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Outline This is an attempt to give a summary of Baire’s (1905) elementary work “Théorie
des Nombres Irrationnels, des limites et de la continuité”. The ultimate goal is to give
connections to Conway’s (1970’s) theory of surreal numbers which completes ordinals via
Dedekind-like cuts, in a way analogous to the way that rationals are completed by Dedekind
cuts. This classical construction is beautifully explained in Baire’s work and is summarised,
in slightly more modern terms, below. Ideally, we should start from nothing (the empty set
∅) but we won’t: We will assume knowledge of sets, of natural (N) and rational numbers
(Q), as well as algebraic operations on them. Briefly, Q is defined as a set of equivalence
classes of pairs (α, β), with β 6= 0, of integers (Z := N ∪ {0} ∪ (−N)), under the equivalence
relation α ∼ β if there exists integer n such that n divides both α and β. We write α/β for
the equivalence class of (α, β). In particular, we make use of the theorem that between any
two rationals q1, q2, there are infinitely many other rationals.

Cuts A cut in Q is a pair (A,B) of disjoint subsets of Q such that Q = A ∪ B and such
that

∀a ∈ A ∀b ∈ B a < b.

We refer to A as the left cut and to B as the right cut. Such cuts exist: for example,
(I) let q ∈ Q, let A := {r ∈ Q : r ≤ q}, B = Q − A. Or, (II) let A := {r ∈ Q : r < q},
B = Q − A. In case (I), A has a maximum. In case (II), B has a minimum.

Existence of irrational cuts But there are cuts such that neither A has a maximum
nor B a minimum. For example, let A∗ := {q ∈ Q : q2 < 2}. Since there is no rational
whose square is 2, we have B∗ = {q ∈ Q : q2 > 2}. So A∗ has no maximum, and B∗ has no
minimum. Each cut of this form is called irrational number.

We define the real numbers R to be the set of irrational and rational numbers.

Given q1, q2 ∈ Q, with q1 < q2, we can find an irrational number (A,B) such that q1 ∈ A,
q2 ∈ B. To do this, consider the function f : Q → Q, f(x) := 2(x − q1)/(q2 − q1), and then
consider the cut (f−1(A∗), f−1(B∗)). We have f(q1) = 0, f(q2) = 2. Since 02 < 2 < 22, we
have f(q1) = 0 ∈ A∗, f(q2) = 2 ∈ B∗. So q1 ∈ f−1(A∗), q2 ∈ f−1(B∗). So there are plenty
of irrational numbers.

Order Now we define an order on R. First, to compare two rational numbers, we use
the standard comparison. Second, if λ = (A,B) is irrational, we say, by definition, that
a < λ < b, for all a ∈ A, b ∈ B. So we can compare a rational with an irrational.

To compare two distinct irrationals λ = (A,B), λ = (A′, B′) we first observe that either A
is a proper subset of A′ or vice versa. Indeed, since the two irrationals are distinct, so are
the sets A,A′. Without loss of generality, assume A′ \ A 6= ∅. Hence

∃q ∈ A′ \ A = A′ ∩ B = B \ B′.

Then A must be a proper subset of A′. Because, if this is not the case, then

∃r ∈ A \ A′ = A ∩ B′ = B′ \ B.
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From the above we see that q ∈ A′, r ∈ B′, so q < r; but, also, q ∈ B, r ∈ A, so r < q, and
this is a contradiction.

We can now define λ < λ′ to mean A is a proper subset of A′ (equivalently, B′ is a proper
subset of B).

The argument above actually shows more: between any two distinct irrationals there is a
rational number.

So any two distinct real numbers can be compared. Indeed, if they are both rationals, we
can do it. If one is rational and the other irrational then the rational either belongs to the
left or the right cut, so it is, by definition, either smaller or larger than the irrational. And
λ, λ′ are both irrational, then their left cuts are ordered (one is a subset of the other), so
either λ < λ′ or λ′ < λ.

To see that this is a total order, we check transitivity. Transitivity is obvious on rationals.
If we have three irrationals such that λ < µ and µ < ν, then the left cut of λ is a proper
subset of the left cut of µ which is a proper subset of the left cut of ν, and so λ < ν. If
λ < q, q < µ, where q is rational, then q belongs to the right cut of λ and so every member
of the left cut of λ is smaller than q; but since q also belongs to the left cut of µ, every
rational smaller than q belongs to the left cut of µ, and so every member of the left cut of
λ belongs to the left cut of µ. Hence λ < µ. If q < λ, λ < r then q < r because q belongs
to the left cut of λ, while r belongs to the right cut.

