Stochastic Processes: PROBLEMS, ANSWERS, AND SOLUTIONS
 Takis Konstantopoulos

I. PROBLEMS

1. Let X be a random variable with $\operatorname{Gamma}(\alpha)$ density:

$$
f(x)=\frac{1}{\Gamma(\alpha+1)} x^{\alpha} e^{-x}, \quad x>0
$$

for some $\alpha>0$. Compute the rate function.
2. Consider the recursion

$$
X_{n+1}=\rho X_{n}+\xi_{n}, \quad n=0,1,2, \ldots
$$

where ρ is a number with $|\rho|<1$, and $\xi_{0}, \xi_{1}, \xi_{2}, \ldots$ are i.i.d. random variables with zero mean and finite variance. Also $X_{0}=0$. Compute an approximate expression for

$$
P\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}\right|>\delta\right)
$$

for $\delta>0$, in the following two cases:
a) ξ_{n} is Normal with mean zero and variance 1 ,
b) ξ_{n} is any random variable with mean zero and variance 1 .

Assume that n is sufficiently large.
3. There are two boxes, A and B, containing N balls in total. Some are in box A and some in B. The balls change position (from A to B or from B to A) according to the following rule: A ball remains in its present box for an amount of time that is exponentially distributed with parameter $\lambda>0$. When the time expires, the ball changes position. This process repeats endlessly. All balls behave completely independently from each other.
a) Justify the fact that X_{t}, the number of balls in box A at time t is a Markov process as a function of the continuous parameter $t \geq 0$.
b) Assume that $X_{0}=0$ (no balls in box A at time 0). Compute, for any $t \geq 0$, the probabilities

$$
P\left(X_{t}=k\right), \quad k=0,1, \ldots, N .
$$

4. Two particles, a, b, perform independent random walks in the two-dimensional integer lattice and in discrete time (up, down, left or right, at unit steps with equal probabilities, $1 / 4 \mathrm{each}$). Let X_{n} be the position of particle a at step n. Similarly, let Y_{n} be the position of particle b at step n. For large n, and any $\delta>0$, find an approximate expression for the probability

$$
P\left(\left|X_{n}-Y_{n}\right|>n \delta\right)
$$

where, for any two vectors $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, the quantity $|x-y|$ stands for $|x-y|=$ $\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$. Finally, for $\delta=1 / 2$, and $n=10000$, express this probability in the form $10^{-\varepsilon}$ (find the exponent ε).
5. Consider an experiment with two outcomes (for example, a coin). Let μ be the distribution $\mu(1)=$ $0.3, \mu(2)=0.7$. The experiment is performed $n=10^{6}$ times, independently, and the empirical distribution is computed. In other words, the fraction of times that outcome 1 occurs is computed, and so is the fraction of time that outcome 2 occurs. It is observed that the first fraction is 0.31 , and the second is 0.69 . Would you accept or reject the hypothesis that the true distribution is μ, with a 99% degree of confidence? (Hint: Use Sanov's theorem.)

II. ANSWERS

Problem 1

The rate function is

$$
h(t)= \begin{cases}t-(\alpha+1)+(\alpha+1) \log \left(\frac{\alpha+1}{t}\right), & t>0 \\ +\infty, & t \leq 0\end{cases}
$$

Problem 2

a) Let $S_{n}=X_{1}+\cdots+X_{n}$. Then S_{n} is normal, and

$$
P\left(\left|S_{n} / n\right|>\delta\right) \approx \sqrt{\frac{2}{\pi n}} \frac{1}{\delta(1-\rho)} e^{-n \delta^{2}(1-\rho)^{2} / 2}
$$

b) Let h be the rate function of ξ_{1}. Let $s_{n}=\xi_{1}+\cdots+\xi_{n}$. Then

$$
P\left(\left|S_{n} / n\right|>\delta\right) \approx P\left(\left|s_{n} / n\right|>\delta(1-\rho)\right) \approx e^{-n \min [h(\delta(1-\rho)), h(-\delta(1-\rho))]} .
$$

The results are asymptotic as $n \rightarrow \infty$, in the sense that the logarithms of the probabilities above, divided by n, have a limit as $n \rightarrow \infty$.

