æ) = P (j�nN=nj > Æ) = 2P (N > nÆ=�n):
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Sinceu := nÆ=�n!1, asn!1, the normal approximation applies and givesP (jSn=nj > Æ) �r 2� �nnÆ exp�� 12 n2Æ2�2n � =r 2� exp�� 12�n2Æ2�2n + log n2Æ2�2n ��; asn!1:
To understand this better, write �2n = an� bn;

where a = 1(1� �)2 ; bn = �(1� �n)(2 + �� �n+1)(1� �)3(1 + �) ;
andbn converges to a constant, asn!1. Thenn2Æ2�2n = nÆ2a �1� bnan��1 = nÆ2a �1 + bnan + o(1=n)�;log n2Æ2�2n = log nÆ2a + bnan + o(1=n);P (jSn=nj > Æ) �r 2� exp�� 12�nÆ2a + log nÆ2a + bnÆ2a + o(1)��:
This is a very precise answer for largen. But, for all practical purposes, the last two terms in the brackets
are negligible, and so we can approximately writeP (jSn=nj > Æ) �r 2�n 1Æ(1 � �)e�nÆ2(1��)2=2:
Case (b): the�n are general i.i.d.
We write Sn = Ŝn � VnŜn = 11� � nXk=1 �n�k; Vn = 11� � nXk=1 �k�n�k;
and show that (in an asymptotically logarithmic sense)Vn can be omitted. LetÆ; " > 0.P (jSn=nj > Æ) = P (Ŝn > nÆ + Vn) + P (Ŝn < �nÆ + Vn)� P (Ŝn > nÆ + Vn; Vn < n") + P (Ŝn < �nÆ + Vn; Vn > �n")� P (Ŝn=n > Æ + "; Vn=n < ") + P (Ŝn=n < �(Æ + "); Vn=n > �"):
But Vn=n!0, asn!1, almost surely. HenceP (Vn=n < ")!1, andPVn=n > �")!1, asn!1. We
obtain lim infn!1 1n logP (jSn=nj > Æ) � lim infn!1 1n logP (jŜn=nj > Æ + ");
for all " > 0, and so lim infn!1 1n logP (jSn=nj > Æ) � lim infn!1 1n logP (jŜn=nj > Æ)= lim infn!1 1n logP� 1n �� nXk=1 �k�� > Æ(1 � �)� = �min[h(Æ(1 � �)); h(�Æ(1 � �))℄;
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where h(x) := sup� ��x� log'(�)�; x 2 R;'(�) := E exp(��1)
To obtain an upper bound, we use Chernoff’s inequality. Let
k = 1� �k. For all� > 0,P (Sn=n > Æ) = P� nXk=1 
k�k > nÆ(1� �)� � exp(�n�Æ(1� �))E exp � nXk=1 
k�k= exp�� n�Æ(1� �) + nXk=1 log'(�
k)�= exp�� n�Æ(1� �) + n log'(�)	 exp� nXk=1 log'(�
k)� n log'(�)�:
Minimizing the first exponential with respect to�, we haveP (Sn=n > Æ) � e�nh(Æ(1��)) exp� nXk=1 log'(�
k)� n log'(�)�:
This inequality is true for all� > 0. Solim supn!1 1n logP (Sn=n > Æ) � �h(Æ(1 � �)) + lim supn!1 1n nXk=1 � log'(�
k)� log'(�)�:
By the continuity of', and the fact that
n = 1� �n!1, we havelimn!1[log'(�
n)� log'(�)℄ = 0;
and so the Cesàro limit is also zero:limn!1 1n nXk=1 � log'(�
k)� log'(�)� = 0:
Thus, lim supn!1 1n logP (Sn=n > Æ) � �h(Æ(1 � �)):
Similarly, lim supn!1 1n logP (Sn=n < �Æ) � �h(�Æ(1 � �)):
This means that lim supn!1 1n logP (jSn=nj > Æ) � �min[h(Æ(1 � �)); h(�Æ(1 � �))℄:
We proved thatlim sup andlim inf coincide. Hencelimn!1 1n logP (jSn=nj > Æ) = �min[h(Æ(1 � �)); h(�Æ(1 � �))℄:
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The answer then to the problem is thatP (jSn=nj > Æ) � e�nmin[h(Æ(1��));h(�Æ(1��))℄: ;
whereh is the rate function of�1.
Let’s compare the two approximations:
If �1 is normal(0,1), thenh(Æ) = Æ2=2. Hence the last approximation of Case (b) givesP (jSn=nj > Æ) � e�nÆ2(1��)2=2:
This is slightly worse than the standard normal approximation of Case (a), but, asymptotically, they are
equivalent (their logarithms, that is).