Hence < is a total order on R. We also define λ ≤ µ to mean λ < µ or λ = µ.

Define positive real numbers by R++ = {x ∈ R : 0 < x}, and the negative by R−− =
{x ∈ R : x < 0}. To every q ∈ Q there corresponds a negative −q. So to every irrational
λ = (A,B) there corresponds a negative −λ := (−B,−A), where −A = {−a : a ∈ A},
−B = {−b : b ∈ B}. We can see that −(−λ) = λ, and We can see that λ = µ implies
−λ = −µ. Also, if λ < µ then −µ < −λ. Given λ, either λ or −λ is positive. We define |λ|
to be the positive of the two. By definition, |0| = 0. Hence, |λ| = | − λ| for all λ ∈ R.

Completeness If E is a nonempty subset of R, we let

BE := {q ∈ Q : ∀x ∈ E q > x}.

If BE is nonempty we say that E is upper bounded. Assume that this is the case and
define the supremum of E by

supE := (AE , BE),

where AE := Q − BE. We claim that

(i) For all x ∈ E, x ≤ supE.
(ii) For all x ∈ E with x < supE, there exists y ∈ E such that x < y < supE.

Indeed, suppose x = (A,B) ∈ E, but that x > supE. Then B is a proper subset of BE . So
there is q ∈ BE , but q 6∈ B, i.e. q ∈ A. Hence q > x, and also q < x, which is a contradiction.

To show (ii), suppose that x = (A,B) < supE = (AE , BE). Then there is a rational q
between x and supE, that is, q ∈ AE, and so q < supE.

If define the set
UE := {y ∈ R : ∀x ∈ E y ≥ x}

of upper bounds to E, then (i) says that supE ∈ UE, i.e. supE = min UE . This is the
completeness property of R.
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Similarly, we define the infimum inf E = (A′

E , B′

E) by letting A′

E = {q ∈ Q : ∀x ∈ E q < x},
assuming that the latter is nonempty, i.e. that, by definition, the set E is lower bounded.
We have similar properties for inf E.

So far, we have established that R is a totally ordered set with the least upper bound (and
greatest lower bound) property.

If E is not upper bounded we let supE := +∞. If E is not lower bounded we let inf E :=
−∞.

Note that if E ⊂ E′ then BE ⊂ BE′ , and so supE ≤ supE′. Similarly, inf E ≥ inf E′.

Limits A nondecreasing sequence of real numbers is such that

x1 ≤ x2 ≤ · · ·

Its limit is defined to be equal to M = supxn. If the sequence is not upper bounded then
M = +∞. Otherwise, according to what proved earlier, for all x < M there is an element
xn of the sequence such that x < xn ≤ M . Since the sequence is nondecreasing, we also
have x < xk ≤ M for all k ≥ n.

Similarly, we define the limit of nonincreasing sequence

x1 ≥ x2 ≥ · · ·

and have similar remarks.

For an arbitrary sequence x1, x2, . . ., we let

Mp = sup{xp, xp+1, . . .}

mp = inf{xp, xp+1, . . .}.

Hence

M1 ≥ M2 ≥ · · ·

m1 ≤ m2 ≤ · · ·

We define the upper and lower limit by, respectively,

M = lim xn := inf Mp

m = lim xn := supmp

If b > M then, eventually, all terms of the sequence are below b. If a < m then, eventually,
all terms of the sequence are above a. Notice that m ≤ M . Because, otherwise, there is
M < a < m and so, eventually, all terms of the sequence would simultaneously be below
and above a, which is impossible.

If a < M then, eventually, all Mp are above a. But Mp > a implies that xn > a for some
n > p. Similarly, if m < b then for all p there is n > p such that xn < b.

We see that the converse is also true, namely we have: M = lim xn if and only if, for all
a < M < b we have that (i) infinitely many of the terms of the sequence are above a and
(ii) eventually all the terms of the sequence are below b.

Similarly, m = lim xn if and only if, for all a < m < b we have that (i) infinitely many of
the terms of the sequence are below b and (ii) eventually all the terms of the sequence are
above a.
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If M = m we define the limit of xn by lim xn = M = m. We also use xn → M to denote
the same thing. If M is not ±∞, from the above we have that if a < M < b, eventually all
terms of the sequence are between a and b. This is a characterising property.

If lim xn = M then lim(−xn) = −M and lim |xn| = |M |.

Rational approximation Let λ = (A,B) ∈ R, α ∈ Q, α > 0. Fix a ∈ A consider integers
p with p < a/α. Fix b ∈ B consider integers q with q < b/α.

pα < a < λ < b < qα.