Problem 3

The exact answer is

$$
P\left(X_{t}=k\right)=\frac{1}{2^{N}}\binom{N}{k}\left(1-e^{-2 \lambda t}\right)^{k}\left(1+e^{-2 \lambda t}\right)^{N-k}, \quad k=0,1, \ldots, N, \quad t \geq 0 .
$$

As $t \rightarrow \infty$ the probabilities converge:

$$
\lim _{t \rightarrow \infty} P\left(X_{t}=k\right)=\frac{1}{2^{N}}\binom{N}{k}, \quad k=0,1, \ldots, N .
$$

Problem 4

$$
P\left(\left|X_{n}-Y_{n}\right|>n \delta\right) \approx\left(\frac{(2+\delta)^{2+\delta}(2-\delta)^{2-\delta}}{16}\right)^{n}
$$

For $\delta=0.5, n=10000$

$$
P\left(\left|X_{n}-Y_{n}\right|>n / 2\right) \approx\left(\frac{16}{2.5^{2.5} 1.5^{1.5}}\right)^{n} \approx 0.88 \approx 10^{-548.67}
$$

Problem 5

The hypothesis should be rejected.

III. SOLUTIONS

Problem 1

The rate function is given by

$$
h(t)=\sup _{\theta}(t \theta-\log E \exp \theta X)
$$

We compute the m.g.f. $\varphi(\theta)=E \exp \theta X$ of X by:

$$
\begin{gathered}
\varphi(\theta)=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{\theta x} x^{\alpha} e^{-x} d x \\
=\frac{1}{\Gamma(\alpha+1)} \frac{1}{(1-\theta)^{\alpha+1}} \int_{0}^{\infty} y^{\alpha} e^{-y} d y=\frac{1}{(1-\theta)^{\alpha+1}} .
\end{gathered}
$$

To perform the maximization (assuming $t>0$), we solve the equation

$$
\varphi^{\prime}(\theta)=t \varphi(\theta),
$$

arising by taking the derivative of $t \theta-\log E \exp \theta X$ with respect to θ and setting it equal to zero. This gives

$$
\theta=1-\frac{\alpha+1}{t} .
$$

Substituting, we obtain the answer. The complete solution is:

$$
h(t)= \begin{cases}t-(\alpha+1)+(\alpha+1) \log \left(\frac{\alpha+1}{t}\right), & t>0 \\ +\infty, & t \leq 0\end{cases}
$$

Problem 2

It is easy to solve the recursion. We obtain:

$$
X_{n}=\xi_{n-1}+\rho \xi_{n-2}+\rho^{2} \xi_{n-3}+\cdots+\rho^{n-2} \xi_{1}+\rho^{n-1} \xi_{0}, \quad n \geq 1 .
$$

Hence

$$
S_{n}:=X_{1}+\cdots+X_{n}=\frac{1}{1-\rho} \sum_{k=1}^{n}\left(1-\rho^{k}\right) \xi_{n-k}
$$

Case (a): the ξ_{n} are i.i.d. normal with mean zero and variance 1.
Then S_{n} is normal with mean zero, and variance

$$
\sigma_{n}^{2}:=E S_{n}^{2}=\frac{1}{(1-\rho)^{2}} \sum_{k=1}^{n}\left(1-\rho^{k}\right)^{2}=\frac{n}{(1-\rho)^{2}}-\frac{\rho\left(1-\rho^{n}\right)\left(2+\rho-\rho^{n+1}\right)}{(1-\rho)^{3}(1+\rho)} .
$$

Let N be a standard normal random variable. The standard normal approximation says that

$$
P(N>u) \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{u} e^{-u^{2} / 2}, \quad \text { as } u \rightarrow \infty
$$

where $f(u) \sim g(u)$ as $u \rightarrow \infty$ means $\lim _{u \rightarrow \infty}[f(u) / g(u)]=1$. We apply this to the probability we are interested in:

$$
P\left(\left|S_{n} / n\right|>\delta\right)=P\left(\left|\sigma_{n} N / n\right|>\delta\right)=2 P\left(N>n \delta / \sigma_{n}\right) .
$$

