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3.1 Random variables and their distributions

3.1.1 Review of definitions

Recall that a random variable is a measurable function from a measurable space (Ω,F ) into
(R,B). More generally, A random element is a measurable function X between two
measurable spaces, an “abstract” one, (Ω,F ), and a “concrete”b one, (S,S ). In other words,
we require that the inverse image by X of each element of S be an element of F . We denote
this situation by

X : (Ω,F ) → (S,S ).

For example, if (S,S ) = (Rd,B(Rd)), where B(Rd) are the Borel sets on Rd, we refer to X as
d (real) random variables or a random vector because we may, by choosing Cartesian

aThese notes contain almost no proofs. For a complete set of notes, see [3]; alternatively, read the introductory
book [4], or the more advanced book [1].

bThe adjectives in quotes have nothing to do with Mathematics but, rather, with our human interpretation of
it.
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coordinates on Rd, represent X by (X1, . . . , Xd), where X1 is one random variable, X2 is one
random variable, ..., Xd is one random variable..

EXERCISE 1. Show that if X : (Ω,F ) → (S,S ), H : (S,S ) → (T,T ) are random elements
then H◦X is a random element.

Recall that the σ-algebra generated by a collection, say A , of subsets of Ω, is defined
as the intersection of all σ-algebras containing A ; it is denoted by σ(A ).

Lemma 3.1. If X : Ω → S is a function, F a σ-algebra on Ω and S a σ-algebra on S generated
by the collection of sets C then X is a random variable if and only if X−1(B) ∈ F for all B ∈ C .

Recall that the notation {X ∈ B} = X−1(B) is used all the time, so we will stick to it when we
can.

Corollary 3.1. If X : Ω → R is a function and F a σ-algebra on Ω, then X is one random
variable ⇐⇒ {X ≤ x} ∈ F for all x ∈ R ⇐⇒ {X < x} ∈ F for all x ∈ R ⇐⇒
{X > x} ∈ F for all x ∈ R.

If Xn is a sequence of random variables then X1 +X2, X1 ·X2, X1 ∧X2 are all random variables.
Also, recall that infjXj , limj Xj, supjXj , limjXj are random variables in R ∪ {+∞,−∞}.

If X : Ω → S is a function and S a fixed σ-algebra on S, the σ-algebra generated by X is
defined by

σ(X) := {X−1(B), B ∈ S }.

Let us study random elements in a product S1 × · · · × Sd of sets. Suppose that on each Si we
have a σ-algebra Si ⊂ 2Si . We first construct a natural σ-algebra on S1 × · · · × Sd. For each i
consider the projection function

πi : S1 × · · · × Sd → Si; πi : (s1, · · · , sd) 7→ si.

Define
S1 ⊗ · · · ⊗ Sd := σ(π1, . . . , πd).

EXERCISE 2. Consider (Si,Si), i = 1, . . . , d. Let d = 2 for simplicity. Show that

S1 ⊗ S2 = σ({B1 × S2 : B1 ∈ S1} ∪ {S1 ×B2 : B2 ∈ S2}).

= σ({B1 ×B2 : B1 ∈ S1, B2 ∈ S2}).

Lemma 3.2. Let Xi : (Ω,F ) → (Si,Si), i = 1, 2, . . . , d, be random elements. Let S =
S1 × · · · × Sd, S = S1 ⊗ · · · ⊗Sd. Then (X1, . . . , Xd) : (Ω,F ) → (S,S ) is a random element.

EXERCISE 3. Show that, if X = 1A, the indicator of a set A, then σ(1A) = {∅, A,Ac,Ω}.
Consider next two subsets A1, A2 of Ω and prove that the σ-algebra generated by c11A1

+ c21A2

is

σ(c11A1
+ c21A2

) = {∅, Ω, A1, A2, A
c
1, A

c
2, A1A2, A1A

c
2, A

c
1A2, A

c
1A

c
2,

A1 ∪A2, A1 ∪A
c
2, A

c
1 ∪A2, A

c
1 ∪A

c
2, A14A2, (A14A2)

c}.

EXERCISE 4. Consider the following partition of Ω:

{A1A2, A1 \ A2, A2 \A1, (A1A2)
c}.

