Chapter III

The Optimal Stopping Problem

§1. The Problem of Cptimal Choice

We start with the following problem. Suppose that we scan
n objects in random succession and that from these objects we
wish to choose the best one. After an examination of each object
in turn, we must either accept or reject that particular one; it is
inadmissible to return to an object previously rejected.

The latter condition, of course, is not always a realistic
limitation. It is realistic, for example, if we are concerned with
an automobile tourist who wishes to stop over in the most com-
fortable or the least expensive hotel along his route but has no in-
tention of backtracking (assuming that the traveler is apprised of
the number of hotels, but knows nothing of their quality). Or con-
sider the astute bride-to-be who wishes to make an unerring choice
of the best of all the suitors proposing marriage to her. With this
second interpretation our postulate of being unable to return to a
previously rejected object is adequately justified On the other
hand, the stipulation that the decision-maker has prior knowledge
ofthetotal number of objects n appears rather artificial inthis case.

We now make a more precise statement ofthe problem. There
existn objects, ordered in some definite manner according to their
quality. We might think of these objects as represented, for example, by
points on a line, where points further to the right correspond to "better"
objects. We denote bya, the first object we come to. Inasmuchasthe
objects are inspected in random sequence, the probabilities of any of
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88 THE OPTIMAL STOPPING PROBLEM [Chapt. III

the existing npoints turning out to bethe pointea; are identical. From
precisely the same point of view the point @, has equal probability of
being any of the remaining n — 1 points. Continuing to number the
objects in the order in which we meet them, we ultimately arrive
at a certain set g, @iy «oes Bip, where any of the n! conceivable
permutations appears with equal probability. This permutation
becomes gradually known, after the second test we know only the
relative position of ay and a,, whereas after the kth test we know
the relative position of ay, @y, ..., ax (the reader might think of in-
dicator lights flashing one after the other at the points ay, a,, ..
ax, -.-» ay). The problem is to discriminate the rightmost of all
the n points at the instant it first appears. It is required to indi-
cate the method by which this result is achieved with maximum
probability.

H

For a better understanding of the problem we consider some
elementary selection techniques. We could, for example, decide
on the first point ¢4. Clearly, the probability of guessing the right-
most point in this case is equal to 1/n (and thus tends to zero as
n— ). The same result is obtained if we decide on a5 or onas, ete.

It might seem at first glance that the probability of success
in any system of selection would tend to zero as n— ., But this
is not the case. Let us suppose for simplicity that the number of
points n is even. Let us assume that we pass over the first n/2
points, then choose the first point that falls to the right of all the
preceding ones. Following this strategy, we are certain to achieve
our goal if the best object happens to lie in the second half of the
sequence ay, ..., an and the second best object lies in the first half.
The probability of the two best objects being so arranged is equal
to [m/2)/n]-[(0/2)/@— 1)]1>1/4. Hence, no matter how large n
even is made, there exists a strategy for which the probability of
success is greater than 1/4.

Let the allocation of the points ay, ..., g on the line be al-
ready known (see Fig. 20, where k=4). We wish to determine the
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§1] THE PROBLEM OF OPTIMAL CHOICE 89

probability of the next point gy 4 falling in each of the k+1 inter-
vals partitioned off on the line by the points gy, ..., aix. The oc-
currence of gy, 4 in a fixed interval corresponds to a definite per-
mutation of the k~1 points ay, ..., ak, ¢k-1 Inasmuch as all the
points are equally probable, the probability of any such permuta-
tion is the reciprocal of the number of all permutations of k-1 ele-
ments and is equal to 1/(k+1)!. Similarly, the probabhility of the
permutation of the points a4, ..., ak corresponding to their given
position on the line is equal to 1/k!. Consequently, the conditional
probability ofthepoint g _, falling in any of the k+1 intervals,
given the condition that the relatjve position of the points ay, o
is known, is equal to [1/(k-rl)!}/(1/k ) =1/(k+1),n0 matter how the
points ay, ..., @ arearranged. Thus, the next point observed
has equal probability of occurring in any of the
intervals into which the line is divided by the
existing points, regardless of the order in which
these points have appeared.

If the next point ay turns out to be to the left of some pre-
viously inspected point, it is clearly not the rightmost. Consequently,
it is only necessary to make our choice from among the points gy
situated to the right of the previous points ay, ..., ag-y. We call
these points maximal points. It is clear that the point a4 is
always maximal, just as the rightmost of all the points a4, ..., gy is
maximal. This sought-after point is the last maximal point to be
counted.

When the next maximal point g occurs, it is necessary to
make a decision, either to choose that point or to wait until later.
At this time the relative position of the points ay, ..., @i, of which
ay is the rightmost, is known. Since it is only possible now to
choose from among the points ay, ap . 4, --.» ap, the decision rests
solely on the prediction regarding the relative position of the points
Qs AR+ 1, -.-s Ay With the stipulation that the points ay, ..., g are
known, nothing affects this decision other than the conditional prob-
abilities of the various permutations of the points ay, a4+ 1, ..., @n-
We will show that the conditional probabilities actually depend only
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90 THE OPTIMAL STOPPING PROBLEM [Chapt, 111

Fig. 22

on the index k and are not influenced in any way by the relative po-
sition of the points ay, ..., 4. In this way we establish the fact
that when a maximal point gy makes its appearance,
a particular decision must be made solely on the
basis of the index k of that point (with due regard, of
course, for the number n of all the points).

The points a4, ..., ap are numbered in the order of their oc-
currence on the line. We renumber the points a4, ..., @) that have
already occurred in the order of their position on the line from left
to right: Ay, ..., Ax. Since the point ai is maximal, a) coincides
with A (Fig. 21). Assignment of the relative arrangement of the
points ay, ..., ay is equivalent to assignment of the order of occur-
rence of the points Ay, ..., Agx. The fact that any permutation of the
points Ak, ak+ 4, ..., ap is independent of the order in which the
points A,, ..., Ax_4 occurred is established with the observation
that the individual events, namely the relative position of the points
Ag, ok + 1, ..., ap, @8 well as their position relative to the points
Ay, ..., Ax—_y, areindependent of the order of accession of the points
Ay, ..., Ak-1. This is implied by the fact that each point in turn, as
established earlier, has equal probability of falling within any of
the intervals into which the line is divided by the preceding points.
Specifically, the point gj 4, has a probability 1/(k+1) of occurring
in any of the intervals (<, Aj), (Ay, Ay, e (A}, +%), regardless
of the accession order of the points Ay, ..., Ak-1, the point @y + o haS
a probability 1/(k+2) of occurring in any of the intervals delimited
by the points Ay, ..., A and g, 1, regardless of the accession or-
der of the points Ay, ..., Ak—y, etc. Multiplying these probabilities,
we deduce that the probability of any permutation of the points A;,
-y Ax, @t g0 -+-» @ (28sociated with the natural order of the points
A4, ..., Ay is equal to

_r .1 1
F+1 EL2'°h

regardless of the accession order of the points Ay, ..., Ax_4. This
proves our original assertion.



§1] THE PROBLEM OF OPTIMAL CHOICE 91

For example, let n=10, and let the points ay, ..., ayy be ar-
ranged as in Fig. 22. Then the maximal points are a4, a3, ag, and
ag. When the point g4 occurs, it is necessary to make a decision
with regard only for the fact that its index is equal to one: when the
point a3 occurs, the decision is based solely on the fact that its in-
dex is equal to three (providing, of course, that we have not stop-
ped earlier); etc.

Thus, in order to make the optimal decision* it is sufficient
to analyze only the indices of the maximal points. We designate
these indices in increasing order x(0), x(1), x(2), ... . As already
mentioned, x(0)=1. The indices x(1), x(2), ... are random, just as
the number of these indices is random. None of the indices ex-
ceeds n. The last (largest) of the indices x(i) is the index of the
rightmost point aj, and it must be guessed with the highest possible
probability. The guessing procedure rests on the fact that when the
next random variable x{(i) comes up, it is required solely on the
basis of its value either to declare this x(i) as the last one or to
wait until later. (In particular, it is not required for the optimal
choice to know what were the previous indices of the maximal
points x(0), ..., x(i— 1) or how many of these indices there were.)

In order to translate the problem completely into the lan-
guage of the sequence {x(i)}, we look further for the probabilistic
law governing this random sequence. We show first of all that the
random variables x(0), x(1), ... form a Markov chain. This
means that the conditional probability of the event x(i+ 1) =1, with
the provision that the values of all the preceding random variables
x(0), ..., x(i) are known, actually depends only on the value of k ac-
quired by the immediately preceding variable x(i).T Thus, let it
be known that x(0) =1, x(1) =b, ..., x(i) =k. This is equivalent to say-
ing that the maximal of the points ay, ay, ..., ai are the points ay,
aps ..., G- In other words, it is known that the point g is max-
imal, and something is known also about the relative position of
the points ay, as, ..., dg-1- The event x(i+ 1) =] now means that the
points aj + 1, ..., 2 ] -1 are situated to the left of g and that thepoint
aj is to the right of it. Consequently, if it is known that x(0) =1,

*Inasmuch as there only exists a finite number of selection strategies, there is cer-
tainly an optimum among them.

+More precisely, this is the definition of a homogeneous Markov chain, In the general
inhomogeneous case the indicated condirional probability aiso depends on the time i.
Inhomogeneous Markov chains are not discussed in the present book.
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x(1) =b, ..., x(i) =k, then the event x(i+ 1) =] may be described in
terms of the relative position of the points ay, ak+1, -.., 27, ..., ap.

We found out above, however, that if the point aj is maximal, the
conditional probability of any event referred to the relative posi-
tion of the points ak, ..., an, given the condition that something is
known regarding the relative position of the points a4, ay, ..., ag.-1,
in fact depends only on the index k. Thus the conditional prob-
ability

Plx(i+1)=1Ix0) =1, x(1)=0b, ..., x() =k},

apart from I, depends only on k (and possibly on the total number
of points n). It is called the transition probability of the
Markov chain and is designated p(k, 1).

The variables x(0), x(1), ... assume the values 1, 2, ..., n.
This set of values (called the phase space) is conveniently
represented in the form of points along which a particle executes
a random walk (Fig. 23). At the initial instant the particle is lo-
cated at the point 1, then it jumps to the point j with probability
p(1, j). In genmeral, if the particle happens to be situated at the
point k at some particular time, then in the next step it has a prob-
ability p(k, 1) of transferring to the point I, regardless of how it

arrived at the point k. In our case ; p(k, 1) can turn out to be
less than one. It is reasonable to interpret the difference
1— le(k, ) as the extinction probability of the particle. The transi-

tion of the particle from k to I means that the next maximal point
after the maximal poirit gx will be the maximal point ay. Extinc-
tion of the particle implies that there are no more maximal points.
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Let us calculate the transition probabilities p(k, I). By def-
inition of the conditional probability

P ELOZACENZH i,

Clearly, p(k, 1) =0 for I =k (only left-to-right jumps are possible
in Fig. 23). For I > k the event {x6) =k, x(i+1) =1} implies that
the points ay and a; (where a; is to the right of ;) are the fur-
thest to the right of all the points a4, ..., aj. The probability of
this event, considering the equal likelihood of all the points, is equal
to 1/1(1 — 1). By complete analogy P{ x(i) =k} =1/k. Consequently,

Pl =171y (I<k<I<n).

We proceed now to formulate the optimal choice procedure.

As already mentioned, this method may be obtained by in-
dicating for each index k whether to stop with this number or to
look further. It is clearly sufficient to specify the subset T" of the
indices at which it is required to stop. The set of numbers 1, 2,
..., n has 2B subsets (including the empty subset and the total set).
Each of these corresponds to a certain strategy, and it is our prob-
lem to decide upon the best of these 2" strategies.

Of course, there are many other strategies in addition to the
procedures listed above. For example, we denote by £ the first of
the values x(0), x(1), x(2), ... greater than or equal to k [so that
£=x(i) for x(0) <...<x({ — 1) <k, x(i) =k]. We could conceive of a
strategy such that it is prescribed to stop with the number follow-
ing £, i.e., with x(i+1). Strategies of this type are clearly nonop-
timal, but we will use them in studying the best selection procedure.