Since there are finitely many integers n with p ≤ n ≤ q, we let n to be the largest n such
that nα ≤ λ. Then

nα ≤ λ < (n + 1)α.

In other words, given λ ∈ R and α a positive rational there is a unique n ∈ Z such that the
above holds. We define

nα =: ⌊λ⌋α, (n + 1)α =: ⌈λ⌉α.

We may refer to the pair ⌊λ⌋α, ⌈λ⌉α as the best α-rational approximation to the
number λ. If α > β > 0 are rationals then

⌊λ⌋α < ⌊λ⌋β ≤ λ < ⌈λ⌉β < ⌈λ⌉α.

By decreasing α we can obtain a better approximation. Consider then α1, α2, . . ., such that
αm/αm+1 = km ∈ N, km ≥ 2. Then lim αm = 0 and

⌊λ⌋α1
< ⌊λ⌋α2

< · · · ≤ λ < · · · < ⌈λ⌉α2
< ⌈λ⌉α1

Let µ = sup⌊λ⌋αm
, ν = inf⌈λ⌉αm

. Then µ ≤ λ ≤ ν, but it is impossible to have µ < ν
because, if it were so, we would be able to find a, b ∈ Q, such that µ < a < b < ν. Then,
for all m, ⌊λ⌋αm

< a < b < ⌈λ⌉αm
, so ⌈λ⌉αm

− ⌊λ⌋αm
> b − a. Since lim αm = 0, by taking

m large we would have αm < b − a, i.e. αm < ⌈λ⌉αm
− ⌊λ⌋αm

, which is impossible since the
latter difference equals αm.

In particular, we have proved that, for all x ∈ R and all ε > 0, we can find a, b ∈ Q such
that a < x < b and b − a < ε.

Subtraction We define the first algebraic operation, namely subtraction. Let x < y
be reals, not both rational. Define

y − x := sup{b − a : x ≤ a < b ≤ y, a, b ∈ Q}.

The set on the right is upper bounded because there are rationals α < x, β > y and for any
rationals a < b between x and y we have b − a < β − α. Also, if x, y are rational, then the
definition reduces to the usual difference of rationals, because we can take a = x, b = y. We
also let x − y = −(y − x), and if x = y we let x − y = y − x = 0.

Note that if x′ ≤ x ≤ y ≤ y′ then y − x ≤ y′ − x′ because the first set is contained in the
second.

Having defined difference we can talk more intelligently about limits
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Limit theorems

Theorem I. A sequence un converges to a finite limit if and only if for all ε > 0 there is an
integer p such that for all integers m,n > p we have |um − un| < ε.

To prove this, we note that, if un is a sequence, there are three mutually disjoint cases: (i)
the sequence has a finite limit, (ii) the sequence has an infinite (±∞) limit, (iii) the sequence
has no limit.

In case (i), let λ be the limit. By rational approximation, if ε > 0, we can find α, β ∈ Q,
β − α < ε, α < x < β. By the definition of λ, we can find p ∈ N such that

α < un < β,

for all n > p. So if µ, ν > p, since both uµ, uν are between α and β we certainly have
|uµ − uν | ≤ β − α < ε.

In case (ii), suppose +∞ is the limit. Then for all A there is p ∈ N such that un > A
if n > p. Suppose that A ∈ Q, A > 0. Fix µ ∈ N. Take B ∈ Q, with um < B. Then
B + A > B. And we can find ν ∈ N such that uν > B + A. Thus, no matter what the
rational A is, we can find µ, ν ∈ N such that

uµ < B < B + A < uν ,

whence |uµ − uν | ≥ A (from the definition of the difference).

In case (iii), we have −∞ ≤ m = lim un < lim un = M ≤ +∞. Choose rationals α, β, such
that m < α < β < M . Then for all p ∈ N there exists µ, ν > p such that

uµ < α < β < uν .

This implies that |uµ − uν | ≥ β − α.

The theorem is actually proved by exhaustion of all cases.

Theorem II. If un, vn are two sequence and if λ is the limit of the first then the second has
limit λ if and only if |un − vn| has limit 0.

Suppose first that vn → λ. Then, for all ε > 0 we can find rationals α, β, β − α < ε,
α < λ < β, such that α < un, vn < β, for all n > p, whence |un − vn| ≤ β − α < ε. Hence
|un − vn| converges to 0.

