
Notes for course “Markov processes”

Canonical scale and escape probabilities (DY) Escape probability for
a Markov process is the probability of a question of the form “hit a set of
states before hitting another”. Clearly, such probabilities only depend on the
successive values attained by the process and not on the sojourn times at each
state. So we may as well consider the embedded chain in order to find these
probabilities.

Consider a chain xn with values in Z+ = {0, 1, . . .} such that it only moves
to neighboring states and it is irreducible. So the only nonzero transition prob-
abilities are p(i, i± 1). We set

pi = p(i, i+ 1), qi = 1− pi, i ∈ Z+.

For irreducibility on the whole Z+ we need

p0 = 1, 0 < pi < 1, i ≥ 1.

This becomes a chain with reflection at 0. A continuous-time chain with xn as
embedded chain has transition rates

λi,i+1 = aipi, i ≥ 0,

λi,i−1 = aiqi, i ≥ 1,

where the αi are arbitrary strictly positive numbers.
Here is another chain yn with values in some countable set of the form

U = {0 = u0 < 1 = u1 < u2 < u3 < · · · }

and transition probabilities according to the rule: the one-step probability from
i to i− 1 (resp., i+1) is the chance that a Brownian motion started at ui exits
[ui−1, ui] from ui−1 (resp., from ui+1). This entails that

p(i, i− 1) =
ui+1 − ui

ui+1 − ui−1
, p(i, i+ 1) =

ui − ui−1

ui+1 − ui−1
,

and
p(0, 1) = 1.

To make the algebra a bit easier, let

δi := ui+1 − ui, i ≥ 0.

In particular, δ0 = 1. By convention, set δ−1 := 0. Then

p(i, i− 1) =
δi

δi−1 + δi
, p(i, i+ 1) =

δi−1

δi−1 + δi
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work for all i ≥ 0. The chain yn is an irreducible chain in U . We can identify
xn and yn by letting

qi =
δi

δi−1 + δi
, pi =

δi−1

δi−1 + δi
.

That is, to pass from yn to xn we define the pi as above. Conversely, to pass
from xn to yn we let

δi =
qi
pi
δi−1, i ≥ 1, δ0 = 1,

and so

u0 = 0,

u1 = 1,

u2 = 1 +
q1
p1

,

u3 = 1 +
q1
p1

+
q1q2
p1p2

,

ui = 1 +
q1
p1

+ · · ·+
q1 · · · qi−1

p1 · · · qi−1
, i ≥ 2.

We take the latter chain, yn, and find escape probabilities for the interval

I := U ∩ (α, β),

where α < β are real numbers. We define the boundary ∂I of I by the formula

∂I = {sup([0, α] ∩ U)} ∪ {inf([β,∞] ∩ U)}.

where U := U ∩ {r := limn→∞ um}. The set ∂I contains at 1 or 2 elements.
1◦ If I = {uM , . . . , uN} with M ≥ 1 then ∂I = {uM−1, uN+1}.
2◦ If I = {u0, . . . , uN} then ∂I = {uN+1}.
3◦ If I = {uM , uM+1, . . .} with M ≥ 1 then ∂I = {uM−1, r}.
4◦ If I = U then ∂I = {r}.
Observe that ∂I is a singleton if and only if u0 ∈ I.

Let p(u) be the probability that the process yn, started at u ∈ I,
escapes from I at the largest point of ∂I.

We will see that this is consistent with the case when ∂I is a singleton. Patience!
We have

p(ui) = qi p(ui−1) + pi p(ui+1). (1) hh

This gives
p(ui+1)− p(ui)

δi
=

p(ui)− p(ui−1)

δi−1
, i ≥ 1,

For i = 0 we have
p(u0) = p0 p(u1),
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which is written as
p(u1)− p(u0)

δ0
= 0.

If u0 ∈ I (that is, if ∂I is a singleton), these equations yield that p(u) is a
constant function. It can easily be shown that regardless of whether we are in
case 2◦ or 4◦ and regardless of whether r < ∞ or not, the escape probability is
1. So

p(u) = 1, if u0 ∈ I.

If u0 6∈ T (cases 1◦ or 3◦ ) then, letting ∂I = {a, b} we have

p(u) =
u− a

b− a
.