Since $u:=n \delta / \sigma_{n} \rightarrow \infty$, as $n \rightarrow \infty$, the normal approximation applies and gives

$$
P\left(\left|S_{n} / n\right|>\delta\right) \sim \sqrt{\frac{2}{\pi}} \frac{\sigma_{n}}{n \delta} \exp \left\{-\frac{1}{2} \frac{n^{2} \delta^{2}}{\sigma_{n}^{2}}\right\}=\sqrt{\frac{2}{\pi}} \exp \left\{-\frac{1}{2}\left[\frac{n^{2} \delta^{2}}{\sigma_{n}^{2}}+\log \frac{n^{2} \delta^{2}}{\sigma_{n}^{2}}\right]\right\}, \quad \text { as } n \rightarrow \infty
$$

To understand this better, write

$$
\begin{gathered}
\sigma_{n}^{2}=a n-b_{n} \\
\text { where } \quad a=\frac{1}{(1-\rho)^{2}}, \quad b_{n}=\frac{\rho\left(1-\rho^{n}\right)\left(2+\rho-\rho^{n+1}\right)}{(1-\rho)^{3}(1+\rho)}
\end{gathered}
$$

and b_{n} converges to a constant, as $n \rightarrow \infty$. Then

$$
\begin{gathered}
\frac{n^{2} \delta^{2}}{\sigma_{n}^{2}}= \\
\frac{n \delta^{2}}{a}\left(1-\frac{b_{n}}{a n}\right)^{-1}=\frac{n \delta^{2}}{a}\left(1+\frac{b_{n}}{a n}+o(1 / n)\right) \\
\\
\log \frac{n^{2} \delta^{2}}{\sigma_{n}^{2}}=\log \frac{n \delta^{2}}{a}+\frac{b_{n}}{a n}+o(1 / n) \\
P\left(\left|S_{n} / n\right|>\delta\right) \sim \sqrt{\frac{2}{\pi}} \exp \left\{-\frac{1}{2}\left[\frac{n \delta^{2}}{a}+\log \frac{n \delta^{2}}{a}+\frac{b_{n} \delta^{2}}{a}+o(1)\right]\right\} .
\end{gathered}
$$

This is a very precise answer for large n. But, for all practical purposes, the last two terms in the brackets are negligible, and so we can approximately write

$$
P\left(\left|S_{n} / n\right|>\delta\right) \approx \sqrt{\frac{2}{\pi n}} \frac{1}{\delta(1-\rho)} e^{-n \delta^{2}(1-\rho)^{2} / 2}
$$

Case (b): the ξ_{n} are general i.i.d.
We write

$$
\begin{gathered}
S_{n}=\hat{S}_{n}-V_{n} \\
\hat{S}_{n}=\frac{1}{1-\rho} \sum_{k=1}^{n} \xi_{n-k}, \quad V_{n}=\frac{1}{1-\rho} \sum_{k=1}^{n} \rho^{k} \xi_{n-k}
\end{gathered}
$$

and show that (in an asymptotically logarithmic sense) V_{n} can be omitted. Let $\delta, \varepsilon>0$.

$$
\begin{gathered}
P\left(\left|S_{n} / n\right|>\delta\right)=P\left(\hat{S}_{n}>n \delta+V_{n}\right)+P\left(\hat{S}_{n}<-n \delta+V_{n}\right) \\
\geq P\left(\hat{S}_{n}>n \delta+V_{n}, V_{n}<n \varepsilon\right)+P\left(\hat{S}_{n}<-n \delta+V_{n}, V_{n}>-n \varepsilon\right) \\
\geq P\left(\hat{S}_{n} / n>\delta+\varepsilon, V_{n} / n<\varepsilon\right)+P\left(\hat{S}_{n} / n<-(\delta+\varepsilon), V_{n} / n>-\varepsilon\right)
\end{gathered}
$$

But $V_{n} / n \rightarrow 0$, as $n \rightarrow \infty$, almost surely. Hence $P\left(V_{n} / n<\varepsilon\right) \rightarrow 1$, and $\left.P V_{n} / n>-\varepsilon\right) \rightarrow 1$, as $n \rightarrow \infty$. We obtain