Suppose next that |un − vn| converges to 0. Suppose that vn does not converge to λ. Let
M = lim vn, m = lim vn. Then λ < M or λ > m. Suppose, for example, λ < M . Pick
rational α, β such that λ < α < β < M . Eventually, all terms of the first sequence are
below α, while infinitely many of the terms of the second are above β. So |un − vn| ≥ β −α
for infinitely many n and this is impossible. Similarly, if λ > m, we can also obtain a
contradiction.

Theorem III. If un converges to λ and vn to µ then un − vn converges to λ − µ.

We only have to deal with the case λ < µ. For any ε > 0, chose rationals a, b, c, d, b−a < ε,
d − c < ε, α < λ < b < c < µ < d, and deduce that, eventually, α < un < b < c < vn < d.
Hence c − b ≤ µ − λ ≤ d − a, and c − b ≤ vn − un ≤ d − a. And so |(vn − un) − (µ − λ)| ≤
(d − a) − (c − b) = (d − c) + (b − a) < 2ε.
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Continuity Consider a function f(x1, . . . , xd) of d real variables. We say that it is con-

tinuous at (a1, . . . , ad) if for any ε > 0 there exists δ > 0 such that

|f(x1, . . . , xd) − f(a1, . . . , ad)| < ε

whenever (x1, . . . , xd) satisfy

|x1 − a1| < δ, . . . , |xd − ad| < δ.

This is equivalent to the following statement:

f(x1
n, . . . , xd

n) → (a1, . . . , ad)

whenever x1
n, . . . , xd

n are sequences such that

x1
n → a1, . . . xd

n → ad.

Indeed, if f is continuous at (a1, . . . , ad) then for arbitrary ε, let δ be as in the definition,
and consider sequences x1

n, . . . , xd
n converging to a1, . . . , ad, respectively. Then, eventually,

|x1
n−a1| < δ, . . . , |xd

n−ad| < δ. By definition of continuity again, this implies that, eventually,
|f(x1, . . . , xd) − f(a1, . . . , ad)| < ε, which means that f(x1

n, . . . , xd
n) → (a1, . . . , ad).

Conversely, if f is not continuous at (a1, . . . , ad) then there exists an ε > 0, such that, no
matter what δ > 0 is, we can find x1, . . . , xd such that

|x1 − a1| < δ, . . . , |xd − ad| < δ, but |f(x1, . . . , xd) − f(a1, . . . , ad)| > ε.

So, for example, if δ = 1/n, let x1
n, . . . , xd

n be the numbers satisfying the conditions above,
namely,

|x1
n − a1| < 1/n, . . . , |xd

n − ad| < 1/n, but |f(x1
n, . . . , xd

n) − f(a1, . . . , ad)| > ε,

no matter what n ∈ N is. Hence

x1
n → a1, . . . , xd

n → ad but f(x1
n, . . . , xd

n) 6→ f(a1, . . . , ad).

Consider now a closed rational rectangle, i.e.

C = {(x1, . . . , xd) ∈ Qd : a1 ≤ x1 ≤ b1, . . . , ad ≤ x1 ≤ bd}

We say that f : C → R is uniformly continuous if any ε > 0 there exists δ > 0 such that

|f(x1, . . . , xd) − f(y1, . . . , yd)| < ε

whenever (x1, . . . , xd) ∈ C, (y1, . . . , yd) ∈ C satisfy

|x1 − y1| < δ, . . . , |xd − yd| < δ.

Theorem (extension principle): Suppose that f(x1, . . . , xd) is a function of d rational argu-
ments such that it is uniformly continuous on every closed rational rectangle C. Then there
exists a unique continuous function F (X1, . . . ,Xd) of d real arguments, which coincides with
f whenever its arguments are rational.
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Let X0 = (X1
0 , . . . ,Xd

0 ) be d real numbers. We will define F at X0. First we observe that
is a sequence xn = (x1

n, . . . , xd
n) of rational numbers, such that

xn → X0, i.e. x1
n → X1

0 , . . . , xd
n → Xd

0 .

(For example, we may take xi
n = ⌈Xi

0⌉1/n.) We claim that f(xn) has a limit. Indeed, we first
choose a closed rectangle C containing X0 and all the xn. Then we use the uniform continuity
of f on C, ensuring, for every ε > 0, the existence of a δ > 0 such that |f(x) − f(y)| < ε
if |x1 − y1| < δ, . . . , |xd − yd| < δ. Since x1

n, . . . , xd
n all converge, we have that there is

integer p such that, for all m,n > p, |x1
n − x1

m| < δ, . . . , |xd
n − xd

n| < δ. This implies that
|f(xn) − f(xm)| < ε for all m,n > p, which implies that f(xn) has a (finite) limit, say λ.