Let us calculate the conditional probability q(k) of payoff by
stopping at the point x({i) =k:

. gk)=1— Ep(k.l)=1- ETGk:T;“

Imp1 =kl
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For comparison we find the conditional payoff probability q' (k) if
in the same situation exactly one more step is taken, i.e., if one
stops with the number x(i+1). According to the total probability
formula

7= 2 ple Delh= E ooy "flz‘=%(‘}€+7?—lT—T+' =)

l=k+1 [=#-1
1 1 1
—‘-"—Q(k)(;'l-m‘l"' : '+n—1) (B <n)
qf(k) — 0 (k = fl)-

Since the sum 1/k+...+1/(n— 1) decreases monotonically with in-
creasingk, the ratio q'(k)/q(k) also decreases monotonically, going
to zero for k=n. Consequently, the condition q'(k) =q(k) is satis-
fied by some interval k,,, ky +1, ..., n of the series of numbers 1,
2, ...,n.

We will show that the set I"=k,, ..., n corresponds to
the optimal strategy (in other words, that scanning
must be continued as long as x(i) <kp,and stopped
the first time x()=k,).

We assume below that the number of objects n=3. Forn=1
there is in general no choice, and for n=2 there are equal chances
of success in stopping with either of two objects. It is at once ap-
parent that in both of these cases the set T' =1 | S n} leads to
an optimal strategy, but the next argument is inapplicable to these
cases, because k;, =1 for n=1 or 2.

For n=3

¢ =g 145+ +527) > )

and, therefore, k, >1. This means that a strategy requiring us to
stop with the number 1=x(0) is nonoptimal; in fact, this type of
strategy is successful with probability q(1), whereas a strategy
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calling for the choice of the number x(1) yields a payoff with
a greater probability q'(1).

Thus, we can only seek the optimal selection technique among
those strategies which require going past the first index. Since
p(1, k) >0 for 2=k=n, we have a positive probability p A k), apply-
ing such a strategy A, of waiting until any index k. Let us suppose
that the strategy A prescribes us to stop with a number k<k;,,. Then
the strategy A', which coincides with A as long as the particle ar-
rives at k but requires exactly one more step after arriving at k,
is clearly better than A. In fact, with the strategy A' the prob-
ability of success will be greater than with the strategy A by an
amount pp (k)[a'(k) —q(k)]. Consequently, the optimal strategy ex-
cludes stopping at the points 1, ..., k; — 1.

We now show by induction from a larger to a smaller value
of k that at points of the interval {kn'r 1, ..., n} the optimal strategy
A requires stopping at once. Clearly, at points of this interval we
have the strict inequality q*(k) <q(k). If the strategy A required
passing over the number n; the strategy A' prescribing stopping at
the point n and otherwise coinciding with A would increase the prob-
ability of success relative to A by an amount py (n), and the strategy
A would not be optimal. Hence, for k=n our assertion is true. Sup-
pose now that it has already been proved for the points k+1, k+2,
..., n (k= ky +1). If Ahad prescribed passing over the number k,
then the strategy A' requiring that we stop at the point k and other-
wise coinciding with A would have been better than A. Actually, on
arriving at the point k, the strategy A' would in fact prescribe
stopping at once, while the strategy A, according to the induction
hypothesis, would prescribe stopping after precisely one more
step. Therefore, the probability of success would be greater for
A' than for A, by an amount p A(k) [a(k) — g'(k)], and the strategy A
would not be the optimal one. Consequently, A also requires
stopping at the point k.

We have established the fact that the optimal strategy A for-
bids stopping at the points 1, ..., k_— 1 and, conversely, requires
stopping at the points k,+1, ..., n. If for k=k, we have the strict
inequality q' (k) <q(k,), the induction process can be continued to
k=k, and the fact verified that the strategy A also requires stopping
at the point k . But if for some n it turns out that q' (kn) =q(lgl),
then, applying the same arguments, it is immaterial how we arrive
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at the point k. For convenience in this case we attach the
point k to the set I".*

Thus, the best method of selection consists in
passing over the first k,—1 objects and then choos-
ing the first object that is better than all the pre-
ceding ones.

The number k, is the smallest integer for which q'(k) =q(k),
i.e., for which

1 1 1
7 th Ry vy w SR

Therefore, k, is found from the double inequality

';;1‘+---+nu1.1<1<'5,,“1:1‘+%;+"'+72‘£‘1“' (1)

We now determine the probability of success using the op-
timal strategy. We first calculate the probability s,,, that the first
object coming after the first 1%1 — 1 rejected objects and better than
allthe preceding objects will have the index m. This event means that
the rightmost of all the points a4, ..., @, will be a,,, and that the
next one to it will be any of the points ay, ..., -1. By virtue of
the equal weight of the objects, the probability 01} this event is
(1/m) - (ky — 1)/(m — 1). Consequently,

kp—1
S = =1y "
The conditional probability of success in this case is equaltoq(m) =
m/n. Hence, in the large, the probability of a correct decision

* Actually, the equation q'(k)=q(k) holds only forn=2andk=1. Thus, of the numbers
k, k+1, ..., n — 1, exactly one is divisible by the highest power of the number two not
in excess of n — 1, so that after reduction of the sum

n—1

1 1
$=?+m+..+“~1—-

to a common denominator an odd number is obtained in the numerator. For n> 2 the
denominator will be even, hence the sum s will be different from one.
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is equal to
k,,-—l m
"_2 ”‘q(m)_ m(m—-l) “n
____k,,—l( S I
T n Bp—1 " &k, T a=1 1’ (2)

For example, for n=10 we have the following table:

TABLE 1
1 1 1 i; 1 1 1
|

k T I N % it
9 | o111 0.111 %i 4| 09250 0.993
8 | 0125 0.236 3 0333 1.320
7 | 0.143 0.379 12 | 0500 L
6 | 0167 0.516 (1| 1000
5 | 0200 0.746 |

It is apparent from this table that kn =4. Consequently, it is
necessary first to reject three objects, then to choose the first ob-

ject better than all the preceding ones. The probability of success
in this case is

Pro=0.3-1.329 = 0.399.

Similar calculations are easily carried out for any n,-as long
as it is not too large. We now derive relations giving a better ap-

proximation for kn and p, for large values of n. For any m=2 we
have

41

In(m+1D)—Inm= J. < < f——= Inm—In(m—1).

Summing these inequalities from m =k to m=n— 1, we deduce that

n 1 1 1 n—1
g <gtgFrt+ --trmw<bz=g
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Tt follows from these estimates and from the inequalities (1) that

n n—1
IH—E;< 1 <lnma
whence
n 1
Lk <g(2—g)

Tnasmuch as no more than two integers can fall within an in-
terval of length 2 — 1/e, the above inequalities permit k, to be
found for any n with an error no greater than one. For large n
an error of one in the calculation of k, has little effect on the prob-
ability of correct choice.

It is evident from the inequalities (1) that the sum 1/(k, ~ 1)
+1/ky, ...+1/(a— 1) differs from unity by less than 1/(k, — 1).
Since kn—-w as n— «©, we have

him (EJ:T-i-kin-l—...-{-nil):: .

n->co

From Eq. (2), therefore, we find

Rp—1
hm p, == lim ~—
n-»oo ny

—1 2 0368.
e

§2. Optimal Stopping Problem for a Markov Chain

In the preceding section we solved the optimal choice prob-
lem by the construction of a special Markov chain. We now in-
vestigate the general problem of the optimal stopping of an arbi-
trary Markov chain.

Let a certain particle (or system) exist at each instant of
time in one of the states formed by a finite or denumerable set E
(phase space). If the particle is found at some instant in the
state x, then after a unit of time it is found in the state y with a
probability p(x, y) (regardless of when and by what route it arrived
at the point x). We say then that we have specified a Markov
chain with transition probabilities p(x,y).
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The probabilities p(x, y) may be any nonnegative numbers
obeying the condition

2;1 px. WK (xEE)

If 37 (%, y) <1, for some x, then the variable g(x;=1— 3 p(x, y)
y y

represents the extinction probability in the next step for a particle

situated at x. An extinct particle cannot be recreated, hence the

chain in this case is terminated once and for all.

Examples of Markov chains are the random walk on a lattice
studied in Chapt. I and the sequence of indices of the maximal points
in the optimal choice problem In the former example the chain
sometimes fails to terminate, and in the latter the probability is
one that it will terminate no later than the nth step.

We denote by x(n) the position of the particle at the instant n.
Let us suppose that we observe the path x(0), x(1), ..., x(n), ...,and
can at any instant n stop the migrating particle. If at the time of
stopping the particle is situated at the point x, we acquire a payoff
f(x), where f is a known function. If we do not stop the process
(either because it succeeded in terminating itself or because we
wait an infinitely long time), the payoff is zero. We wish to inquire
how to optimize the payoff.

Let us refine the statement of the problem. We first of all
describe the class of possible stopping times 7. The time T, gen-
erally speaking, is random because it depends on the random path
of the particle. However, it is not an arbitrary integer-valued ran-
dom variable. As a matter of fact, at the time T we do not know
how the process would behave after 7, and we have to solve the
problem knowing the process prior to the time 7. We therefore
consider only those integer-valued random variables T for which
the occurrence or nonoccurrence of the event { T =t} is uniquely
determined according to the values of x(0), x(1), ..., x(t). These
random times are called the Markov times (the Markov times
for a Wiener process have already been discussed in Chapt. II, §4).

The sum P, {t=*} can be less than one (and even equal to
i=0

zero). Instead of saying that 7 is indeterminate for the correspond-
ing paths of the particle, we sometimes write 7 =,
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A typical Markov time is the time of first visit to some sub-
set T" of the set E (there are, of course, other Markov times, for
example, T =5 or T = T3+ 2, where Ty is a Markov time, etc.).

If the time 7 is chosen (inotherwords, if the strategy of the
person stopping the process is given), the gain turns out to be a
random variable f(x(7)). It is required to choose 7 such that the
mean value M, f(x(7)) is as large as possible (as usual, Mx indi-~
cates the expectation for the initial position of the particle at the
point x).* In order for the expectation M, fix(7)) to have meaning
for any T, certain restrictions must be imposed on the function f.
It is sufficient to demand that f be bounded.

In summary, the problem is stated as follows:- A Markov
chain with transition probabilities p(,y) and a
bounded function f(x) are given on a finite or de-
numerable set E. It is required to: 1) calculate
the variable v(x)-—-:sxTxprf(x('r)), where T represents

all the possible Markov times, 2) find the Markov
time Ty for which Myfx(Ty)) =v(x)

By analogy with the theory of games, the variable v(x) is
called the value of a game, and the Markov time 7, is called
the optimal strategy.

In order to gain better insight into the problem, we consider
some special cases and examples.

If f =0 over the entire phase space E, the problem has a tri-
vial solution, clearly, T,=« (i.e., never stopping the process) may
be adopted as the optimal strategy, and v(x) =0. We exclude this
uninteresting case right away and assume that sup f(x)> 0.

X

We next consider a random walk on a one-dimensional lattice.
As we know (see Chapt. I, §1), in this type of random walk the par-
ticle has a probability one of sooner or later visiting any state x.
Consequently, here v(x) =c, where ¢ =sup f(x). because it is per-
A

missible to wait until the particle attains a state in which f(x) is
arbitrarily close to c. If the value of c is attained on a subset T

*In calculanng the expectation My f(x(r)), the summation extends only over the ele-
mentary events for which 7 1s finite (see the footnote on page 41).
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Fig. 24

of points of the lattice, then in order to obtain an optimal strategy
it is sufficient to set T; equal to the time of first visitto I" If, on
the other hand, c is not attained at any point, an optimal strategy
does not exist, even though it might be possible to obtain a payoff
arbitrarily close to c.

It is clear that the same pattern will be observed in any
Markov chain in which the particle has a probability one of occupy-
ing all states (such chains are called recurrent).

We next examine a homogeneous random walk on a line seg-
ment with absorption at the ends (Fig. 24). The particle has aprob-
ability 1/2 of jumping from the states 1-11 to the nearest point to
the right or left, but on arriving at the state 0 or 12 it always stays
there. A graph of the function f(x) is shown in Fig. 24 (the ad-
jacent points of the graph are joined for clarity).

Inasmuch as it is impossible to exit from the points 0 and 12,
we have v(0) =£(0) =0, v(12) =f(12) =0. At these points there is
nothing to wait for, and the process may be stopped at once. Simi-
larly, it must be stopped immediately in the state 9; in this state
f(x) attains an absolute maximum, hence any continuation of the
process can only diminish the payoff. Consequently, v(9) =£(9).