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|S_{n} / n\right|>\delta\right) \geq \liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|\hat{S}_{n} / n\right|>\delta+\varepsilon\right)
$$

for all $\varepsilon>0$, and so

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|S_{n} / n\right|>\delta\right) \geq \liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|\hat{S}_{n} / n\right|>\delta\right) \\
=\liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(\frac{1}{n}\left|\sum_{k=1}^{n} \xi_{k}\right|>\delta(1-\rho)\right)=-\min [h(\delta(1-\rho)), h(-\delta(1-\rho))]
\end{gathered}
$$

where

$$
\begin{aligned}
& h(x):=\sup _{\theta}[\theta x-\log \varphi(\theta)], \quad x \in \mathbb{R} \\
& \varphi(\theta):=E \exp \left(\theta \xi_{1}\right)
\end{aligned}
$$

To obtain an upper bound, we use Chernoff's inequality. Let $c_{k}=1-\rho^{k}$. For all $\theta>0$,

$$
\begin{gathered}
P\left(S_{n} / n>\delta\right)=P\left(\sum_{k=1}^{n} c_{k} \xi_{k}>n \delta(1-\rho)\right) \leq \exp (-n \theta \delta(1-\rho)) E \exp \theta \sum_{k=1}^{n} c_{k} \xi_{k} \\
=\exp \left\{-n \theta \delta(1-\rho)+\sum_{k=1}^{n} \log \varphi\left(\theta c_{k}\right)\right\} \\
=\exp \{-n \theta \delta(1-\rho)+n \log \varphi(\theta)\} \exp \left\{\sum_{k=1}^{n} \log \varphi\left(\theta c_{k}\right)-n \log \varphi(\theta)\right\}
\end{gathered}
$$

Minimizing the first exponential with respect to θ, we have

$$
P\left(S_{n} / n>\delta\right) \leq e^{-n h(\delta(1-\rho))} \exp \left\{\sum_{k=1}^{n} \log \varphi\left(\theta c_{k}\right)-n \log \varphi(\theta)\right\}
$$

This inequality is true for all $\theta>0$. So

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} / n>\delta\right) \leq-h(\delta(1-\rho))+\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\log \varphi\left(\theta c_{k}\right)-\log \varphi(\theta)\right)
$$

By the continuity of φ, and the fact that $c_{n}=1-\rho^{n} \rightarrow 1$, we have

$$
\lim _{n \rightarrow \infty}\left[\log \varphi\left(\theta c_{n}\right)-\log \varphi(\theta)\right]=0
$$

and so the Cesàro limit is also zero:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\log \varphi\left(\theta c_{k}\right)-\log \varphi(\theta)\right)=0
$$

Thus,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} / n>\delta\right) \leq-h(\delta(1-\rho))
$$

Similarly,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} / n<-\delta\right) \leq-h(-\delta(1-\rho))
$$

This means that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|S_{n} / n\right|>\delta\right) \leq-\min [h(\delta(1-\rho)), h(-\delta(1-\rho))] .
$$

We proved that lim sup and lim inf coincide. Hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|S_{n} / n\right|>\delta\right)=-\min [h(\delta(1-\rho)), h(-\delta(1-\rho))]
$$

The answer then to the problem is that

$$
P\left(\left|S_{n} / n\right|>\delta\right) \approx e^{-n \min [h(\delta(1-\rho)), h(-\delta(1-\rho))]}
$$

where h is the rate function of ξ_{1}.
Let's compare the two approximations:
If ξ_{1} is normal $(0,1)$, then $h(\delta)=\delta^{2} / 2$. Hence the last approximation of Case (b) gives

$$
P\left(\left|S_{n} / n\right|>\delta\right) \approx e^{-n \delta^{2}(1-\rho)^{2} / 2}
$$

This is slightly worse than the standard normal approximation of Case (a), but, asymptotically, they are equivalent (their logarithms, that is).