If we choose another sequence, say yn = (y1
n, . . . , yd

n) such that yn → X0, we also have that
f(yn) has a limit. We show that this limit is λ. Indeed, since both xn → X0 and yn → X0,
we have that, eventually,

|x1
n − y1

n| < δ, . . . , |xd
n − yd

n| < δ.

By uniform continuity, eventually,

|f(xn) − f(yn)| < ε.

This means that the limit of f(xn) is the same as the limit of f(yn).

We therefore define
F (X0) = λ.

If X0 = (X1
0 , . . . ,Xd

0 ) is rational (i.e. all the Xi
0 are rational) we claim that F (X0) = f(X0).

Indeed, f is continuous at X0. Therefore f(xn) → f(X0). So f(X0) = λ = F (X0). Hence
F is an extension of f , and so F has been defined.

We show that F is continuous. Fix ε and let δ be chosen by the uniform continuity of f .
Let X0 = (X1

0 , . . . ,Xd
0 ) be d real numbers and Y0 = (Y 1

0 , . . . , Y d
0 ) be d real numbers such

that |X1
0 − Y 1

0 | < δ, . . . |Xd
0 − Y d

0 | < δ. Pick xn → X0, yn → Y0. Then, eventually,

|x1
n − y1

n| < δ, . . . , |xd
n − yd

n| < δ.

This implies that, eventually,
|f(xn) − f(yn)| < ε.

Since f(xn) → F (X0), f(yn) → F (Y0), we conclude that

|F (X0) − F (Y0)| < ε.

Algebraic operations Let x, y be rationals. We know what x + y is. We show that the
function f(x, y) = x + y is uniformly continuous. Let ε > 0 be given. Choose δ = ε/2.
Suppose |x − x′| < δ, |y − y′| < δ, Then |(x + y) − (x′ + y′)| = |(x − x′) + (y − y′)| ≤
|x − x′| + |y − y′| < 2δ = ε. We can then define X + Y = lim(xn + yn), where xn, yn are
rational, and xn → X, yn → Y .

We also know what xy is, when x, y are rational. Let A > 0 be rational, and let C be all
rational numbers x, y such that |x| < A, |y| < A. We show that f(x, y) = xy is uniformly
continuous on C. Fix ε > 0 and let δ = ε/2A. Suppose |x − x′| < δ, |y − y′| < δ. Then

|xy − x′y′| = |(x − x′)y + (y − y′)x|

≤ |x − x′| |y| + |y − y′| |x| < 2δA = ε.
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Hence we can define XY = lim(xnyn), where xn, yn are rational, and xn → X, yn → Y .

We also know what x/y is when x, y are rational, y 6= 0. Let 0 < a < A be rational and
let C be all rational x, y such that |x| < A, a < |y| < A. Fix ε > 0 and let δ = εa2/2A.
Suppose |x − x′| < δ, |y − y′| < δ. Then

∣

∣

∣

∣

x

y
−

x′

y′

∣

∣

∣

∣

=
|(x − x′)y − (y − y′)x|

|y| |y′|

≤
|x − x′| |y| + |y − y′| |x|

|y| |y′|
<

2δA

a2
= ε.

We know that Q is a field. Therefore, the following are true for all x, y, z ∈ Q:

x + y = y + x

(x + y) + z = x + (y + z)

x + 0 = x

x − x = 0

x + (−y) = x − y

xy = yx

x(yz) = (xy)z

x1 = x

x(1/x) = 1, x 6= 0

x(1/y) = x/y, y 6= 0

(x + y)z = xz + yz

x0 = 0.

By the extension theorem, the same properties are true for all x, y, z ∈ R.

Archimedean property Theorem: Let 0 < x < y be real numbers. There exists an
integer n such that nx > y.

Pick a rational number α between 0 and x. Then we know (see rational approximation)
that there is an integer n such that nα > y. Hence nx > y.

Summary The set of real numbers has been proved to have the following properties:
1. It is totally ordered.
2. It is complete.
3. It has the Archimedean property.
4. It is a field.

Theorem: Any two fields F , G satisfying 1+2+3 are isomorphic, i.e. there is a bijection
ϕ : F → G that preserves addition and multiplication.

Some (counter)examples: Z satisfies 1+2+3. Q satisfies 1+3+4. C satisfies 2+4. Ordinals
satisfy 1+2. Surreal numbers satisfy 1+2+4. (The last two statements are not, strictly
speaking, mathematically correct because neither the ordinals nor the surreal numbers form
sets.)
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