At the point 5, where f (x) has a relative minimum, conversely, it

is unfavorable to stop, even after one step it is possible to obtain

a payoff greater than f (x). Therefore, v(5) >f(5). What is the situa-
tion in the other states? At the point 3, for example, where f (x)

has a relative maximum, a postponement by one or two steps clearly
diminishes the average payoff. If one waits longer, there is hopeof
arriving in the domain of a second or higher peak, where the pay-
off would be considerably greater than f(3). But then there is the
danger of becoming trapped at the point 0 and of gaining nothing.
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Moving ahead, we point out that the value of the game v(x) in
this example is the least concave function greater than or equal to
f(x). In other words, in order to generate the graph of v(x), it is
necessary to run aline above the graph of f(x) between the points
0 and 12 [in Fig. 24 the graph of v(x) is indicated by a dashed line].
The optimal strategy is to stop the chain at the time 7, of first ar-
rival of the particle at the point where f (x) =v(x).

It will be shown that the problem has an analogous solution
in the general case of a chain with a finite numher of states. The
role of the concave functions in this case is taken by the class of
excessive functions associated with the given Markov chain.

The optimal choice problem analyzed in 81 is a special case
of our general problem. In fact, in §1 we constructed a Markov
chain x(i) with states 1, 2, ..., n, and the problem was one of stop-
ping this chain with maximum probability at the instant immediately
prior to termination. If the particle is situated in the state k, the
chain terminates in the next instant with a probability q(k) =k/n.
Consequently, the probability of success with the strategy 7 is
equal to

=M, E0 — Mg (x ().

als

P, {x(0)=~k}"

1

A NeE

[The subscript 1 attached to P and M indicates that the path x(0),
x(1), ... is initiated at the point 1.] Therefore, the optimal choice
problem reduces to the optimal stopping problem for the payoff
function F(x) =q(x) and the initial state x=1.

§3. Excessive Functions

We begin our investigation of the optimum stopping problem
for an arbitrary Markov chain with a study of the payoff functions
S for which the optimal strategy consists in stopping the process
at once. Clearly, these must be functions f that satisfy the follow-
ing inequality at any Markov time 7 :

FE)2Mf(x (1)  (x€E). (3)

Since the number of Markov times, in general, is infinite, it
would be difficult to test the condition (3) directly for every Markov
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time 7. As we shall see, it is sufficient for (3) to hold for T =
and T =1; then this condition will be satisfied for all other Markov
times.

For T =« the condition (3) leads to the inequality

f@>0  (x€E). @

For 7 =1 it becomes the condition

f(x)>Pf(x), (5)

where P denotes an operator operating according to the formula
Pf(x) =3 p(x. )f(y) (the one-step shift operator).
y

We are well acquainted with the requirements (4) and (5) from
Chapt. I; they comprised the definition of the excessive function for
a symmetric random walk on a lattice. It is logical to introduce
analogous definitions in the case of an arbitrary Markov chain as
well. Nonnegative functions f for which Pf =f are
called excessive functions.

We will prove that if a function fis excessive, the inequality
(3) is satisfied for any Markov time 1%

This statement has already been proved for a random walk
on a lattice in Chapt. I, §6. Of course, T was interpreted there as
the time of first visit to a certain set, but, as is readily observed,
the arguments are wholly applicable to arbitrary Markov times as
well. The fundamental notion of the proof was to represent the ex-
cessive function f as the sum of a constant, for which (3) is ob-
vious, and the potential

Gp(x)=9(x)+ Pe(x)+ Pp(x)+ ...
=M leCx(N+oxIN+ ...1 (6)

of the nonnegative function ¢ =f — Pf. For the potential the in-
equality (3) was derived from the relation

M,Go(x(0))=M{px @)+ e(x T+ D)+ ..., (7

* This fact (in a2 more general situation) was established by Hunt [5].
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the right side of which is less than or equal to the right side of
Eq. (6).

In the case of an arbitrary Markov chain the series (6) can
diverge. We cope with this difficulty by introducing a "correction
factor" o < 1 and then letting o tend to unity.

Setting ¢ (x) = f(x) —aPf(%), 0 < & <1, we write the obvious
identity

f:(P+aP(P+CL2P2(p+ ‘e —'—CL”P”(P_l_a”'*'I‘IJnllf'

where, by virtue of (5), once again ¢=0, Utilizing the fact that
0=Por=P0-}(pf) = PO-If g0 that @™Plf — 0 as n —~ =, we obtain
a representation of f as an infinite series:

f (%) = @ (x)+ aPo (x) + a’Pop (x) + . ..

= M, [9(*(0)+e@(x (1)) + o (x @)+ . ..] (8)
[in the general case the relation P2¢(x) =M. p (x(n)) is derived in
exactly the same manner as for a random walk on a lattice]. Just
as the relation (6) is implied by (7), it also follows from (8) that

M o' f (x(D)=M,[e o (x () +a ot + 1))+ .. .] (9)

(we leave the verification of this relation to the reader). We infer
from a comparison of (8) and (9) that

F (%) > Ma"f (x (7).

In order to obtain the inequality from (3) from this, all we need is
to let @ tend to one.*

The following more general property of excessive functions
is proved analogously: If f is excessive and 7'Z T are
two Markov times, then

M, f(x (D) > M f(x(t))  (x€E). (10)

*Passing to the limit too hastily in the argument of the expectation can result in in-
valid equations. However, £y - £ implies MEy - ME in the following two important

cases:
1) when |4 | < 7 for all ¢ and M7 < eo;

2) when £, =0 and £, - £, increasing monotonically.
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For the proof of this property it is required to write Eq. (9)
for each of the times 7 and 7'. Since 7 = 7', the series (9) for 7
will contain all the same terms as the series (9) for 7' and pos-
sibly some additional positive terms. Consequently, for 0 <a <1

M,o'f (x(1)) > M,a"f (x (1))

As ¢— 1, we obtain Eq. (10) from the latter.

It is readily deduced from the inequality (10) that if a func-
tion v is excessive and 7 is the time of first
visit to some set I', then the function

i(x)=Mv(x(1))

is also excessive.

To prove this assertion, we denote by 7' the first time t=1
at which the particle is situated inthe set I'. It is clear that r'=T,
and hence that

M/ () KM f (2 (D) =h(x).

But if the first step has brought the particle from x to y, then un-
der this condition Mg f(x(7')) is equal to My fx(7))=h(y). Conse-
quently,

M.f(x(x))= 3 p(x. )2 ()= Ph(x).
yEE

Thus, Ph=h.

§4. The Value of a Game

If the payoff function f is excessive, then, as we readily per-
ceive, the value of the game v coincides with f.

We note in the general case that if an excessive func-
tion g majorizes the payoff function f, it also
majorizes the value of the game v.

In fact, if g=f and g is excessive, then for any strategy 7

M e () <M g (x (D))< )
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and, hence,

v(x)==sup M,/ (x () < g (x)

We show next that the value of the game v itself
is an excessive function.

Clearly, the function v is nonnegative; zero payoff can al-
ways be obtained with the strategy 7 = =,

In order to test the condition Pv=v, we formulate a strategy
T yielding an average payoff M, f(x(7)) arbitrarily close to Pv(x),
then we make use of the inequality Myf(x(T)) =v(x).

We pick an arbitrary number € >0 and denote by ¢, y the
strategy for which

Myf(x(Te,)) Z20(M—e (YEE)

(The existence of a Markov time Te, for any y follows from the
actual definition of the value of a game.) Let the strategy T consist
in first making one step, then, if this step brings the particle to the
state y, using the strategy T¢, y. More precisely, if x(1) =y, then
T=1+ Te,ys where Tg,y 18 found from the trajectory x(1), x(2), ...,
beginning at the time 1 rather than the time 0. It is readily agreed
that 7 is a Markov time. For this 7 we have

M.f(x(1))= ;?1} P, M, f(x(T,,))

> ygs P (x, y)[v(y)—e}=Pv(x>—ey§p<x. ) > Pu(x)—e.

Consequently, v(x) =Pv(x) — ¢ for any € > 0, hence Pv(x) =<v(x).
This proves the excessiveness of the function v.

Since one possible strategy is instantaneous stopping,

V(%) = f(x).

Summarizing, we have deduced the fact that the value of
a game v is the minimum excessive function
greater than or equal to the payoff function f (and
is logically called the excessive majorant of f).

As a by-product, we have also proved the existence of an ex-
cessive majorant for any function f (this is not evident a priori).
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This result permits the value of the game to be found by
linear programming methods in the case of a finite number of
states. In fact, the value of the game v(x) is the minimum func-
tion satisfying the following set of 3n linear inequalities :

v(x)> y% p(x, )y

v(x) > f(x), (x €E),
v(x) >0,

where n is the number of states of the Markov chain.

§5. The Optimal Strategy

We denote by T the set of all states x in which the payoff fune-
tion f(x) is equal to its excessive majorant v(x). We call this set
the support set (in Fig. 24 the support set comprises the
points 0, 9, 10, 11, and 12; at these points the graph of the function
f "supports" the line representing the function v).

Let a particle begin to move at a point x of the support set.
Immediate stopping at this point yields a payoff equal to v(x), and it
is not possible to give a better strategy. On the other hand, stopping
at an initial state x outside T results ina payoff f(x) thatis strictly
less than the value of the game v(x). Therefore, had we known be-
forehand, first, that an optimal strategy existed and, second, that
this strategy prescribed stopping or continuing to scan solely as a
function of the position of the particle at the current instant (as is
specifically the situation in the optimal choice problem), we could
have inferred that the optimal strategy is given by the time 7 of
first visit of the particle to I"'. So far, however, we can only adopt
this as a reasonably plausible hypothesis.
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Not always, however, does this hypothesis turn out to betrue.
Let us consider, for example, a Markov chain with an infinite num-
ber of states 1, 2, ..., 1, ..., in which the particle has a probability
1/n? of going from the point n to the point 1 and a probability
(n2 — 1)/n%of going from the same point to the point n+1 (Fig. 25).
Let f(m)=1—1/nfor n>1, and let £(1) =1. Obviously, in this situa-
tion it is always possible to expect a payoff arbitrarily close to,
but never greater than, one, hence v(n) =1. The support set I' in
this example consists of the single point 1. Inasmuch as (1) =1,
for the time 7 of first visit to I" the average payoff My f(x(7)) is
equal to the probability 7(n) of leaving n and arriving sometime at
1. The probability of the converse event, i.e., of the particle de-
parting to infinity on the right, is equal to

| e 1y

Since

m

m
B—1 _ gy e—1DGEED) _ (1) (mt1)
127 - =P - ,
=n

nm
ke=n

the infinite product (11) converges and is equal to (n — 1)/n. There-
fore, m(n) =1/n, whereas v(n) = 1.

The violation of our hypothesis in this example is connected
with the fact that the phase space is infinite. We will show that
the time 7, of first visit to the support set in
the case of a finite phase space is an optimal
strategy.

Let us examine the average payoff

i (x)=M,f (x (%)), (12)

which corresponds to the strategy 7,. It is required to prove that
h=v. According to the actual definition of the value of a game,h=v,
Inasmuch as x (1) €I’ while f and v coincide on I', the function f
may be replaced in Eq. (12) by the excessive function v; then it fol-
lows from this formula that h is also excessive (see §3). Since v

is the minimum excessive function majorizing f, in order to obtain
the inverse inequality h=v, it is sufficient to verify that h=7f.
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At points of the support set T we have h(x) = f(x), because
the strategy T, prescribes immediate stopping at these points. Let
us assume that the inequality h(x) <f(x) is satisfied somewhere out-
side T'. We denote by « the point at which the difference f (x) — h(x)
‘attains a maximum. Then the function hy(x) =h{x) +[f(a) — h(a)] ma-
jorizes f, coincides with f at the point @, and, as the sum of the ex-
cessive function h(x) and the positive constant f{a) — h(a), is also
excessive. Consequently, hy majorizes v, and f(a) =h;(a) = v(a).
This means that the point ¢ chosen outside the support set T" be~
longs to I'. The ensuing contradiction reveals that the inequality
h(x) < f(x) is inadmissible. The optimality of the strategy T, is
thus proved.

We turn next to the case of a Markov chain with a denumer-
able phase space. Here, as we are aware, stopping at the time of
first visit to the reference set I" can prove to be a highly inau-
spicious strategy. It can be shown, however, that if we adopt in
place of the set T ={x: Ffx) -v(x)} an "e -support" set 1"8 =
&: v®@—F(x) = gt and investigate the time 7y of first visit to
I'., we have for any € >0

M,/ (x(T)) > v(x)—¢. (13)

Consequently, the &-support sets enable one to find strategies
afférding a payoff arbitrarily close to the value of the game.