Problem 3
a) The Markov property is based on the fact that the random variables involved are exponentially distributed,
and independent of each other.
b) Consider the motion of aspecificball, say balli (1 � i � N ). Let �it be its position at timet:�it = (1; if ball i is in boxA at timet;0; if it is in B:
It is clear that f�1t ; t � 0g; : : : ; f�Nt ; t � 0g
are independent processes. (The balls move completely independently of each other.) Furthermore, they are
identical in distribution. Also, their sum isXt = �1t + � � �+ �Nt ;
that is, their sum is the process we are interested in. Letpt = P (�1t = 1)
be the probability that ball1 is in boxA at timet. Then, for eacht, Xt has binomial distribution. SoP (Xt = k) = �Nk�pkt (1� pt)N�k:
To computept notice that�1 itself is Markovian. Hencept+Æ = P (�1t+Æ = 1 j �1t = 0)P (�1t = 0) + P (�1t+Æ = 1 j �1t = 1)P (�1t = 1)= (�Æ + o(Æ))(1 � pt) + (1� �Æ + o(Æ))pt;
asÆ # 0. Dividing by Æ, and letting it go to zero, we obtain the differential equationdptdt = �� 2�pt;
with initial conditionp0 = 0 (given by the problem). The solution ispt = 12�1� e�2�t�:
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The complete answer to the problem is:P (Xt = k) = 12N �Nk��1� e�2�t�k�1 + e�2�t�N�k; k = 0; 1; : : : ; N; t � 0:
Notice that limt!1P (Xt = k) = 12N �Nk�;
as should be expected!

Problem 4
There are two ways we can proceed: the hard way, and the easy way.
THE HARD WAY:
Let e1, e2 be the standard unit vectors inR2 , i.e. e1 = (1; 0), e2 = (0; 1). Note thatXn � Yn is a random
walk itself, i.e.Xn� Yn = �1 + �2 + � � �+ �n, where the vectors�j are the combined steps. These are i.i.d.
random variables with values and probabilities as below:�n = 0 2e1 2e2 �2e1 �2e2 e1 + e2 e1 � e2 �e1 + e2 �e1 � e2