Show that any nonempty set in Exercise 3 can be obtained as union of elements of this partition.
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EXERCISE 5. Given a partition C = {C1, . . . , Cn} of Ω show that the σ-algebra generated
by C consists of the empty set and all sets that can be obtained by taking unions of sets in C .
Assuming that none of the Ci is empty, this C contains exactly 2n sets. Also show that any
random variable that takes value bi on Ci for each i generates a σ-algebra which is contained in
σ(C ). Show that if the values bi are distinct then σ(X) = σ(C ).

If X,Y are random variables on a common measurable space (Ω,F ) (and values in arbitrary
sets) we say that Y is measurable with respect to X, often written as X ∈ σ(Y ) if

σ(Y ) ⊂ σ(X).

Lemma 3.3. If X : (Ω,F ) → (S,S ), Y : (Ω,F ) → (R,B) are random variables, and if
Y ∈ σ(X), then there exists a random variable (measurable map) H : (S,S ) → (R,B) such
that Y = H◦X.

EXERCISE 6. Using Exercise 5 show that any Y , measurable with respect to X, must be of
the form

Y =
n
∑

i=1

ci1(X = xi).

We then see that what is claimed in Lemma 3.3 is correct, in this special situation with X being
finitely-valued. Indeed, let H(x) =

∑n
i=1 ci1(x = xi) and, obviously, Y = H◦X.

The general case requires an approximation result that says that any measurable random variable
X : (Ω,F ) → (R,B) can be approximated by simple random variables. A simple random
variable is a random variable with finitely many values.

Lemma 3.4. Let X : (Ω,F ) → (R,B). Then there exists a sequence X1, X2, . . . of simple
random variables such that limn→∞Xn(ω) = X(ω). If X(ω) ≥ 0, ω ∈ Ω, we can choose the
sequence so that 0 ≤ Xn(ω) ≤ Xn+1(ω) for each n and ω.

The proof of Lemma 3.4 can be found in [3] and is based on defining

τn(x) := 2−nd2nxe ∧ n, Xn(ω) := τn(X(ω)),

and the observation that Xn converges to X.

EXERCISE 7. Let X be one random variable in R. Show that σ(X 2) is a strict subset of
σ(X). But show that σ(2X) = σ(X).

3.1.2 Law (or distribution) of a random element (or variable)

The reader will of course have noticed that the concept of “random element” has nothing to do
with randomness.c Let P be a probability on (Ω,F ). The distribution or law of the random
element X is a probability PX on (S,S ) which is generated, in the most natural fashion, by X:

PX(B) = P(X−1(B)), B ∈ S .

Note that PX depends on two functions: the function P and the function X.

EXERCISE 8. Show that if (Ω,F ,P) is a probability space and X : (Ω,F ) → (S,S ) a
random element then (S,S ,PX) is a probability space. Hence if X is a random vector then X1

is a random variable.

cThe name is justified because of the way the concept is used.
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EXERCISE 9. With the notation of Exercise 1, show that the law of H ◦X as a random
element on the probability space (Ω,F ,P) is the same as the law of H as a random element on
(S,S ,PX ).

So the role of a random element is to transform an abstract probability space into a concrete one.
In practise, one is often givend a probability measure Q on some (S,S ) and one may (or may not)
want to construct a probability space (Ω,F ,P) and a random variableX : (Ω,F ) → (S,S ) such
that PX = Q. In the absence of any further requirement we consider the so-called canonical
construction: take Ω = S, F = S , P = Q and let X(ω) ≡ ω. Then, obviously, PX = Q.

3.1.3 Law of a discrete random variable

A discrete random variableX : (Ω,F ) → (S,S ) is, by definition, one that takes countably
many values. In other words, if P is a probability on (Ω,F ) then X is discrete if and only if
there is a countable set D ∈ S such that P(X ∈ D) = 1. We also assume that D and all
its subsets are members of S . Hence the law PX of X is a probability on D. We know that
a probability on a countable set D can be defined by defining its values on singletons. These
values form the so-called probability mass function. Thus, the probability mass function is

p(x) = PX{x} = P(X = x), x ∈ D.

Clearly, if B ⊂ D then

PX(B) = PX

(

⋃

x∈B

{x}

)

=
∑

x∈B

p(x).