The proof of the inequality (13) follows the same plan, with
slight modifications, as in the case of a finite phase space, when
£ =0. Inasmuch as f(x) Zv(x) — € on I';, we have

M.f (x(te) ) > Mgc" (x (1e) ) — &Py {1 <00} > Myv (X (7)) —e

The function h(x) =Myv(x(7:)) is excessive, along with v. We will
show that h(x) = f(x). I sup[f(x) —h(x)]=c >0, the function hix) +c

is excessive and majorizes f(x). Consequently, hix) +c=v(x) for

all x. Since c >0, there exists a state g inwhich f{a) —h(e) >0 and si-
multaneously F{a) —hia) >¢ — €. Then fla) =f(a) —h(@) + hi@=c—&+
v(ag)—c = v(a)—¢,hence a€T,. AtpointsbelongingtoI's,however,the
functions h andvare equal, so that h(a) =v(a) =f(e). This contra-
dicts the inequality f(a) — h{(a) >0. Therefore, ¢ cannot be positive,
hence h(x) majorizes f(x). But then the excessive function h(x) also
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majorizes v(x), and consequently

M f(x(t)) 2 A (x)—e>v(x)—e.

§6. Application to a Random Walk with

Absorption and to the Optimal Choice Problem

In a random walk along a line segment [0, a] with absorption
at the end points,a particle situated at any of the points 1, 2, ...,
a — 1 has a probability 1/2 of shifting one unit to the left or right
in a single step, but if it arrives at the point 0 or a, it always stays
there (see Fig. 24, where a=12).

The solution to the optimal stopping problem for this kind of
Markov chain was given without proof at the end of 82, In cor-
respondence with the general formulations of §§3-5, all that is
needed for the justification of this solution is to verify that the ex-
cessive functions are nonnegative concave functions.

By definition, a function f is excessive if f=0 and Pf =7,
The condition Pf =f reduces in the present case to the inequalities

=D GED ) (=12 .. a—1) (14)

and the trivial relations
FOK IO, f@ay<r@).

The inequalities (14) signify that if the adjacent points of the graph

of the function f(x) are joined by segments, the vertex of the result-
ing polygonal curve at any interior
point x will be situated no lower

- than the chord connecting the ver-

1) tices at the points x— 1 and x+1
(Fig. 26). Consequently, the con-
dition Pf =f is tantamount to con-
cavity of the function f(x), which

| it was required to prove.
x-/

Let us investigate how the
Fig. 26 concepts we have introduced op-
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erate in the optimal choice problem. As we know, this problem re-
duces to the optimal stopping of a chain characterized by states
1, 2, ..., n, transition probabilities

k
mfor l>k,

for 1Lk,

p(k. D=

and payoff functions f (k) =k/n (see §2).

We find the excessive majorant v(k) of the payoff function f (k)
and the reference set P'=1k: F(k)=v(k)}. By definition, v is the
minimum function satisfying the inequalities v=f, Pv=v, and v=0.
In the given case these inequalities assume the form

k
‘U(k)}'?s

n
k
v (k) > E =5 ?®
1=k-1

=12, .., n

Hence, if v(I), I >k, is already known, then

l=k+1

T I T
U(k)-——maX{;. k 2 -—l—(T__—l)'}.

We have obtained a recursion formula for the determination of v(k).
On the basis of this formula we successively find

v(n)—_—-max{-;:—}zl:f(n),

71—

o (n— D=max | 1—,(n-—1)-5-(-,—1—1:-ﬁ}

n—1 1 n—1
e

=fn—1)
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n

n k Bl ! 1 kR
--+———n<n—1>“=max{“ﬁ' FlEtmT T )= =re

as long as the following inequality remains in force:

1 1 1
st o <L (15)

As soon as the sum 1/k+...+1/(n— 1) becomes greater than
one with diminishing k, v(k) turns out to be strictly greater than
k/n=f(k). With a further reduction of k the sum 1/k+...+1/(n— 1)
remains greater than one, so that at these points

u(z> y" 7 ()
v(k) >k 2 T0—=10 L= TE=T)
=R+

=kl 1

=t (34t o T ) > 2=

Hence, the support set I' has the form {ky, ky + 1, ..., n}, where
k, is the smallest integer satisfying the inequality (15). We are al-
ready familiar with this result.

For k=k, the value of the game is equal to v(k) = f (k) =k/n,
and for k <ky it is calculated in succession acecording to the rela-
tion*

108
v(k)="F E T0—10 "

R=l+1

§7. Optimal Stopping of a Wiener Process

The optimal stopping problem can be analyzed not only for
Markov chains, but also for processes involving a nondenumerable
phase space and continuous time. We propose to investigate one
of the most elementary processes of this type, namely, a Wiener
process x(t) on the interval [0,a]with absorption at
the points. Bydefinition, givenanyinitial positionx, 0 =x =<a, the

*It is not difficult to show that w(k) is in fact independent of k for k < kn and
is found from Eq. (2).
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particle executes exactly the same motion as in an ordinary Wiener
process on an infinite line until the first time it hits the end of the
interval; on hitting the point 0 or the point a, the particle always
becomes trapped at that point.*

Let the payoff function f(x) be specified on the interval [0, al.
It is required to find the value of the game

v (x)=sup M f(x(®) O<Lx<a),

where T represents all the possible Markov times, and to formu-
late the particular Markov time T, at which

M..f (% (7)) = v (%)

(i.e., to find the optimal strategy).

The process of interest here is the continuous analog of a
symmetric random walk on a line segment with absorption at the
ends, i.e., the problem discussed in §§2 and 6. We see that the so-
lution of the problem in the continuous case remains the same, ex-
cept that instead of concave functions of an integer-valued argu-
ment it is necessary to use concave functions specified on the en-
tire interval [0, a].

We recall that a function f(x) given on the interval [0, 4] is
called concave if the entire chord connecting any two points of
the graph of the function f is situated no higher than the graph f
(Fig. 27). We note that a function concave on an inter-
val is continuous inside the interval and at the ends
of the interval has finite limits no smaller than the values of the
function at the end points (see the Appendix, §2). For example, in
Fig. 27

lim f(x)=£(0) lim f()> f(a)
x-»0 X-ra

*We are not concerned with 2 Wiener process on the entire infinite line, because in
this case the particle has a probability one of hitting any point, and the optimal stopping
problem has the same wmivial solution as for a recurrent Markov chain.
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o The special role played by
4, 43 concave functions for our process
? is explained by the fact that non-
negative concave functions

(and only those functions)
satisfy the inequality

fig. 27 M.f (£ ()< f (%) (16)

at any Markov time 7. The proof of this statement is
rather intricate, and we will save it for a special section (§8).

After having described the class of functions satisfying the
condition (16), the value of the game and the optimal strategy are
found in approximately the same manner as in §§4 and 5 for an
arbitrary Markov chain.

We first calculate the probability q(x) =q(x; x4,.X,), on start-
ing from x, of hitting the point x4 before x,, as well as the prob-
ability p(x) =p(x; x4, Xo)-of hitting x, beforex;(0=x;=<x=x,=q). It
follows from the results of Chapt. II that the function q(x) is a so-
Iution of the Dirichlet problem on the interval [x;, ;] and assumes
a value of one at the point x; and a value of zero at the point x,.
Inasmuch as the Laplace equation Agq =0 assumes the form g''=0
in the one-dimensional case, all of its solutions are linear, i.e.,
they have the form ¢(x) =cx+d. Determining the values of the con-
stants ¢ and d from the boundary conditions q(xy) =1, q(x,) =0, we
obtain

. o Ky— X
q(x; x,, x2)"“x,_,--x1 ,
p(x; %, X)=1—gq(x; X, Xp)= j;-_x,él' (17)

We now find the value of the game v(x), regarding the payoff
function f(x) for the time being only as bounded, but not necessar-
ily continuous.* We note that if g (x) is a nonnegative concave
function majorizing f (x), then for any 7

M fx(M)<KM, g (x (1)< g (%)

and, hence, g(x) majorizes v(x).

* The boundedness of the function ¢ (along with measurability, which we agreed
earlier not to discuss) guarantees the existence of the expectation Myf (x(1)).
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The function v(x) itself is nonnegative (as there exists a
strategy T =« yielding zero payoff) and is also concave. Thus, we
let [x4, X5] be some subinterval contained in [0, a] and let 74 and
T, be strategies yielding average payoffs greater than v(x;) —& and
v(x,) — € in the respective initial states x; and x, (the existence of
these strategies for any € >0 ensues from the actual concept of
upper bounds). Let us examine the strategy 7, whereby we first
wait for the first hitting time at one of the points %, or x,, then use
the corresponding strategy T4 or T,. Here, according to Eq. (17),

M,/ (6 (0) = 225 M f (2 () - =5 My f (x (%)
Z :; :::1 ['n (x)— s] - j;_);l ['v () — s]
=2 v T T ) —e,

hence

> (Fr—xv () (x—x)v(e)

v (¥) Xg— X

€ (x; < x < xp)

Inasmuch as € can be an arbitrarily small positive number, the
above inequality is also true for & = 0. Since the function

(62— x) v (x1) 4 (x — x1) V (X3)
Xy — X

is linear on [x4, X;] and coincides with v at the points x; and x,, this
means that the graph of v on the interval [xy, x;] does not pass any
lower than the chord spanning it. Consequently, the function v(x)
is concave.
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Therefore, the value of the game is the minimum nonnega-
tive concave function greater than or equal to the payoff function
f,or, more concisely, the value of the game v is the
nonnegative concave majorant of the function f
(see Fig. 28, which illustrates a discontinuous function f).

We next show that if the function f is continuous,
then, as in the discrete case, an optimum strategy is to
stop the process at the time 7, of first visit to
the support set I', on which f(x) =v(x). We note that this
statement no longer holds for a discontinuous payoff function 7.
Thus, in the example illustrated in Fig. 28 the set I" comprises
the single point ¢. This means that if we wait for arrival in I", we
will never obtain a payoff greater than f(a), whereas v(x) is much
larger than f(a) at some points.

We first verify the fact that continuity of the payoff function
f implies continuity of the value of the game v. Inmasmuch as the
function v is concave, it is continuous at all interior points of the

interval [0, ], and limov(x) > 7)., limv(x)>v(a). We examine the
x=>0 x->a
point 0 for definiteness and show that

lim o (x) < v (0). (18)

x~0

We set C(U)Ténaé f(x), 0=u=gq. It is apparent that the func-
X u

tion c(u) is continuous, along with f(x). For x(r) <u the payoff,
clearly, cannot exceed the value of c¢(u), while for x(7)=u it cannot
exceed cl(a). Moreover, the inequality x(7) Zu for x=x(0)<u can
only occur in the event that the particle arrives from the
point x at u Dbefore it arrives at the point 0. The probabil-
ity of this event, according to Eq. (17), is equal to x/u. Conse-

y 8
A%\E
Y
£
¢
7 Iz z,/’aF
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quently, for 0 <x <u and any T
fo(x(T))<C(u)Px{x(T)<u}+c(a)-—;i.

If cuw) =0, the first term here does not exceed c(u), but if e(u) <0,
it does not exceed 0; hence, in any case

M,/ (x(7)) < max[e (2), 01+c(a)=-,
and, consequently,

v (x) K max [c(x), 0]+¢ (a)-;£ .

Letting x — 0 here, we obtain

limv(x) Lmaxfc(e), 0] (z>0),
x-30

and then letting u tend to 0, we find

limov (x) < max [¢ (0), 0]=max[f (0), 0].

x>0
Inasmuch as 0=v(0) and f(0) = v(0), the inequality (18) is proved.

Since both of the functions f and v are continuous, the sup-
port set I', comprising those points x at which f (x) =v(x), is closed
(apriori,I" can also be an empty set). Let T be the time of first
visit to I, and let

h(xy=M,f(x (7))

be the average payoff for the strategy 7. Since f=von T,

h(x) = M,v (x (7)) (19)

We see now that the function h defined by Eq. (19), like v, is
concave, continuous, and nonnegative, In fact, if x=x(0)€T, then
T = 0, and h(x) =v(x). The points xnot belonging to the closed set T’
form a system of intervals, the ends of which either belong to T or
coincide with one of the points 0, a (Fig. 29). If the end points x4
and x, of such an interval belong to I', then on the interval [xy, X»],
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according to Egs. (17), the function h is equal to

B = P2 g (x) + ;‘2'_'_’21 (). (20)

Xy — X

It is apparent from this formula that the graph of h on the interval
[X{, X5] is the chord AB subtending the points of the graph of the func-
tion v. If, on the other hand, one end of the interval (x4, x,) coin-
cides with an end of the segment [0, @] and does not belong to T,
the value of v at the corresponding point x4 or x, in Eq. (20) is re-
placed by zero, and the graph of h is a line segment such as CD in
Fig. 29. This segment may also be called a chord of the graph of
v, provided the vertical sections CE and FG are included in this
graph. Thus, the graph of h is obtained from the graph of v by
"cutting off the convexities" with chords on some systems of inter-
vals. It is geometrically evident that this operation again produces
a graph of a continuous concave nonnegative function (see the
Appendix).