Problem 3

a) The Markov property is based on the fact that the random variables involved are exponentially distributed, and independent of each other.
b) Consider the motion of a specific ball, say ball $i(1 \leq i \leq N)$. Let ξ_{t}^{i} be its position at time t :

$$
\xi_{t}^{i}= \begin{cases}1, & \text { if ball } i \text { is in box } A \text { at time } t \\ 0, & \text { if it is in } B\end{cases}
$$

It is clear that

$$
\left\{\xi_{t}^{1}, t \geq 0\right\}, \ldots,\left\{\xi_{t}^{N}, t \geq 0\right\}
$$

are independent processes. (The balls move completely independently of each other.) Furthermore, they are identical in distribution. Also, their sum is

$$
X_{t}=\xi_{t}^{1}+\cdots+\xi_{t}^{N}
$$

that is, their sum is the process we are interested in. Let

$$
p_{t}=P\left(\xi_{t}^{1}=1\right)
$$

be the probability that ball 1 is in box A at time t. Then, for each t, X_{t} has binomial distribution. So

$$
P\left(X_{t}=k\right)=\binom{N}{k} p_{t}^{k}\left(1-p_{t}\right)^{N-k} .
$$

To compute p_{t} notice that ξ^{1} itself is Markovian. Hence

$$
\begin{aligned}
p_{t+\delta} & =P\left(\xi_{t+\delta}^{1}=1 \mid \xi_{t}^{1}=0\right) P\left(\xi_{t}^{1}=0\right)+P\left(\xi_{t+\delta}^{1}=1 \mid \xi_{t}^{1}=1\right) P\left(\xi_{t}^{1}=1\right) \\
& =(\lambda \delta+o(\delta))\left(1-p_{t}\right)+(1-\lambda \delta+o(\delta)) p_{t},
\end{aligned}
$$

as $\delta \downarrow 0$. Dividing by δ, and letting it go to zero, we obtain the differential equation

$$
\frac{d p_{t}}{d t}=\lambda-2 \lambda p_{t}
$$

with initial condition $p_{0}=0$ (given by the problem). The solution is

$$
p_{t}=\frac{1}{2}\left(1-e^{-2 \lambda t}\right) .
$$

The complete answer to the problem is:

$$
P\left(X_{t}=k\right)=\frac{1}{2^{N}}\binom{N}{k}\left(1-e^{-2 \lambda t}\right)^{k}\left(1+e^{-2 \lambda t}\right)^{N-k}, \quad k=0,1, \ldots, N, \quad t \geq 0 .
$$

Notice that

$$
\lim _{t \rightarrow \infty} P\left(X_{t}=k\right)=\frac{1}{2^{N}}\binom{N}{k}
$$

as should be expected!

Problem 4

There are two ways we can proceed: the hard way, and the easy way.
The hard way:
Let e_{1}, e_{2} be the standard unit vectors in \mathbb{R}^{2}, i.e. $e_{1}=(1,0), e_{2}=(0,1)$. Note that $X_{n}-Y_{n}$ is a random walk itself, i.e. $X_{n}-Y_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where the vectors ξ_{j} are the combined steps. These are i.i.d. random variables with values and probabilities as below:

$$
\begin{array}{lccccccccc}
\xi_{n}= & 0 & 2 e_{1} & 2 e_{2} & -2 e_{1} & -2 e_{2} & e_{1}+e_{2} & e_{1}-e_{2} & -e_{1}+e_{2} & -e_{1}-e_{2} \\
\text { with prob. } & \frac{4}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{2}{16} & \frac{2}{16} & \frac{2}{16} & \frac{2}{16} .
\end{array}
$$

We compute the moment generating function of ξ_{n} (with components ξ_{n}^{1}, ξ_{n}^{2}):

$$
\begin{aligned}
\varphi\left(\theta_{1}, \theta_{2}\right) & =E \exp \left(\theta_{1} \xi_{n}^{1}+\theta_{2} \xi_{n}^{2}\right) \\
& =\frac{1}{16}\left[4+e^{2 \theta_{1}}+e^{2 \theta_{2}}+e^{-2 \theta_{1}}+e^{-2 \theta_{2}}+2 e^{\theta_{1}+\theta_{2}}+2 e^{\theta_{1}-\theta_{2}}+2 e^{-\theta_{1}+\theta_{2}}+2 e^{-\theta_{1}-\theta_{2}}\right] .
\end{aligned}
$$