Again, this works in all cases. For example, if ∂I = {a,∞} then p(u) = 0.
One thing that seems puzzling is that p(u) = 1 of 0 = u0 ∈ I, even when r =

∞. But recall that r depends in the canonical scale, and r = 1 +
∑∞

n=1
q1···qn
p1···pn

.
For example, if we take xn to be a simple random walk in Z+ with probability
p < 1/2 of moving one step to the right then r = 1 +

∑∞

n=1(q/p)
n = ∞. In

this case, p(u) = 1 means that the random walk “will reach +∞”, i.e., that
limn→∞ xn = ∞. If p > 1/2 then r = p

p−q
and then p(u) = u−a

b−a
, in the

canonical scale (this should be translated to the original scale to give the usual
geometric formula). Again, the walk exits from +∞ because it keeps reflecting
at 0. Similarly, when p = 1/2, as long as 0 ∈ I, we have p(u) = 1.

Kind of weird, but one should pay close attention to the definitions.
Considering the last results we have that the chain yn is recurrent if and

only if r = ∞ (and transient if r < ∞). This result can be tranferred to xn as
well as to its continuous-time version x(t). Thus, if, for ℓ positive integer,

λi,i+1 = ai(i
ℓ − (i− 1)ℓ), λi,i−1 = ai((i+ 1)ℓ − i)ℓ)

we can see that ui → ∞ and so the chain is recurrent. But if, for ℓ > 0, ℓ 6= 1,

λi,i+1 = ai(ℓ
i − ℓi−1), λi,i−1 = ai(ℓ

i+1 − ℓi)

the nature of the chain depends on whether ℓ < 1 or > 1.

Canonical scale and exit times (DY) We keep the same model as above,
but in continuous time. Let x(t) be the CTMC, a birth-death process in U . Let
m(u) be the mean exit time from I, starting from u ∈ I. If I is bounded, m(u)
is finite, by a geometric argument. Assume m(u) < ∞. Then,

m(ui) =
1

ai
+ pim(ui+1) + qim(ui−1). (2) mm

This is an equation that holds inside the interval I. There are boundary condi-
tions, so the actual solution depends on I. Let us write mI(u) and mJ (u) for
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two solutions. Observe that ∆(u) := mI(u)−mJ(u) satisfies the homogeneous
harmonic equation–see (

hh

1)–that is,

∆(ui) = pi∆(ui+1) + qi∆(ui−1).

Solving this equation is done as in the previous section. We know that ∆(u)
is either constant or linear. The general solution of (

mm

2) is obtained by the
homogeneous solution (with boundary conditions) and a special solution. To
find the special solution, we consider I = U . Write Si = S(ui) for the special
solution, assuming, arbitrarily, S(u0) = 0:

S(ui) =
1

ai
+ piS(ui+1) + qiS(ui−1).

Rewrite as follows

S(ui+1)− S(ui)

δi
︸ ︷︷ ︸

:=−V (ui)

=
S(ui)− S(ui−1)

δi−1
︸ ︷︷ ︸

:=−V (ui−1)

−2µi, 2µi :=
1

ai

δi−1 + δi
δi−1δi

.

Solving,

2µi =
1

ai

p1 · · · pi−1

q1 · · · qi−1qi
,

V (ui) =
1

a0
+

i∑

k=1

1

ak

p1 · · · pk−1

q1 · · · qk−1qk
,

S(ui) = −
∑

0≤k≤m≤i−1

1

ak

qk+1 · · · qm
pkpk+1 · · · pm

.

Now consider a continuous function S(u), u ≥ 0, that coincides with S(ui) at all
u = ui and is obtained by linear interpolation in-between these points. We have
S(0) = 0, S is decreasing and concave. If r = limui = ∞ then S(∞) = −∞
but if r < ∞ then S(r) could be finite or infinite. By convention, let us extend
S(u) for u > r by setting it to −∞. Actually, this is the only choice that will
preserve concavity. Dynkin and Yushkevich give a beautiful geometric way of
finding the actual m(u).

If we are in case 1◦ the set ∂I contains two finite points a and b. We draw a
straight line joining (a, S(a)) and (b, S(b)) on the plane. The difference between
S(u) and this straight line is m(u):

m(u) = S(u)−
(b− u)S(u) + (u− a)S(b)

b− a
.

If we are in case 2◦ the set ∂I contains only one point, b. Then m(u) is
interpreted as the mean time for the chain to hit b started from u (recall that
when it hits u0 = 0 it reflects and keeps going). This is a finite quantity that is
obtained by the same method as above.

m(u) = S(u)− S(b).
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If I has infinitely many points (the rest two cases) then we have to worry
whether r is finite or infinite. Suppose that r < ∞.