with prob. 416 116 116 116 116 216 216 216 216 :
We compute the moment generating function of�n (with components�1n; �2n):'(�1; �2) = E exp(�1�1n + �2�2n)= 116�4 + e2�1 + e2�2 + e�2�1 + e�2�2 + 2e�1+�2 + 2e�1��2 + 2e��1+�2 + 2e��1��2�:
To find the rate function h(x1; x2) = sup(�1;�2)2R2 ��1x2 + �2x2 � log'(�1; �2)�
we need to solve the equations�'��1 (�1; �2) = x1'(�1; �2); �'��2 (�1; �2) = x2'(�1; �2):
And so on..................... But, there is...
AN EASY WAY:
We look at each of the coordinates separately. LetXn = (X1n;X2n), Yn = (Y 1n ; Y 2n ). ThenP (jXn � Ynj > nÆ) = P (jX1n � Y 1n j > nÆ or jX2n � Y 2n j > nÆ)= P (jX1n � Y 1n j > nÆ) + P (jX2n � Y 2n j > nÆ)� P (jX1n � Y 1n j > nÆ; jX2n � Y 2n j > nÆ)= P (A1n) + P (A2n)� P (A1n \A2n):
Let p(n) = P (A1n) = P (A2n); q(n) = P (A1n \A2n):
HenceP (jXn � Ynj > nÆ) = 2p(n)� q(n), and so1n logP (jXn � Ynj > nÆ) = 1n log p(n) + 1n log �2� q(n)p(n)�:
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By the Large Deviation Principle for 1-dimensional random walk,limn!1 1n log p(n) = �h(Æ);
whereh(Æ) > 0 will be computed below. On the other hand, it can be deduced thatq(n)p(n) = P (A2n �� A1n)
also obeys a Large Deviation Principle, and so it converges to zero (exponentially fast). Hence1n log �2 �q(n)p(n)�!0. We thus conclude thatlimn!1 1n logP (jXn � Ynj) = limn!1 1n log p(n) = �h(Æ);
whereh(Æ) is the rate function of the first component�1n of the increment vector�n. As before, we see that�1n = 0 1 �1 2 �2

with prob. 616 416 416 116 116 :
The moment generating function is'(�) = E exp(��1n) = 116�6 + 4e� + 4e�� + e2� + e�2��:
To computeh(Æ) we solve'0(�) = Æ'(�), 4e� � 4e�� + 2e2� � 2e�2� = Æ�6 + 4e� + 4e�� + e2� + e�2��, 4y � 4y�1 + 2y2 � 2y�2 = 6Æ + 4Æy + 4Æy�1 + Æy2 + Æy�2; wherey := e�, �(y) := (2� Æ)y4 + 4(1 � Æ)y3 � 6Æy2 � 4(1 + Æ)y � (2 + Æ) = 0:
The above polynomial has a double root aty = �1. Hence, by Euclidean division by(y + 1)2, we find�(y) = (y + 1)2�(2� Æ)y2 � 2Æy � (2 + Æ)�:
The quadratic in brackets has roots y = Æ � 22� Æ :
Only the positive one is acceptable, and this givesy = 2 + Æ2� Æ ; and so� = log 2 + Æ2� Æ :
Substituting this� into Æ� � log'(�) we obtainh(Æ) = Æ log 2 + Æ2� Æ � 2 log 4(2 � Æ)(2 + Æ) = log�(2 + Æ)2+Æ(2� Æ)2�Æ16 �:
And finally we have the approximation (a very good one forn large!)P (jXn � Ynj > nÆ) � �(2 + Æ)2+Æ(2� Æ)2�Æ16 �n;
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so, forÆ = 0:5, n = 10000P (jXn � Ynj > n=2) � � 162:52:5 1:51:5�n � 0:88n = 0:8810000 � 10�548:67:
Problem 5
Suppose we perform the ideal experiment, tossing a coin, with probability of heads equal top = 0:3. If �n
denotes the fraction of1’s in n trials, then, by Sanov’s theorem,P (�n > x) � e�nh(x)

where h(x) = x log�xp�+ (1� x) log�1� x1� p�;
wheneverx > p. Similarly, P (�n < y) � e�nh(y);
whenevery < p. With x = 0:31 andy = 0:29 we findh(0:31) = 0:31 log�0:310:30�+ 0:69 log�0:690:70�� 0:31� 0:03279 + 0:69 � (�0:01439) � 2:36616 � 10�4:
This gives P (�n > 0:31) � e�106�2:36616�10�4 � e�237 � 10�103:
Similarly, h(0:29) = 0:29 log�0:290:30�+ 0:71 log�0:710:70�� 0:29� (�0:03390) + 0:71 � 0:01418 � 2:39641 � 10�4:
This gives P (�n < 0:29) � e�106�2:39641�10�4 � e�240 � 10�104:
In other words, P (j�n � 0:3j > 0:1) � 10�103:
We thus reject the hypothesis that the true value ofp is 0:3.
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