To find the rate function

$$
h\left(x_{1}, x_{2}\right)=\sup _{\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}}\left[\theta_{1} x_{2}+\theta_{2} x_{2}-\log \varphi\left(\theta_{1}, \theta_{2}\right)\right]
$$

we need to solve the equations

$$
\frac{\partial \varphi}{\partial \theta_{1}}\left(\theta_{1}, \theta_{2}\right)=x_{1} \varphi\left(\theta_{1}, \theta_{2}\right), \quad \frac{\partial \varphi}{\partial \theta_{2}}\left(\theta_{1}, \theta_{2}\right)=x_{2} \varphi\left(\theta_{1}, \theta_{2}\right) .
$$

And so on. \qquad But, there is...
An easy way:
We look at each of the coordinates separately. Let $X_{n}=\left(X_{n}^{1}, X_{n}^{2}\right), Y_{n}=\left(Y_{n}^{1}, Y_{n}^{2}\right)$. Then

$$
\begin{gathered}
P\left(\left|X_{n}-Y_{n}\right|>n \delta\right)=P\left(\left|X_{n}^{1}-Y_{n}^{1}\right|>n \delta \text { or }\left|X_{n}^{2}-Y_{n}^{2}\right|>n \delta\right) \\
=P\left(\left|X_{n}^{1}-Y_{n}^{1}\right|>n \delta\right)+P\left(\left|X_{n}^{2}-Y_{n}^{2}\right|>n \delta\right)-P\left(\left|X_{n}^{1}-Y_{n}^{1}\right|>n \delta,\left|X_{n}^{2}-Y_{n}^{2}\right|>n \delta\right) \\
=P\left(A_{n}^{1}\right)+P\left(A_{n}^{2}\right)-P\left(A_{n}^{1} \cap A_{n}^{2}\right) .
\end{gathered}
$$

Let

$$
p(n)=P\left(A_{n}^{1}\right)=P\left(A_{n}^{2}\right), \quad q(n)=P\left(A_{n}^{1} \cap A_{n}^{2}\right) .
$$

Hence $P\left(\left|X_{n}-Y_{n}\right|>n \delta\right)=2 p(n)-q(n)$, and so

$$
\frac{1}{n} \log P\left(\left|X_{n}-Y_{n}\right|>n \delta\right)=\frac{1}{n} \log p(n)+\frac{1}{n} \log \left(2-\frac{q(n)}{p(n)}\right) .
$$

By the Large Deviation Principle for 1-dimensional random walk,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log p(n)=-h(\delta)
$$

where $h(\delta)>0$ will be computed below. On the other hand, it can be deduced that

$$
\frac{q(n)}{p(n)}=P\left(A_{n}^{2} \mid A_{n}^{1}\right)
$$

also obeys a Large Deviation Principle, and so it converges to zero (exponentially fast). Hence $\frac{1}{n} \log (2-$ $\left.\frac{q(n)}{p(n)}\right) \rightarrow 0$. We thus conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left|X_{n}-Y_{n}\right|\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log p(n)=-h(\delta)
$$

where $h(\delta)$ is the rate function of the first component ξ_{n}^{1} of the increment vector ξ_{n}. As before, we see that

$$
\begin{array}{lccccc}
\xi_{n}^{1}= & 0 & 1 & -1 & 2 & -2 \\
\text { with prob. } & \frac{6}{16} & \frac{4}{16} & \frac{4}{16} & \frac{1}{16} & \frac{1}{16} .
\end{array}
$$

The moment generating function is

$$
\varphi(\theta)=E \exp \left(\theta \xi_{n}^{1}\right)=\frac{1}{16}\left[6+4 e^{\theta}+4 e^{-\theta}+e^{2 \theta}+e^{-2 \theta}\right]
$$

