Option pricing made EZ

There is something out there called stock. It's an invention of capitalism and is exactly like the stake in gambling. When you play a game of chance you gamble an amount of money and hope to win more. Let us say that the game is simple: heads or tails. You are being told that if you pay $\$ 1$ and heads come up you will get back your dollar plus $\$ 0.75$ extra, or, if tails come up, you will lose your dollar. The payment S is either $\$ 1.75$ or $\$ 0$, and is per dollar you pay. So if you pay $\$ 3$ then you will get $3 S$ (meaning $\$ 5.25$ or $\$ 0$).
In the capitalist language, you can think of S as the price of a unit of stock. You started by owing 1 unit of stock priced $\$ 1$. Something happened and the unit price changed to S. You still own a unit, so the cash value of what you own is S dollars. If, instead, you started with $u_{0}=3$ units of stock then, after the coin is tossed, you still own 3 units of stock whose value is $3 S$ dollars.
The first and second paragraphs above say exactly the same thing but in different language. The first paragraph uses the language of gambling. The second uses the language of capitalism.
Let's see what will happen if you decide to continue gambling (or "investing", in capitalist language). You now own u_{0} units of stock. You may decide to play them all. The unit stock price changes (another gambling takes place) from S_{0} to S_{1}. So the cash value of you have is $u_{0} S_{1}$. However, you, being cautious, may decide to put some money away and only gamble a part of what you own. So you put away c_{1} dollars and only have $u_{0} S_{0}-c_{1}$ dollars to play. You immediately transform this money into u_{1} units of stock, where u_{1} is such that

$$
u_{0} S_{0}=u_{1} S_{0}+c_{1} .
$$

That is, just before the next gambling, you take the decision to put some money away and play the rest. The unit stock price changes to S_{1} and thus you own

$$
X_{1}=u_{1} S_{1}+c_{1} \text { dollars. }
$$

Again, you put some money away and transform the rest into stock:

$$
X_{1}=u_{2} S_{1}+c_{2} \text { dollars. }
$$

This equation is supposed to be read as $u_{1} S_{1}+c_{1}=u_{2} S_{1}+\left(c_{2}-c_{1}\right)+c_{1}$, or $u_{1} S_{1}-\left(c_{2}-c_{1}\right)=$ $u_{2} S_{2}$, meaning that if, from our winnings we put away $c_{2}-c_{1}$ dollars and transform the remaining into stock, we own $u_{2}=\left(u_{1} S_{1}-\left(c_{2}-c_{1}\right)\right) / S_{1}$ units of stock.
Think of c_{1}, c_{2}, \ldots or, equivalently, u_{1}, u_{2}, \ldots, as the "strategy" you follow.
Since the game is "random", just like the so-called stock market, S_{n} evolves as a random process. Usually, people are interested in the change of unit stock price as a proportion of its previous value, i.e., in the ratio $\left(S_{n+1}-S_{n}\right) / S_{n}$. And they think that it is this ratio that is "random". So they say

$$
S_{n}-S_{n-1}=R_{n} S_{n-1},
$$

where $-1 \leq R_{n}<\infty$ is the "random interest rate". Think of S_{n} as the state of a random dynamical system.

[^0]Pictorially, here is what happens:

The top line indicates the price of the unit of stock, starting from 1 , to S_{0}, to S_{1}, etc. The bottom line indicates the amount of my money at each stage.
Just after the n-th gamble we have

$$
X_{n}=u_{n} S_{n}+c_{n} \text { dollars. }
$$

Let us then summarize our discrete-time dynamical system as follows:

$$
\begin{aligned}
& \text { Unit stock price evolution: } S_{n}-S_{n-1}=R_{n} S_{n-1}, \quad n \geq 1 \\
& \text { Money balance equation: } X_{m}=u_{m} S_{m}+c_{m}=u_{m+1} S_{m}+c_{m+1}, \quad n \geq 0
\end{aligned}
$$

The dynamics can be simplified if we write

$$
X_{n}-X_{n-1}=\left(u_{n} S_{n}+c_{n}\right)-\left(u_{n} S_{n-1}+c_{n}\right),
$$

where we used the money balance equation for $n=m$ and $n=m-1$. Therefore,

$$
\text { Unit stock price evolution: } S_{n}-S_{n-1}=R_{n} S_{n-1}, \quad n \geq 1
$$

$$
\text { Money balance equation: } X_{n}-X_{n-1}=u_{n}\left(S_{n}-S_{n-1}\right), \quad n \geq 1 .
$$