Case 3◦ is the case where ∂I = {a, r}, and we assume r < ∞ . We obtain
m(u) by the letting b ↑ r in case 1◦ .

m(u) = S(u)−
(r − u)S(u) + (u− a)S(r)

r − a
.

This works even when S(r) = −∞ because, in this case, m(u) = ∞.
Case 4◦ is the case where ∂I = {r}, and we assume r < ∞. Taking the limit

as b ↑ r in case 2◦ we obtain

m(u) = S(u)− S(r).

Again, this works even when S(r) = −∞ because, in this case, m(u) = ∞.
It remains to see what happens when r = ∞ .
Consider case 3◦ with ∂I = {a, r = ∞}. Necessarily, S(∞) = −∞. Here we

must take limit of our result for case 3◦ when r → ∞. This gives

m(u) = −(u− a) lim
r→∞

S(r)

r
= −(u− a) lim

r→∞
S′(r) = (u− a) lim

i→∞
V (ui).

As the first limit is a negative quantity, we have m(u) ≥ 0, as it should.
Consider finally case 4◦ with ∂I = {a, r = ∞}. Taking limit as r → ∞ in

m(u) = S(u)− S(r) we find
m(u) = ∞.

This is obvious: The time to hit ∞ for a reflected random walk is infinity.

Boundary classification If r < ∞ then the probability p(u) of the event
that the canonical chain yn exits from r before visiting a state a < u is (u −
a)/(r− a) > 0. Therefore limn→∞ yn = ∞ and so the chain is transient. In this
case, we say that the boundary r is attracting.

If r = ∞ then p(u) = 0. Here the chain is recurrent. We say that the
boundary r is repelling.

These results and classification can be transferred to the original chain xn

and its continuous-time version x(t). We are, however, also interested in the
total time T that the boundary r is reached. In the repelling case, obviously
T = ∞. But in the attracting case, we may have T < ∞. It can be shown that
the event {T < ∞} has probability zero or one. A priori then, in the repelling
case, there are the following possibilities: (i) T < ∞, EuT < ∞, (ii) T < ∞,
EuT = ∞, (iii) T = ∞, EuT = ∞. It turns out that the quantity that decides
these things is S(r).

If S(r) = −∞ then T = ∞ (and so EuT = ∞). Here, we say that the
boundary r is inaccessible.

If S(r) > −∞ then EuT < ∞ (and so T < ∞). Here, we say that the
boundary r is accessible.

Combining the above we have
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r < ∞, |S(r)| < ∞ Attracting and accessible boundary. The chain is transient

and reaches the boundary in finite time.

r < ∞, |S(r)| = ∞ Attracting but inaccessible boundary. The chain is tran-

sient and the boundary is never reached.

r = ∞, |S(r)| = ∞ Repelling but inaccessible boundary. The chain is recur-

rent and (therefore) the boundary is never reached.

r = ∞, |S(r)| < ∞ : Impossible case.

Note that r depends only on the jump chain, but S(r) depends also on the
actual rates.

Let xn be a random walk reflected at 0. For x(t), let ai be the rate out of
i. Suppose that p > q. Then r =

∑

n≥(q/p)
n < ∞. So the chain is transient.

Recall that

|S(r)| =
∑

0≤k≤m<∞

1

ak

qk+1 · · · qm
pkpk+1 · · · pm

.

In our case at hand,

|S(r)| =
∑

k≥0

1

akp

∑

m≥k

(q/p)m−k =
∑

k≥0

1

akp

1

1− (q/p)
=

1

p− q

∑

k≥0

1

ak
.

Hence, if p > q and
∑

k(1/ak) < ∞ we have an attracting accessible boundary.
And so

lim
t↑T

x(t) = ∞, T < ∞.

But if p > q and
∑

k(1/ak) = ∞ we have an attracting inaccessible boundary.
And so

lim
t→∞

x(t) = ∞, T = ∞.

On the other hand, if p ≤ q then r = ∞ and thus the boundary is repelling.
Necessarily, |S(r)| = ∞ because, by convexity, S(∞) = −∞. So if p ≤ q we
have a repelling inaccessible boundary. And so

0 = lim
t→∞

x(t) < lim
t→∞

x(t) = ∞, T = ∞.
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