To compute $h(\delta)$ we solve

$$
\begin{aligned}
& \varphi^{\prime}(\theta)=\delta \varphi(\theta) \\
\Leftrightarrow & 4 e^{\theta}-4 e^{-\theta}+2 e^{2 \theta}-2 e^{-2 \theta}=\delta\left[6+4 e^{\theta}+4 e^{-\theta}+e^{2 \theta}+e^{-2 \theta}\right] \\
\Leftrightarrow & 4 y-4 y^{-1}+2 y^{2}-2 y^{-2}=6 \delta+4 \delta y+4 \delta y^{-1}+\delta y^{2}+\delta y^{-2}, \quad \text { where } y:=e^{\theta} \\
\Leftrightarrow & \Pi(y):=(2-\delta) y^{4}+4(1-\delta) y^{3}-6 \delta y^{2}-4(1+\delta) y-(2+\delta)=0 .
\end{aligned}
$$

The above polynomial has a double root at $y=-1$. Hence, by Euclidean division by $(y+1)^{2}$, we find

$$
\Pi(y)=(y+1)^{2}\left[(2-\delta) y^{2}-2 \delta y-(2+\delta)\right]
$$

The quadratic in brackets has roots

$$
y=\frac{\delta \pm 2}{2-\delta}
$$

Only the positive one is acceptable, and this gives

$$
y=\frac{2+\delta}{2-\delta}, \quad \text { and so } \theta=\log \frac{2+\delta}{2-\delta}
$$

Substituting this θ into $\delta \theta-\log \varphi(\theta)$ we obtain

$$
h(\delta)=\delta \log \frac{2+\delta}{2-\delta}-2 \log \frac{4}{(2-\delta)(2+\delta)}=\log \left(\frac{(2+\delta)^{2+\delta}(2-\delta)^{2-\delta}}{16}\right)
$$

And finally we have the approximation (a very good one for n large!)

$$
P\left(\left|X_{n}-Y_{n}\right|>n \delta\right) \approx\left(\frac{(2+\delta)^{2+\delta}(2-\delta)^{2-\delta}}{16}\right)^{n}
$$

so, for $\delta=0.5, n=10000$

$$
P\left(\left|X_{n}-Y_{n}\right|>n / 2\right) \approx\left(\frac{16}{2.5^{2.5} 1.5^{1.5}}\right)^{n} \approx 0.88^{n}=0.88^{10000} \approx 10^{-548.67}
$$

Problem 5

Suppose we perform the ideal experiment, tossing a coin, with probability of heads equal to $p=0.3$. If μ_{n} denotes the fraction of 1's in n trials, then, by Sanov's theorem,

$$
\begin{gathered}
P\left(\mu_{n}>x\right) \approx e^{-n h(x)} \\
\text { where } \quad h(x)=x \log \left(\frac{x}{p}\right)+(1-x) \log \left(\frac{1-x}{1-p}\right),
\end{gathered}
$$

whenever $x>p$. Similarly,

$$
P\left(\mu_{n}<y\right) \approx e^{-n h(y)},
$$

whenever $y<p$. With $x=0.31$ and $y=0.29$ we find

$$
\begin{gathered}
h(0.31)=0.31 \log \left(\frac{0.31}{0.30}\right)+0.69 \log \left(\frac{0.69}{0.70}\right) \\
\approx 0.31 \times 0.03279+0.69 \times(-0.01439) \approx 2.36616 \times 10^{-4}
\end{gathered}
$$

This gives

$$
P\left(\mu_{n}>0.31\right) \approx e^{-10^{6} \times 2.36616 \times 10^{-4}} \approx e^{-237} \approx 10^{-103}
$$

Similarly,

$$
\begin{gathered}
h(0.29)=0.29 \log \left(\frac{0.29}{0.30}\right)+0.71 \log \left(\frac{0.71}{0.70}\right) \\
\approx 0.29 \times(-0.03390)+0.71 \times 0.01418 \approx 2.39641 \times 10^{-4} .
\end{gathered}
$$

This gives

$$
P\left(\mu_{n}<0.29\right) \approx e^{-10^{6} \times 2.39641 \times 10^{-4}} \approx e^{-240} \approx 10^{-104}
$$

In other words,

$$
P\left(\left|\mu_{n}-0.3\right|>0.1\right) \approx 10^{-103} .
$$

We thus reject the hypothesis that the true value of p is 0.3 .