Inasmuch as v is the smallest of the nonnegative concave
functions majorizing f, for the proof of the inequality h=v (and,
hence, of the optimality of the strategy 7) it is sufficient to verify
the fact that h=f. Let us assume that the difference f — h acquires
a positive value somewhere. Then the continuous function f — h
must reach its maximum value ¢ >0 at some point x,. The non-
negative concave function h(x) + ¢ majorizes f, which means that it
also majorizes v. Consequently, h(x,) +c=v(x;), which combines
with the equation ¢ =f(xg) — h(xy) to yield the relation f(xy) =v(x,).
Therefore, x,€T, whence h(xg) =v(x,) =f(x,) and ¢=f(xp) — h(x;) =0.
This contradicts the premise that ¢ > 0. Thus the optimality of the
strategy T is proved.

We conclude with a few remarks about the multidimensional
case, Consider the optimal stopping problem of an I-dimensional
Wiener process in a closed domain G with absorption at the
boundary. The value of the game is found as in the one~-dimen-
sional case, except that the nonnegative concave functions must be

replaced by nonnegative functions f satisfying the two following
conditions:

1) For any I-dimensional sphere S « G with center x the
mean value of f on S does not exceed f (x).
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2) For any x€C and any £ > 0 there exists a 6 >0 such that

FN2fx)—e,
provided only that

ly—x| <96, yEQG.

[We point out that the condition 1 is a special case of the in-
equality M, f(x(7))=f(x) when T is the time of first exit from S.]
The conditions 1 and 2 form the definition adopted in modern po-
tential theory for a superharmonic function in the domain G _*
Consequently, it may be stated that the value of the game is the
nonnegative superharmonic majorant of the payoff function. As far
as the optimal strategy is concerned, it far from always exists. In
any case, however, it is possible to formulate €-optimal strategies
by means of e-support sets, as was done for denumerable Markov
chains at the end of §6.

We note further that inasmuch as for 7= 3 a Wiener path no
longer has a probability one of entering any arbitrary domain, for
1 =3 the optimal stopping problem is important in the special case
when G is the entire space (see the footnote on page 113).

§8. Proof of the Fundamental Property

of Concave Functions

It remains for us to prove that in the case of a Wiener proc-
ess on an interval [0, a] with absorption at the end points the class
of functions f(x), x€[0, a], satisfying the condition

f(x) 2> M f (x (1) (21)

for any Markov time T coincides with the class of nonnegative con-
cave functions.

This is a very simple matter in one direction. Letting T =%
in (21), we find that f =0. Moreover, let the subinterval [x4, %3] be

*1f the funcuon f is continuous and has continuous second partial derivatives, 2 is ful-
filled automatically, and 1 reduces to the inequality Af =0, where A is the Laplace
operator {(cf, the derivation of the equation Af =0 in Chapt. II, §4).
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contained in [0, a], and let T be the time of first exit of x(t) from
[x1, X9]. According to Eq. (17), for this T

-t

X
Xp— X, Xg — X1

M.f(x())=F (x)

for xy=x=x,. Consequently, the graph of the function My f(x(7))
for x€[x;. x;] is a line segment connecting the points with ab-
scissas x; and x, onthe graph of the function f(x). It follows from
the inequality (21), therefore, that any chord of the graph of f does
not lie higher than this graph, i.e., the function f is concave,

It is a much more complex task to show that every concave
nonnegative function satisfies the condition (21), although basically
the argumentation remains the same as in the derivation of the con-
dition (21) in the discrete case for excessive functions. We analyze
the proof in six parts.

1°. We define an operator P;(t > 0) on bounded functions f(x),
0=x=gq, by the formula

Pif ()y=M,f (s = [ F()n,(@y), (22)
0
where p, (=P, {x(@) €T}, and we let

Py f(x) ziﬂ Pf (x).

By virtue of the Markov property, the process y(s) =x(s +t)
for any fixed t > 0 is a Wiener process with absorption at the end
points and an initial distribution u.(I'). Therefore, applying Eq.
(22) twice, we write

Mof O E)=[ Myf (x (D)= [ Pof () b, () = P,Pyf ().
0 0

On the other hand,

M /WO =M f(x(@tF)="P,, ()
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Consequently, the operators P, are multiplied ac-
cording to the rule

Ptps='pt+s' , (23)
We recall for comparison that in the case of a discrete
Markov chain

M. f (x (n) = P"f (x),

where P is the one-step shift operator. Consequently, in the dis-
crete-time case Eq. (23) reduces to the ordinary rule for the mul-
tiplication of powers. We note that families of operators Py (t > 0)
which are multiplied according to Eq. (23) are called one -
parameter subgroups.

It is immediately evident from the definition of the operator
P; that if £ =0, then P; f = 0 also(the operator P, is positive).
Applying this property to the difference function f —~ g, we deduce
that if f =g, then Py f =Ptgalso (the operator P; preserves the in-
equality between functions).

We next calculate P f(x). We know that a particle leaving
any point of the interval has a probability one of sooner or later
arriving at an end point of the interval, where it will always re~
main. Consequently, as t — © the measure ut of the interval (0, a)
tends to zero, while the measure u of the points 0 and a tends to
Py x(T)=0} and PX{X( T)=a}, where T is the time of first exit
of the path from the interval (0, a). Therefore,

P f(x)=f(0)- P, {x()=0}+F(@)P,{x(v) =4}

or, according to Eq. (17),

Pof (@)= f(0) 2=+ f(a)=.

a

It is apparent from the above expression that Pof is a linear
function whose values at the points 0 and a coin-
cide with the values of f at those points (Fig. 30).
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2°. For linear functions f
Pf=/. (24)

According to part 1°, if f is linear, f =P f. Passing to the limit
in the identity™

pt(Psf)=Pt+sf

as s —~ », we arrive at Eq. (24). It is easily shown that the con-
verse is also true (we leave the proof of this to the reader).

3°. If the function f is concave,

Prf.
For x=0 and x =g the probability is one that x(t) =x(0), so that
Pif(x)=M,f(x(®) = M,f(x(0)= f(x).
Let x be an interior point of the interval [0, ¢]. Inasmuch as the
function f is concave, it is possible to formulate a linear function
J such that f(x) =f(x) at the given point x, and at all other points

F=F (Fig. 31) (the proof of this property of concave functions is
given in §2 of the Appendix). According to part 2°,

Pz.?=7-

Since}'-?: f on the entire interval, while at the point x the values of

*See the footnote on page 104,
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f and f are equal, we have
Pif () S P f () =F ()= J (x).

4°. Let @ be some number from the interval (0, 1). We agree
to call functions h represented in the form

h(x)= [ a'Pg (x)dt =M, [ag(x(®)at,
0 0

where g=0, ¢ -potentials [the o-potentials play the same role
in the continuous case as series of the form (8) in the discrete
case].

We now show that if f =0, Py f=f for all t, and the
function f is continuous at interior points of the
interval [0, a], then no matter what o is, 0<a<l,and
the function f may be represented as the limit
of nondecreasing a-potentials.

Making use of the identity P,P =P, . o, we write

f o’P,f dt = Ta‘P,f dt — fo ofP, f dt
0 0

$

=.I-atptfdt“ J. oO"TPy, f dE = f“tpt(f'— *Pgf)dt,
0 o 0

or

s (o]

1

< [ a'P.f dt = Of «/Pyg dt, (25)
0

where

J—@Psf . (26)

§= 3

these integrals converge, since |a| <1 and | Pef(x) | = | My fx(t) |
is bounded by the number sup|f(x)]. Inasmuch as 0=P,f=f and
X
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0<a <1, it follows from (26) that g=0. Consequently, an a-po-
tential stands on the right side of Eq. (25). We can establish the
fact that this a-potential, without decreasing, converges to f as
s = 0 if we verify that

lim P,f = f (27)
1>0

and that otht f is a nonincreasing function of the argument t. The
required monotonicity of otht f follows fromthe sequence of re-
lations

ateP, L f <a'P;. f =0a'P,(P,f) <L o'P,f
(z > 0).

In order to demonstrate (27), we recall that
Pif (x)=M,f (x ().

As t— 0, the probability is one that x(t) = x, because the paths of
the process x(t) are continuous. This means that F(x(t)) ~f(x) also
with probability one at those points x where f is continuous, i.e.,
at all interior points of (0, @). But if the random variable f (x(t))
converges with probability one to a constant f(x), its expectation
converges to the expectation of the constant f(x), i.e., to the num-
ber f(x) itself [passage to the limit in the argument of the expecta-
tion is legitimate, insofar as the random variable f(x(t)) is bounded
for any t by the same number &2=sup|f(x)|]. Consequently,

X

limo’P,f (x) =lima! - im M _f (x ()= f (x)
>0 >0 >0
0 < x < a)
As for the points x=0 and x=a, where f can suffer a discon-

tinuity, there P.f (x)=f (x) for all t; Eq. (27) follows at once from
this.

5°. If h(x) is an a-potential and T is any Markov time,

M, ok (x () < k(%)
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We have the condition
h(x)=M, _[ «'g (x () dt,
0

where g=0. Therefore,

co oo

R > My [o'g (e at =My [ asg (x(i+s)ds =M,a7 [ o (y(sds,
T 0 0

(28)

where y(s) =x(7 + s). According to the strong Markov property,
the process y(s) under the condition T =t, x(7) =y is exactly the
same process as x(s) beginning at the point y.* Hence

M @ [ ag(y)ds|t=t x(D=y) =a'M, [ og (x(s)ds =an(y).
1] 0

Denoting by F(t, y) the joint distribution function of the pair of ran-
dom variables 7 and x(7), we then write

o« co

Mot [og(y(Nds= [ [ o) dF (¢ y)=M.a% (x (o).
0 00

Subsituting this value into Eq. (28), we obtain the desired result.

6°. Finally, we prove that a nonnegative concave function f
satisfies the condition (21). It follows from the continuity of a con-
cave function inside the interval [0, @] and parts 3° and 4° that
forany o €(0, 1) f isthe limit of a nondecreasing sequenceof o~po-
tentials hy, by, ..., hy, ... . According to part 5°, for any Markov

time T

M, 0%h, (% (1) < 2, (%) < S (%)

P

* The intuitively justified but rather loose arguments presented here with regard to what
happens under the condition T=1, x(1)=y, which has a probability zero, can be trans-
lated into completely rigorous form.
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Since h, converges monotonically to f, it is permissible to pass
to the limit in this inequality as n— = in the argument of M,.
Thus

Mot fx (<)

for any positive @ < 1. Passing to the limit again as o¢— 1, we ob-
tain My f(x(T)) =f(x).

To what extent does the given proof extend to a multidimen-
sional Wiener process? As already stated at the end of §7, in
general the role of the concave functions is taken by superharmonic
functions. Defining the operator Py as before by the formula

Pyf (x)=M,f (x @),
we call nonnegative functions f satisfying the conditions

P/,
>0

excessive functions (cf. the definition of excessive func-
tions for Markov chains in §3). In essence, we began in the pres-
ent section by demonstrating that nonnegative concave functions
are excessive, then we established the fact that excessive func-
tions satisfy the inequality

M <)

for any Markov time 7. The reader can easily verify that this sec-
ond half of the proof has a completely general character and is
equally applicable to the multidimensional case. On the other hand,
the proof that superharmonic nonnegative functions are excessive
in the multidimensional case is more complicated than in the one-
dimensional case (on more than one occasion we made use of the
special properties of concave functions, for example, their con-
tinuity at interior points of the interval). Moreover, the one-di-
mensional nature of the problem made it possible for us in §7 to
circumvent the problems associated with the measurability of the
value of a game.
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PROBLEMS
Choosing One of the Two Best Objects

Suppose that it is required to choose one of the two best ob-
jects (it being immaterial exactly which one) among n objects. As
in the case analyzed in 81, the problem reduces to the optimal
stopping of a certain Markov chain x(0), x(1), x(2), ... . In §1 the
elements of this chain stand for the indices of the maximal objects
(points), i.e., objects better than all those already scanned. It is
clear that maximality in the new problem must be given a weaker
interpretation, regarding an object aj as "maximal" if it is the
best or second best of all the objects ay, ay, ..., g already scanned.
This is a small matter, however The value of x{i) must indicate
not only the order number (index) of the corresponding "maximal"
object, but also whether this object is the best (i.e., maximal in
the previous sense) or second best. The phase space of the chain
x(i) is therefore conveniently represented as two parallels rows of
n points, regarding the upper row as representative of objectsbet-
ter than all the preceding ones and the lower row as representa-
tive of objects inferior to just one of the preceding ones (Fig. 32).