So we have dynamics without the $\left\{c_{n}\right\}$ at all, which is natural since the $\left\{u_{n}\right\}$ and $\left\{c_{n}\right\}$ are functions of one another.
We will take X_{0} as an initial condition (in dollars). We also let S_{0} be the unit stock price initially. We can easily solve and find

$$
S_{n}=S_{0}\left(1+R_{0}\right) \cdots\left(1+R_{n}\right),
$$

and

$$
X_{n}-X_{n-1}=u_{n} R_{n} S_{n-1}=S_{0}\left(1+R_{0}\right) \cdots\left(1+R_{n-1}\right) R_{n} u_{n}
$$

or

$$
X_{n}=X_{0}+S_{0} \sum_{j=1}^{n}\left(1+R_{0}\right) \cdots\left(1+R_{j-1}\right) R_{j} u_{j} .
$$

An "option" is a contract with the casino owner (the bank, say). They tell us: if at time N, the unit stock price is S_{N} then we're going to pay you $\psi\left(S_{N}\right)$ amount of money, regardless of whether you own any stock ar have any money in your bank then. "Great", we say. All we have to do is wait. But, of course, this is not the way things are in capitalism. They say, "well, to play this game, pay us a bit of money now". And they quote a price. We then think, and decide. But what is the price they tell us, and how do they figure it out? Of course, they can set up an exorbitantly high price. But then they'll have no customers.

So, here is how they think. Surely, they won't risk losing money. If they quote a price π, say, and you pay them this price then they should be able to invest it themselves in stock and be able to make them at least the amount of money $\psi\left(S_{N}\right)$ that they are going to give you.
So π should be such that, if $X_{0}=\pi$, then there exist controls u_{0}, \ldots, u_{N-1} such that $X_{N}=\psi\left(S_{N}\right)$, regardless of the behaviour of the market (which means regardless of the values of R_{n}).
In control language, π is that initial condition for which there is a control which will steer the system into the region $X_{N}=\psi\left(S_{N}\right)$.
We will call a control u which achieves $X_{N}=\psi\left(S_{N}\right)$ a "hedging-strategy", or, more precisely, a $[N, \psi]$-hedging strategy.
We define Ω to be the set of values of the sequence $\omega:=\left(R_{0}, R_{1}, \ldots\right)$. Clearly, all quantities above are functions on Ω. For example, $S_{n}: \Omega \rightarrow \mathbb{R}$ is the function $S_{n}(\omega)=S_{0} \prod_{j=0}^{n-1}\left(1+R_{j}\right)$. To denote the dependence of this on the initial price π and the control u we write $S_{n}(\pi, u, \omega)$. The fundamental theorem here states that, a $[N, \psi]$-hedging strategy exists if and only if there is a probability measure P on Ω, such that the equation

$$
\pi=\int_{\Omega} \psi\left(S_{N}(\pi, u, \omega)\right) P(d \omega)
$$

has a solution. Questions that arise are the following:

1) What is this probability measure P ?
2) How do we compute π ?
3) Is the solution unique?
4) How do we find u ?
5) Is the u found nonnegative?

Let us consider the simplest nontrivial case. Stock market dynamics:

$$
S_{n}=\left(1+a \varepsilon_{n}\right) S_{n-1} .
$$

Here, $0<a<1$ is a fixed number. We assume that

$$
\varepsilon_{1}, \varepsilon_{2}, \ldots \in\{-1,+1\} .
$$

We can easily solve:

$$
S_{n}=S_{0}\left(1+a \varepsilon_{1}\right)\left(1+a \varepsilon_{2}\right) \cdots\left(1+a \varepsilon_{n}\right) .
$$