1. Find the transition probabilities of the chain x(i).
Answer. Regardless of whether the points k and [ are

situated in the upper or lower row,

E(k—1
Pl D=y (>R
[for I =2, k=1 the fraction is to be assumed equal to k/[7 (7 — 1)]].

2. Find the probability of success (payoff function) f for
stopping of the chain at a given point.

Answer. Letting the subscript 1 refer fo points in the
upper, the subscript 2 to points in the lower row, we have

E(@2n—k—1
fi(R)= (nn(n—--l) :

E(k—1
falty=2E=3)
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Arguments similar to those used in §6 indicate that the value
of the game v is found successively according to the relation

v, (k) = max {f, (&), 2 p D [vl(l)+v2(l)]} (30)

I=k+1

(v4 corresponds to upper points, vy to lower points). We denote by
I‘J- the set of points of the jth row in which the functions f and v
coincide (j=1, 2).

3. The set T’y hastheform{mz,m2+ 1, ...,n}, where m, is
the smallest integer greater than or equal to (2n+1)/3.

The set T'y also contains all the numbers m,, my+1, ..., n.
Hint. Verify the fact that

Y pk DIAO+HOI=2E=R

I‘k-r-l

and apply Eq. (30).

We denote by Bk the set comprising I'y plus the points k+1,
k+2, ..., n of the upper column (k <my,), and we let T} denote the
time of first visit to By.

4. If f1(k) < My f (x(Ty)), k does not belong to T'y. Ifk+1,
k+2, ..., n belong to I'y and f4(k) Z My f (x(7)), k belongs to T.

Hinf. Given any initial state, stopping at the time of first
visit to T,uT, is an optimal strategy (see 85).

5. Find the distribution of x(7y) for an initial state k.
Hint. Describe the event x(T}) =1 in terms of the objects

A+ 1Bk +2s os Gy For k< I< m, we have Pk{x(rk)zl}ml—(lkfﬁ
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for points I of the upper row, and for my=7=n we have

k
=T P(my—1, 1) for points I of both rows.

Pk{x(‘ck)al} =

6. The set I'y has theform{mi, m¢+1, ..., nf, where m, is
the smallest positive integer for which

1 1 1 3ms — 2m, — 4
(_+m1+1+"'+m2--2)< 22(:;--11) .

m

7. If the number of objects n grows indefinitely,

. m ..m 2
lim—L=q, ]lm—zm—,
n n 3

where o is the root of the equation ¢ ~ In @ =1+1n(3/2) and is
smaller than one (@ =0.347).

8. The probability of success with an optimal strategy tends
toa(2—a)=0.574 as n— «,

Hint. The distribution at the time of first visit to the set
I''uT; for any initial state s <m, will be the same as the distri-
bution of x(Ty) for k=m;— 1 in Problem 5.

Further Generalization of the Choice Problem

Now let it be required to choose with maximum probability
one of the first s objects in order of quality [for a total number of
objects n (s <n)]. The phase space of the chain x(i) consists in this
case of s rows involving n points, and the arrival of the particle at
a point k of the jth row means that the object ;. is ranked in jth
place according to quality in the group ay, a,, ..., a. We denote
by f J-(k) the payoff function (probability of success) for stopping the
chain at the point k of the jth row, by vj(k) the value of the game
at that point, and by I‘j the part of the support set I" located in
the jth row.

9. The transition probabilities p(k, I) of the chain x(i) donot
depend on which rows the points indexed by k and I are located in,
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It is easily shown that

n §
— Y B DY v }
o@=mex{f,0 3 2t DI 00 (31)
[cf. Eq. (30)].

10. The function f;(k) increases monotonically with respect
to the argument k and decreases monotonically with respect to
the argument j.

11. The double sum in Eq. (31) decreases monotonically
with increasing k.

Hlnt This sum is equal to the expected payoff for the op-

timal strategy if stopping is forbidden at the first k objects.
12. The set I‘j has the form m n, where

l=m =my=mg=n,

j, mj+ 1o veas

13. Calculate 21 f; (&)
]a

Hint. We introduce the following symbolic events:

A={ak is one of the s best objects},
Bj ={ak is the jth in quality of the objects a4, a,, ..., ak}.
Then

5

Efj(k)__z P(A/B;} =*k

=1

P{A/B)} P (B)=kP ()=,

o ol

.,
H

14. In the notation of Problem 12, for s=2

Hint. After computing

R(—1)...(k—s41)
o)==y =5 D
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and

_R(E—1)...(k—s41)
P ===

use Eq. (81) and Problem 12 (cf. the cases s=1 and s=2). For
the calculation of the sum in Eq. (31) use the identity

(=2}

1 1 1
2 I—D(—2 .. 0—95  s5—1 t=DE—2 ... FE—sF1)

leR+1

which is valid for s=2.

Optimal Rule for the Stopping of a Sequence of Independent

Random Variables

Let £y, &5 ..., §, beindependent random variables, whichtake
values from a certain number set X, and let f(k, x) (k=1, 2, ..., n;
x € X) be a nonnegative function. We identify &, first, then &,, s,
etc. The observations may be terminated at any time k. The gain
in this case is f(k, &). It is required to find the optimal stopping
rule such that the average payoff is maximized.

As in the optimal choice problem, it is possible by retrograde
induction to formulate the value of the game v(k, x) and to verify that the
optimal strategy is to stop at the time of first visit of the point
(k, &) to the support set I' consisting of those pairs (k, x) for
which f(k, x) =v(k, %).

The statement of the problem is preserved intact for de-
pendent random variables, but the solution is greatly complicated
by the fact that the optimal stopping rule, in general, requires in-
clusion of all the values observed, rather than the last one only.

It is interesting that the optimal stopping problem was in fact first
formulated for the dependent case. In particular, A Cayley posed
the following problem in 1874 (see [20] and the solution in [21]):

nA lottery is arranged as follows: There are k tickets repre-
senting a, b, ¢, ... pounds, respectively. A person draws once;
looks at his ticket; and, ifhe pleases, draws again (out of the re-
maining k— 1 tickets); looks at his ticket; and, ifhe pleases, draws
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again (out of the remaining k — 2 tickets); and so on, drawing in all
not more than n times;and he receives the value of the last drawn
ticket. Suppose he regulates his drawings in the manner most ad-
vantageous to him according to the theory of probabilities, what is
the value of his expectations? "

For his solution of the problem Cayley formulated an algo-
rithmincorporating retrograde inductionand calculated the answer
for the case k=4, a=1,b=2, ¢=3,d=4, andn=1, 2, 3, 4.

The choice of one of the first s objects according to quality
(see Problems 9-12) is reduced as follows to a choice from among
a sequence of independent random variables.*

15. If an object aj. occupies the jth place in quality in the
group ai, dy, ..., G, We put

,,__{ o 1<i<s,
1, s1< )

The random variables £4, &,, ..., gn are independent, and the
probability f (k, j) of success in choosing the object aj under the
condition £ =j is equal to

FiR), 1<<JiLs,
f@.ﬁ={ 0. s+i<y

where f;(k) is the function from Problem 10.

16. If f (k, x) is a nondecreasing function of the argument Kk,
and f >0, there exists an integer-valued function m(x), x € X. such
that the set T" is specified by the inequalities m(x) Sk =n. If, in
addition, f(k, X) is a nonincreasing (nondecreasing) function of x,
m(x) is a nondecreasing (nonincreasing) function of x.

17. (See [23]). Let & be distributed uniformly on the inter-
val [0, 1] and let 7 (k, x) =x.

*See [22]; also obrained in this paper are some results that were presented in another
manner in the preceding sets of problems.
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Then
mxy=n—~k for x,<x< x5,
where the numbers X) are found from the relations

1442

Hint. It can be shown by induction on k that

xk’ 0<x<xk:
X, x<LxLl.

v (&, x)={

18. In the preceding problem, as k— =,

l—ka-g-.
Hint. Letting
xp=1 ——ai_,
we find that
=+ 1+ o, =2

We find in succession, therefore, that @ —= <, apy —or—1,
ozk/k—— 1. A better estimate

1 1 1
Et(ltgd o+ p) <o <k+(l+g+...45)+2
and further refinements may be found in the paper by Moser [23].

Optimal Stopping of a General Markov Chain

19. If in a chain with a denumerable infinity of states
the support set I' is accessible with probability one from any
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state x, stopping at the time of first visit to I is an optimal
strategy.

Hint. Investigate the time 7 of first visit to the € -sup-
port set I'y and let ¢ tend to zero.

20. A state a belongs to the support set I' if and only
if there exists an excessive function h everywhere greater than
or equal to the payoff function f and coinciding with f at the pointga.

21. (Method of successive approximations.*) Let f+ be a
function equal to the payoff function f wherever f = 0 and equal to
zero wherever f <0, and let the operator Q be given by the equation

Qf (x) =max {f (x), Pf(x)}.

Then QY converges monotonically to the value of the game v as
n— %,

Hint. The function Q*f= lim Q"f is the excessive ma-
nco

jorant of f.

Fee for a Game

Suppose that after every transition from x to y a fee ®(x, y)
is collected. If for any initial state x the expectation of the fee up
to the instant of termination of the chain ¢

t—1

F(x)= M, tzl Dxc— 1), x@))

is finite, the optimal stopping problem reduces to the case in which
there is no fee for the game.

22. For any Markov time T

Fn)=M, 2 O(x(E—1) x(®) +MF (x (1))

Hint. Compare the proof of Eq. (24) from Chapt. I, §5.

*Proposed by A. D. Ventsel'.
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23. The quantity
M, [f(x(f))-— z% D(x (¢ —1) x(f))]

attains its maximum value at the Markov time T when and only
when T is the optimal strategy in the stopping problem for a chain
x(t) with the payoff function f(x) + F(x).

Unbounded Payoff Functions

It was postulated in Chapt. II that the payoff function f was
bounded. Now we lift this assumption, assuming that f is nonnega-
tive [so that there always exists a finite or infinite expectation
M, f(x(1))]. We define the value of the game and the class of ex-
cessive functions in the same manner as in §§2 and 3, except that
now we admit the value of +  for these functions.

24. Any excessive function f is the limit of a nondecreasing
sequence of bounded excessive functions.

Hint. Investigate f (x) =min{n, Fx)}.

25. Extend the inequality M f (x(1))<f(x) (T is any Markov
time) to excessive functions admitting the value + .

26. The value of the game v is the excessive majorant of
the payoff function f.

Hint. The function v is the limit of a nondecreasing se-
quence 1 vn}:, where v,, is the value of the game corresponding to
the payoff function f,, of Problem 24.

27. The value of the game v can be infinite for a finite pay-
off function f.

Hint. Investigate a random walk on the integer points of
the line x= 0 with absorption at zero and assume a payoff function
F0)=1, Fk) =k (k=1).

28. The average payoff for stopping at the time of first visit
to the e-support set Iy optionally tends to the value of the game
as ¢} 0, when the value of the game is finite.
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The Martin Boundary

The method of Martin (developed later by Doob [24]) provides
a means for exhibiting the structure of the set of all excessive
functions associated with a denumerable Markov chain.

Let x(t) be a Markov chain on a denumerable infinite phase
space E, such that for any initial state x the probability of return-
ing to x is smaller than one. We denote by g(x, y) the expectation
of the number of hits on the point y for an initial state x (Green's
function, cf. Chapt. I, §5).

29. Prove that
gx, =m(x)gW: ¥

where ﬂ'y(x) is the probability, on leaving x, of arriving sometime
at y.

It follows from Problems 29 and 2 of Chapt. I that

g(x, y)<oo

for any x, y.

Let us extend the definitions given in Chapt. I for the poten-
tial and harmonic function in the case of a symmetric random walk
to the case of the chain x(t); the potential of a nonnegative function
¢ refers to the function

Gp=0q+Po+Plop—+ ... +Plop4-...,

and a harmonic function is a function h for which Ph=h.

As in Chapt. I, 85, we establish the fact that
Gp(x)= 3 g(x. ¥)9().
YEE

that the potential is excessive, and that any excessive function f
is described in the form G¢ +h, where ¢ =f — Pf, &= lim P"f is
a‘nonnegative harmonic function. e
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30. An excessive function f is a potential when and only
when PIf — 0 ags n— o,

31. The minimum of an excessive function and a potential
is a potential,

32. Any excessive function is the limit of a nondecreasing
sequence of potentials,

Hint. We number the points of the space E and denote by
B, the set of the first n points. Then the functions

fy=min {nGy_ . f}

n

form the required sequence of potentials (xB is the characteristic
function of the set B).

We assume in addition that for some state 0€E the prob-
ability 7_(0) is positive for all y¢E.* Then g(0, y) > 0 also. Ac-
cording %ro Problem 32, for an excessive function f there exists a
sequence of functions ¢, =0 such that

fx)= lim 2 g(x e, (32)

n>co YeE
Introducing the Martin kernel

gy _ my)

kG =703 =7%,0

(see Problem 29), we rewrite (32) in the form

f(x)= lim %:Ek(x, ¥, (9): (33)

n>co y

where By is a sequence of measures on E described by the equation

B, (N==£0, »o,®)- (34)

*In general the same formulations are applicable to a Markov chain as are obtained
when the set S of states accessible from the state 0 is bounded (clearly, it is impossible
to go from S into E\S)-
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In cases requiring emphasis of the fact that k(x, y) is re-
garded as a function of x€E for a fixed value of y we write k (x)
instead of k(x, y).

33. Different states y€E correspond to different functions

ky(X).
Hint. The function ky(X) Pky(x) has a nonzero value at
the smgle point x =y.

34. The values of all the functions ky(x) at a given point
x €E are bounded by the number 1/my (0).

Hint. Makeuseof Problem 29 and the inequality = (0)
Tx (0) Wy(x)-

Problem 33 shows that the functions ky(x) (y€E) stand in
one-to-one correspondence with points y of the space E. We affix
to the family of functions {k_} all the possible limits of these
functions (in other words, wé close the set of functions ky, using
coordinatewise convergence). According to Problem 34 here and Prob-
lem 4 of Chapt. I, the resulting set of functions K is compact. Iden-
tifying the points y€E with their corresponding functions ky, we
say that the space E is embedded in the compactum K. The set
B=K\ E is called the Martin boundary for the Markov chain x(t).
The elements of the set B, like those of E, are represented either
by the letter y or, if it is to be stressed that they are functions on
the space E, by the symbol ky(x).

35. The function ky(x) is excessive for any y€k.

If for every x the function p(x, y) has a nonzero value only
for a finite number of values of y, then ky (x) is a harmonic func-
tion for y€B.

Hint. Examine the case y€B. If y=— hm - Yn (v, EE), then,

according to the hint to Problem 33, for any x GE we have

k},(x)__ hm ky (x)_ hm Pk, (x) = lim 2 p(x. 2)k, (2)

n>00ZE

> 2 lim p(x, 2)k, (2)= Pk, (x).

2€EEn-»co

[It is easily verified that if the variables u,(z) are nonnegative and



Chapt. III] PROBLEMS 139
uy(z) = u(z), then

Mm Rz, (2)> R u(z))

If the sums are finite, the equality sign holds.

36. For the measures [, given by Eq. (34) the sequence
iy, (E) is bounded.

Hint. Setx=0in Eq. (33).

Let us continue the measures u,, over the entire compactum XK,
setting 4, (B) =0. Then Eq. (33) may be rewritten in the form

n»cw

f(x)= lim [2 R D, 0)+ [ k(% Wi, dy)]
ek J J

n->o

= lim f k(x, YY1, (dy), (35)
K

where k(x, y)=k,(x) (x€E, y€EK).

In the actual structure of the compactumK the function k(x, y)
is continuous with respect to y for any x. According to a theorem
of Helly,* if {u n} is a sequence of measures on the compactumK,
such that the values of uy(K) are bounded, it is possible to con-
struct a measure i on K and to pick out from { un} a subsequence
{ ”nk} such that for any continuous function F () (v €K)

Jlim Kf F(),, (dy):J F(y)u (@y).

* Helly proved this theorem for the case when K is a line segment. The proof is avail-
able in any standard text on probability theory (see, e.g., [10], Chapt. IV, §11.2). A
general proof is easily obtained by comparing the following two facts: 1) In the Banach
space C of all continuous funcrions onthe compactum K any nonegative linear functional
I is expressed as an integral over some finite measure v; here Il 1l = v(K) (see, e.g.,
[25], §56); 2) it is possible from every sequence of linear functionals with bounded
norms to pick out a weakly convergent subsequence (see, e.g., [26], Chapt. III, §24).
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In application to Eq. (35) this leads to the equation
f@= [ k@ yw@y) (36)
K

where u is a finite measure on K depending on the excessive func-
tion f,

387. Any function f representable in the integral form (36)
with p(K) <= is excessive.

Hint. TInthe case of nonnegative functions it is permissible
to change the order of summation and integration.

We denote by V the set of all excessive functions satisfying
the condition F(0)=1. It is readily seen that V is a convex set (see
the problems to Chapt. I).

38. Any excessive function, unless identically equal to zero,
is specified in the form c¢f (x), where f€V, ¢>0.

Hint. It is required to verify the fact that if f is excessive
and f(0) =0, then f =0 everywhere. Thisis easily deducedfrom the
accessibility of all states from zero and the inequality M, f(x(7)) =
J(® (7 is any Markov time),

39. All extremal points of the set V are included among the
functions %, (x) (¥ €K).

Hint, Letf be an extremal point of the set V. Settingx=0
in (36), we find that u(K)=1. Inasmuch as K is a compact, there
exists a point 2€ K such that pu(U)> 0 for any neighborhood U of
the point z. If u(U)<1, it follows from the representation

J' k(% y)i(dy) f k(x, ¥) i (dy)

— U KN\NU
f(x)=p) +MM\U)\Mw#w

u ()

that

f(x>:7§mufk(x. ) (dy)

(see Problem 37). Clearly, this is equally true for u(U)=1.
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Shrinking U to the point z, we deduce that f (x) =k, (x).

40, For y€E the function ky(x) is an extremal point of
the set V,

Hint. For y¢€E

ky(x)=Gg(x),

where ¢ (x) has a nonzero point only at the one point y. If
Ry (x)=af (x)+Bfa(x),

where f,. f,€V, >0, >0, a+p=1, then f; and f, are also
potentials of some functions @120 and ¢5=0 (see Problem 31). It
is easily verified that @ ¢+ B¢,=¢, whence it follows that ¢, and
@, are proportional to ¢ and, therefore, fi=f 2=ky.

It is readily seen that the subset H of harmonic functions
from V is also a convex set,

41. All extremal points of the set H are included among the
functions %&,(x) (v € B).

Hint. From the representation of the excessive function
in the form G¢ +h deduce the fact that an extremal point of the set
H is also an extremal point of the set V.

We denote by B, the set of points of the boundary B that cor-
respond to extremal functions of H. According to a theorem of
Choquet,* if H is a compact convex set in the space of sequences
and B, is the set of extremal points of H, then any element 2 €H
is represented in the form of an integral of the extremal functions
according to some finite measure v on Bg.

Consequently, any positive harmonic function h is specified
in the form

(%)= j E(x, 9)v(dy). (37)
B

e

*See, for example, [27]; in this paper the theorem is proved for any locally convex
linear topological space.
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Specifying the potential Gy (¢ =0) in the form

Go(x)= D g N = X k(x. v
YEE YEE

where v(y) =g(0, y)o(y), we obtain the following representation for
an arbitrary excessive function f =Gy +h:

fe= Tkt v+ [k pvan = | kG 9)ven,
Be

EY B,

It is inferred from another theorem of Choquet that the representa-
tion obtained for f(x) is unique.

In essence we were dealing with Martin boundaries in the
problems to Chapt. I, where we computed the set Bg for a sym-
metric random walk on a plane (see Problems 42-47). Another in-
structive example of the calculation of a Martin boundary is of-
fered in the next set of problems.

Random Walk on a Free Group with a Finite Number

of Generators [28]

A free group G with generators ay. a,, ..., @y, is constructed
as follows. We consider a word ¢ @,...4iy of arbitrary length
n, where the indices assume values of 1, £2, ..., #m. Adjoining

one word to another, we obtain the product of these words. The
inverse element is defined by the relation (c:zilcbiz...ain)‘1 =

@-ip ..-@-iy @-i;. The identity element is the "word" e containing
no letters. Two words specify one and the same element of a group
when and only when one of them can be derived from the other by
the insertion or deletion of a product of the form aja-j an arbitrary
number of times. For every element there exists a uniquely de-
fined notation comprising a minimum number of letters.

Let py, ..., Pm> P-1s ..-s P-m Tepresent positive numbers
which sum to unity. We assume that during unit time the word g
is transformed with probability pj to the word gaj (if g=aj, ... aip,
then gaj =aj, ... aj, , for i=—1,). The Markov chain thus defined
is called a random walk on the group G.
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42. The probability r(x), on starting from x, of returning
at some time to this state is the same for all x¢€G.

43. If p; #p_i for at least one i, then r(x) <1.

Hint. If p; >p-j, then there is a probability one, beginning
with a certain time, that the number of occurrences of the letter
a; will exceed the number of occurrences of the letter a_j (this
follows from the irreversibility of an asymmetric random walk
on a line: see Chapt. IV, §4).

44, If all the p; are equal and the number of generators
m =2, then r(x) <1.

Hint. The probability of a minimal notation of a word
x #e being lengthened by one letter is (2m — 1)/2m, the probability
of its being shortened by one letter is 1/2m, and the affair reduces
to an asymmetric random walk on a half-line (see Chapt. IV, §4).

Subtler considerations reveal that r(x) =1 in the unique case
m=1, p;= p-1=1/2. Henceforth we postulate that r(x) <1 and use
only the minimal notation of the elements of the group.

45. Express the Martin kernel k(x, y) =ky(x) in terms of the
probabilities uj of arriving sometime at ¢j frome (i=+1,%2, ..., +m).

Answer. Ifx=ai1 cer Bips Y =8y .. Gg and the letters
from the first to the kth coincide in these two words, while ik,
jk+1» then

E(x, y)= Boiggr i (38)
Bj oo iy
46. The sequence kY1(x)’ kyz(x), ...,kyn(x), ... CODVErges
for every x€G if and only if the number of letters coin-
ciding from the beginning in the words yn, Yn+1> Yn+2 --- tends fo

infinity as n— .

Hint. Verify first that uyju_j<1 (i=1, ..., m).

By virtue of Problem 46, the points of a Martin boundary are
uniquely identified with infinite words y=aj, @i, ... @ip --- where
i+ i +4#0 (k=1, 2, ...). The Martin boundary B consists of all
such words. By virtue of Problem 35, the function ky(x) is har-
monic for yg€B.
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47. The functions ky(x) for y€B are extremal points of the
set H (see Problem 41).

Hint. Lety=aj,aj, ... ajg .- and let

ky(x)=0af () +Bf2(x) (x€0Q)

where fi. f,€H, a>0, >0, a4+p=1. We set yg= aj,aj, ... ajg
(s=1, 2, ...). It follows from the inequality f;(x) = My f;(x(T)) (see
§3) that

[i) 2> [i0)ay (x) (=1, 2), (39)

where T, (x) is the probability of arriving sometime from x at
z (£, 2€0G). If the word x contains n letters and n=s, then, by
virtue of (38),

ky () =y (x) Ry (¥,)- (40)

Therefore, for n=s
ky(x)=0af (x)+Bfq ()2 () [af; (¥ + Bfa (Wl = Ty (%) By (¥5) =k (%),

hence the equality sign is indeed valid in (39) for n=g. Combined
with (40), this yields the proportionality

£ Filyg)
B ko PSS

whence it is readily inferred that f4(x) =f(x) =ky(x). In the case
considered, therefore, Be =B.

48. All positive harmonic functions are obtained according
to the relations

fe)=v,
f(ail v a,-n) =____________Vu(f.h — 'uin)

4 th

e
+V AR Wy e B = V(s s By
k
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where v and v(iy, ..., in) are arbitrary nonnegative numbers satis-
fying the relations

m -m

V(g s in)__.z V(i v g Lpe) T+ V(i cova ig 1
- +1 n “n+il
1™ lﬂ+1=_1

(=0, 1, 2, ...)