Consider $N \geq 1$ and a function $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which is increasing. Define the probability space (Ω, \mathscr{F}, P), where $\Omega=\{-1,+1\}^{\mathbb{N}}, \mathscr{F}$ the cylinder σ-field and P the infinite product of uniform distributions on $\{-1+1\}$. Let also $\mathscr{F}_{n}:=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Since $S_{n-1} \in \mathscr{F}_{n-1}$, we have $E\left[S_{n} \mid \mathscr{F}_{n-1}\right]=S_{n-1} E\left(1+a \varepsilon_{n}\right)=S_{n-1}$. So $\left\{S_{n}\right\}$ is a $\left\{\mathscr{F}_{n}\right\}$-martingale. Define now

$$
X_{n}:=E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n}\right] .
$$

Then $\left\{X_{n}\right\}$ is another $\left\{\mathscr{F}_{n}\right\}$-martingale. Therefore, there exist random variables $H_{n} \in$ \mathscr{F}_{n-1} such that

$$
X_{n}-X_{n-1}=H_{n} \varepsilon_{n} .
$$

To see this directly, let

$$
H_{n}:=\varepsilon_{n}\left(X_{n}-X_{n-1}\right)
$$

We have

$$
H_{n} \varepsilon_{n}=\left(X_{n}-X_{n-1}\right) \varepsilon_{n}^{2}=X_{n}-X_{n-1} .
$$

We claim that $H_{n} \in \mathscr{F}_{n-1}$. To see this, notice that the martingale property for $\left\{X_{n}\right\}$ says

$$
E\left[X_{n}-X_{n-1} \mid \mathscr{F}_{n-1}\right]=0
$$

Since

$$
X_{n}=f_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \varepsilon_{n}\right) \equiv f_{n}\left(\varepsilon, \varepsilon_{n}\right)
$$

the martingale property is written as

$$
\frac{1}{2}\left[f_{n}(\varepsilon, 1)-f_{n-1}(\varepsilon)\right]+\frac{1}{2}\left[f_{n}(\varepsilon,-1)-f_{n-1}(\varepsilon)\right]=0 .
$$

That is,

$$
f_{n}(\varepsilon, 1)-f_{n-1}(\varepsilon)=f_{n-1}(\varepsilon)-f_{n}(\varepsilon,-1)
$$

Therefore,

$$
\begin{aligned}
H_{n}=\varepsilon_{n}\left(X_{n}-X_{n-1}\right) & =\varepsilon_{n}\left(f_{n}\left(\varepsilon, \varepsilon_{n}\right)-f_{n-1}(\varepsilon)\right) \\
& = \begin{cases}f_{n}(\varepsilon, 1)-f_{n-1}(\varepsilon), & \text { if } \varepsilon_{n}=1 \\
-\left(f_{n}(\varepsilon,-1)-f_{n-1}(\varepsilon)\right), & \text { if } \varepsilon_{n}=-1\end{cases}
\end{aligned}
$$

and the two cases are identical. So, despite appearances, H_{n} is only a function of $\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)$. Having written X_{n} in the form

$$
X_{n}-X_{n-1}=H_{n} \varepsilon_{n}
$$

with $H_{n} \in \mathscr{F}_{n-1}$, we let u_{n} be defined by

$$
u_{n}:=H_{n} / a S_{n-1} .
$$

Thus $u_{n} \in \mathscr{F}_{n-1}$ and

$$
X_{n}-X_{n-1}=a u_{n} S_{n-1} \varepsilon_{n}=u_{n}\left(S_{n}-S_{n-1}\right),
$$

and so $\left\{X_{n}\right\}$ satisfies money dynamics.
The only catch is that we want $u_{n} \geq 0$ for all n. This is equivalent to $H_{n} \geq 0$ for all n. And, since $H_{n}=\varepsilon_{n}\left(X_{n}-X_{n-1}\right)$, this is further equivalent to

$$
\operatorname{sgn}\left(\varepsilon_{n}\right)=\operatorname{sgn}\left(X_{n}-X_{n-1}\right)=\operatorname{sgn}\left(E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n}\right]-E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n-1}\right]\right) .
$$

Since

$$
S_{N}=S_{n-1}\left(1+a \varepsilon_{n}\right)\left(1+a \varepsilon_{n+1}\right) \cdots\left(1+a \varepsilon_{N}\right),
$$

we have

$$
\begin{aligned}
E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n-1}\right] & =E\left[\psi\left(S_{N}\right) \mid S_{n-1}\right], \\
E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n}\right] & =E\left[\psi\left(S_{N}\right) \mid S_{n-1}, \varepsilon_{n}\right] .
\end{aligned}
$$