[for n=0 we interpret v(iy, ..., i) as the number v].

Hint. Use Egs. (37) and (38).
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We will show that

lim x| g (x. O)=-§%—- (3)

lixii>co

Equation (1) means that g(x, 0), correct to a constant, is the
Fourier coefficient with index x= {xi, Xy, x3} (x4, Xy, X3 are inte-
gers) for the function F(6).

We note that if a periodic function H(6) (period 27 with re-
spect to each argument) has continuous second derivatives, its
Fourier coefficients

b (%) = f H (8) efex 4 (4)
Q
satisfy the condition
L
h(x)=0( =) (5)

[here and elsewhere O(w) denotes a quantity that does not exceed

the product of @ multiplied by a certain constant]. Thus, let A be
the Laplace operator in the space of the variables 8. According

to Green's formula

J'H-Ae"f’fd6= f AH . giéx go, (6)
Q Q

because, owing to the periodicity of the integrated functions, the
surface integrals over opposite faces of the cube Q cancel one an-

other. Since AelfX=— ||x]]|2el9X it follows from (6) that
1 . o8, 1
|7 (x)] = llxllﬂuAH ¢ deIg E £|AH|d6, (7)

and we arrive at the estimate (5).

The estimate (5) remains valid in the case when the deriva-
tives of the function H have a singularity of not too high order at
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zero (and the function H is twice continuously differentiable at all
other points of the cube Q). Specifically, it is sufficient to demand
that the function H be bounded, its first partial derivatives equal
to O(1/p), and its second partial derivatives 0°H/862, 92/ 562

au/ 89% equ_al to O(1/p?). In fact, we apply Green's form:lla

to the domain Q\ K, where K is a small cube enclosing the point
05 the integral over its surface approaches zero by virtue of the
estimate for the derivatives 8H/ 86;, 0H/88,, and 0H/56;, and in the
limit we obtain Eq. (6). As a result of the estimate for the sec-
ond derivatives, the integrals in (7) converge, and we again ar-
rive at Eq. (5).

The function in which we are interested, F(4), has a higher-
order singularity at zero. Differentiating Eq. (2) as many times
as necessary and writing out the first two or three terms of the
expansion of the sine or cosine in a Taylor series, we obtain for
small p

9
FO=Fromm

OF  —40;4-0 (%)

06; — e+ 0(p%) ( 8)
0°F B 166% — 402 4 0 (0%

007 o5+ 00%

This singularity may be weakened by subtracting the function 2/p?
from F(8), as the former behaves similarly to the latter near zero.
It is readily deduced from Eq. (8) that the function F(8)—(2/p? al-
ready meets the restrictions imposed on H(6) in the preceding
paragraph. For example,

o { 2 —46; - O (p3 49, O(p?

2 (F— )= ""dom T =rroem=2 (¢)-
It is still impossible, however, to use the estimate (5), because the
subtracted function 2/p?, if continued periodically beyond the lim-
its of the cube @, will not have continuous first and second deriva-
tives on the face of this cube. In order to remove this obstacle,
we multiply 2/0% by a nonincreasing twice continuously differen-

tiable function S(p) equal to one for 0< p=1/2 and equal to zero for
1=p < «. It is clear that the function 28(p)/p? will, asbefore, "ex-
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tinguish" the singularity of the function F(6) at zero, and in the
integration over the cube Q this function may be regarded as
periodic with period 2w, without disturbing its smoothness. Now,
therefore, the estimate (5) is applicable to the function

H®) = F®) — 22

and we find that the Fourier coefficients of the functions F(8) and
28(p)/p? differ from one another by an amount 0(1/]] x|]%. Thus,

6 S (p) /%% 1
g("’o):(?n)s! o — 48+ 0(zs): (@)

We proceed now with the computation of the integral in Eq.
(9). Inasmuch as the function S is equal to zero outside the cube
Q, we are in a position to replace integration over the domain @
by integration over the entire space R%. After this we rotate the
coordinates axes 64, 0,,and 6350 thatthe 64 axis will pass through
the point x =1 Xy, X5, Xgf . The quantities p, S(p), and d§ remain un-
changed when this is done, and the scalar product 0x=0;x,+ 6,%,
+05x, goes over to 6, ||x]||, since the vector x in the new system
has the coordinates { || x]|, 0, 0}. Further, we replaceel®||x||
by cos 4,1 x|] +1i sin 6, [|x]|; inasmuchas A(p) /p?is aneven func-
tion of the argument 0 4, the integral containing the sine will be
equal to zero. It turns out, therefore, that

o S . [o=] [> < T« o]
q

-0 =00 —00

In the latter integral we transform to spherical coordinates ac-
cording to the relations

6, ==pcosy, By=psinpcosp, 8;=psinpsinQ.

Recognizing that the Jacobian of the transformation is equal to
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0% sin ¥, we obtain

-5} n .14
S i0x >
S0 a0= [ ao [ g [ S@cos(lxllocosysinp ag
0 | 0

0

H < S(__A.‘._) i
4 J S(p)sin(nxnp) do =% T, sind 0
b2l g =T, A : (10)

oo
Since the integral f

0
is monotonic in A and bounded for all x by the same number, the
integral obtained in Eq. (10) converges uniformly in x (see [19],
p. 477). It is permissible, therefore, to pass to the limit in the
integrand, and we obtain

sin} s converges and the function S(V/{[x])

<s sml <
lim J' (llxll f 212
llell > co g
Returning to Egs. (9) and (10), we find
6 3
lim [|x]lg (x, 0)= - 4% - G =g

flel>

§2. Certain Properties of Concave Functions

A function f(x), x€la. b], is called concave on the indicated
interval if any chord joining two points of the graph of f lies en-
tirely on or below this graph (Fig.
52). Analytically,for any values
A 4 of x4<x, on the interval [a, b] and
any numbers p and q satisfying the
conditions p=0, =0, p+q=1, the
following inequality is fulfilled:

Qe — -
S

F(px,+qx9) > P (%) + qf (x9).
Fig. 52 _ (11)
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VA z

Y

Fig, 53

The following properties of concave functiens were used in
Chapter 11 and now need to be proved.

1. The function f is continuous at all interior points of the
interval [a, b] and has finite limits as x| ¢ and x4 b, where

fla+0)= fla), f(b—0) = f(b).

First let x be an interior point of the interval, and let A be
the corresponding point of the graph (Fig. 53). On the graph of f
we pick points B and Cto the left and right of A and investigate
on the graph a variable point D with abscissa x' tending on the right
to x. We draw the chord AC and the half-line AE representing the
continuation of the chord BA. The point D cannot go above the line
AE; otherwise, the chord BD would pass above the point A. On the
other hand, after D goes to the left of C, it cannot drop below the
chord AC. Hence, as x’} x the point D will not emerge from the
angle EAC, and its ordinate will tend to the ordinate of the point A.
The function f is therefore right continuous at the point x. It is
demonstrated analogously that the function f is left continuous at
the point x.

D
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%—\c\

I

Fig. 59

We now investigate the left end point A of the graph of the
function (the case of the right end point is analyzed analogously).
On the graph we pick a point B distinct from A and draw the chord
AB and vertical half-line AC (Fig. 54). Let D be a variable point
on the graph, its abscissa x' tending on the right to ¢. We con-
tinue the chord DB until it intersects with the line AC at the point
E. By the same arguments as in the preceding paragraph, a point
D, situated to the left of D cannot lie above the segment ED. There-
fore as x’|] o the point E moves along the line AC monotonically
downward, without passing the point A. In the limit the point E oc-
cupies some position F, where OF = OA. Inasmuch as the segments
FE and ED shrink to zero as x’ | 2, the ordinate of the point Dtends
to the ordinate of the point F, hence f(a+0)=0F=0A =f(a).

II. For any interior point x itis possible to chocse a linear
function f that coincides with f at the point x and is greater than
or equal to f at all other points.

On the graph of the function f we pick variable points B and
C to the left and right of a fixed interior point A (Fig. 55). Argu-
ing as before, we are readily convinced that the half-line AB ma-
jorizes the graph of the function to the left of the point B, the line
AC doing the same to the right of the point C, and that as B and C
tend to A, these lines rise monotonically upward. Since the chord
BC cannot pass above the point A, the angle BAC never exceeds
180° (the angles at the point A are measured counterclockwise).
In the limit, therefore, the lines AB and AC occupy some positions
AD and AE, the angle DAE again never exceeding 180°. If this
angle is equal to 180°, the line DE is thep the graph of the function
f we are looking for. If, on the other hand, the angle DAE is
smaller than 180°, any line passing through the point A outside the
angle DAE will serve as the graph of f.
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Fig. 56

III. Let us choose an arbitrary system of nonoverlapping
segments I, belonging to the interval [a, b]. On every segment I,
we replace the function f by a linear function f, that coincides with
f at the end points of the segment Iy, except that if an end point of
Iy coincides with the point @ [or point b], the function f, can be
either equal to or smaller than f(a) [or f(b)] at the point a [or b].
At all other points we leave the function f unchanged. Then the re-
sulting function 7 is again concave on the interval [a, b] (Fig. 56).

It follows from the foregoing considerations that f, = f out-
side the segment I,,. Therefore, if x€/, then fB(x) = f(x)= o)
=f(x) for all B #«a, and if x does not belong to any of the segments
Iy, then fo, (%) = (%) Zf(x) for all ¢. Hence, the function}'“ is a
lower bound of the functions f and f a(a spans all possible values).
Inasmuch as the functions f and f are concave, all that is left to
prove is that the lower bound]? of any family {fa} of concave
functions is also a concave function. For this it is sufficient to in-
voke the analytic condition of concavity of the functions (11) and
note that for any «

Jfa(Pxy+ qx0) Zpfo(x) + 9/ (2) > pf(xx) + ‘]f(xz)-

83. Solution of the Equation p(s)p(t) =p(s + t)

We need to show that any bounded solution of the functional
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equation

pE)py=p@s+8 (s t>0), (12)
which was investigated in Chapt. IV, §2, has the form

pt)=e"%, (13)

where 0 =g =<+ (considering e~ =0).

We point out that if p{t) goes to zero at some point t; >0,
then, according to (12), p(t) =0 for all t=t,. Moreover, it follows
from the relation

p(g)=pw® (14)

that p(ty/2) =0, hence that p(t) =0 for all t=t,/2. Repeating this
argument, we obtain p(t) =0 for all t >0, and Eq. (18) is valid with
a=+0%,

It now remains for us to consider the case when p(t) =0 for
all t > 0. Equation (14) implies that p(t) >0 in this case, and we
are entitled to set

f(@)=1n p ().
Now Eq. (12) goes over to the equation

F@OFFfO=r(+1 (s. £>0) (15)

and the problem is reduced to one of finding all solutions of this
equation that are bounded above.

It is readily deduced from Eq. (15) by induction that for any
natural n
fn)y=nf({@). (16)
Picking the number a on the basis of the condition

f)=—at,
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where t; is a fixed positive number, we obtain by means of Eq. (16)

f(i)=m=_a%

4

Applying Eq. (16) once again, we find that for any natural numbers
m and n

m
rlEa)=ns(5)=—est
Consequently, for all t >0 commensurable with t; we have

f () = — at. (17)

If it turned out for some t, >0 that f (t;) #—at,, then, determining
the number b from the condition f (ty) = — bty, we would have found
in fully analogous fashion that

fOy=—0bt

for allt >0 commensurable with t,, where b# ¢. Let b >g for def-
initeness. If s is commensurable with t,, and s+t with t;, then

FO=f(s+DH—fE=—a@+08 +bs=0—a)s—at. (18)

Inasmuch as numbers commensurable with a given number are
densely distributed everywhere, s can be made as large as we like
and s+t as close to s as we like in the above equation. In this case
t is small, and Eq. (18) gives arbitrarily large values for f(t). We
have thus arrived at a contradiction with the upper-boundedness
requirement on f(t). This means that Eq. (17) for the function f (t)
is valid for all t >0, Since f(t) is bounded above and t can be as
large a number as we like, in this equation ¢=0.*

Returning to the function p(t) = e’ (t), we obtain the repre-
sentation (13) for it.

*We note that Eq. (18) makes it possible to obtain arbitrarily large values for f(t)
when t varies over any predetermined interval. ForthederivationofEq, (17)from (15),
therefore, it is sufficient to require that the function f(t) be bounded above in some
interval of variatjon of t (the number a in this case can be of any sign).
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