With $\Pi:=\left(1+a \varepsilon_{n+1}\right) \cdots\left(1+a \varepsilon_{N}\right)$,

$$
\begin{aligned}
& \Phi_{1}(x):=E\left[\psi\left(x\left(1+a \varepsilon_{n}\right) \Pi\right],\right. \\
& \Phi_{2}(x):=E[\psi(x \Pi)] .
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n-1}\right] & =\Phi_{1}\left(S_{n-1}\right) \\
E\left[\psi\left(S_{N}\right) \mid \mathscr{F}_{n}\right] & =\Phi_{2}\left(S_{n-1}\left(1+a \varepsilon_{n}\right)\right)
\end{aligned}
$$

We thus need to check if

$$
\operatorname{sgn}\left(\varepsilon_{n}\right)=\operatorname{sgn}\left(\Phi_{2}\left(S_{n-1}\left(1+a \varepsilon_{n}\right)\right)-\Phi_{1}\left(S_{n-1}\right)\right),
$$

or, equivalently,

$$
\Phi_{2}(s(1+a)) \geq \Phi_{1}(s), \quad \Phi_{2}(s(1-a)) \leq \Phi_{2}(s) .
$$

But

$$
\Phi_{1}(x)=\frac{1}{2} \Phi_{2}(x(1+a))+\frac{1}{2} \Phi_{2}(x(1-a)) .
$$

So the last two inequalities are equivalent to

$$
\Phi_{1}(x(1+a)) \geq \Phi_{1}(x), \quad \Phi_{1}(x(1-a)) \leq \Phi_{1}(x) .
$$

Since ψ is an increasing function, it follows that Φ_{1} is increasing and from this the last two inequalities are obvious.
Having realized the hedging strategy $\left\{u_{n}\right\}$, and having proved that $u_{n} \geq 0$, we can now define $\left\{c_{n}\right\}$ too, simply from the equation

$$
X_{n}=u_{n} S_{n}+c_{n}
$$

Here, there is no guarrantee that $c_{n} \geq 0$. If $c_{n}<0$ for some n, this means that, instead of putting money in a bank account, we borrow money from the bank. So, if as in the diagram, we start with $X_{0}=u_{0} S_{0}$, then define u_{1} as above, and redistribute money according to $u_{0} S_{0}=u_{1} S_{0}+c_{1}$, then $c_{1}<0$ means that it is necessary to borrow money from the bank so that $u+0 S_{0}+\left|c_{1}\right|=u_{1} S_{0}$.
In all this business, there is no probability measure at all. The probability measure P was only introduced as an artifact for finding a strategy. Since

$$
X_{0}=E\left[\psi\left(S_{N}\right) \mid S_{0}\right],
$$

it follows that this equation is the equation which we can use in order to compute the price for the option $[N, \psi]$. Using $S_{N}=S_{0}\left(1+a \varepsilon_{1}\right) \cdots\left(1+a \varepsilon_{N}\right)$, we find that if, initially, the unit stock price is S_{0} then we pay

$$
X_{0}=\sum_{r=0}^{N} \psi\left(S_{0}(1+a)^{r}(1-a)^{N-r}\right)\binom{N}{r} 2^{-N} .
$$

If the bank asks us to pay X_{0} then this is a fair price. Anything above is not.

For the option [N, identity], the last formula gives

$$
X_{0}=S_{0}
$$

which seems to be natural.
For the option $[N, \psi]$ with $\psi(x)=(x-K)^{+}$, the price is

$$
X_{0}=\sum_{r>r^{*}}\left(S_{0}(1+a)^{r}(1-a)^{N-r}-K\right)\binom{N}{r} 2^{-N}
$$

where

$$
r^{*}=\frac{\log \left(K / S_{0}\right)-N \log (1-a)}{\log (1+a)-\log (1-a)}
$$

This is the popular European option.
In all of the above we assumed that we put money in the bank (or borrow from the bank) without interest rate. We can easily modify everything to accomodate the situation of fixed interest rate.
Also, we can accommodate the situation where R_{n} takes two values, not necessarily equal in magnitude.

[^0]: Takis Konstantopoulos, February 2012