So p is sufficient for computing PX .

EXERCISE 10. Suppose that the random variable X takes n distinct values (i.e. X(Ω) is
a set with n elements). Show that σ(X) has 22n

elements and describe (give a procedure for
describing) them.

3.1.4 Uniform random variable and continuous random variables

A uniform random variable U in the interval [0, 1] is such that its law satisfies PU ([a, b]) = b−a
for all 0 ≤ a ≤ b ≤ 1. To show that such a random variable exists is hard and the reader
is referred to [3], for an approach based on using the probability space Ω = {0, 1}N. A more
standard approach is to define U(x) = x, x ∈ [0, 1], where [0, 1] is endowed with the Borel
σ-algebra and the Lebesgue measure P. Having shown that the latter exists, we simply observe
that PU is the law of a uniform random variable. Notice that if D is a countable set then

P(U ∈ D) = 0.

For example, P(U is rational number ) = 0.

If F : R → R is a nondecreasing continuous function with limx→−∞ F (x) = 0, limx→∞ F (x) = 1,
and if F−1(u) := inf{x ∈ R : F (x) > u} then X = F−1(U) is a random variable that shares
something in common with U , namely,

P(X ∈ D) = 0,

if D is a countable set. Such a random variable is called continuous.

dActually, one is seldom given anything. Either one derives something from some basic principles/requirements
or one performs an experiment whereby measurements are collected and a probability measure is stipulated. The
latter is the subject of Statistics.
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3.2 Distribution functions

The distribution function of a random variable X is defined by:

F (x) := PX(−∞, x], x ∈ R. (3.1)

This function is useful because:

Lemma 3.5. Knowledge of PX on this class of sets only (semi-infinite intervals) implies knowl-
edge of PX on the whole of B.

For a proof, see [3]. Next, here are some properties of F :

Lemma 3.6. (i) x1 < x2 ⇒ F (x1) ≤ F (x2), (ii) limx→−∞ F (x) = 0, (iii) limx→+∞ F (x) = 1,
(iv) limn→∞ F (x+ 1/n) = F (x).

Remark:
There is no good reason that we chose this class of sets, other than people have been using it
by convention. For instance, we could have chosen open semi-infinite interval (−∞, x), in which
case (iv) of Lemma 3.6 would be replaced by limn→∞ F (x− 1/n) = F (x).

Definition 3.1. A function F : R → R is called distribution function iff (i) x1 < x2 ⇒ F (x1) ≤
F (x2), (ii) limx→−∞ F (x) = 0, (iii) limx→+∞ F (x) = 1, (iv) limn→∞ F (x+ 1/n) = F (x).

Corollary 3.2. If F is a distribution function then there exists a probability Q on (R,B) such
that Q(−∞, x] = F (x) for all x ∈ R.

Lemma 3.7. Let X be one real random variable with law PX and distribution function F (x) =
PX(−∞, x], x ∈ R. Then (i) P(X ∈ (a, b]) = F (b) − F (a), (ii) P(X ∈ (a, b)) = F (b−) − F (a),
(iii) P(X ∈ [a, b]) = F (b) − F (a−), (iv) P(X = a) = F (a) − F (a−).

EXERCISE 11. Carefully justify the formulae in the proof of Lemma 3.7.

3.2.1 Types of distribution functions

We now discuss the various kinds of distribution functions on R.

Discrete distribution functions

A discrete distribution function is the distribution function of a discrete random variable X with
values in some countable subset S of R. Assume that p(s) = P(X = s) > 0 for all s ∈ S. Such a
distribution function satisfies F (s)−F (s−) > 0 for all s ∈ S. Indeed, F (s)−F (s−) = P(X = s).
Also, if (a, b) is an open interval containing no points of S, then F is constant on (a, b). Indeed,
if a < x < b then F (x) − F (a) = P(a < X ≤ x) =

∑

s∈S,a<s≤xP(X = s) = 0.

Example 3.1. Let X be a random variable such that P(X = n) = 2−n, n ∈ N. Then its
distribution function looks like in Figure 3.1.

Example 3.2. Let X be a random variable such that for every rational number of the form
m/n where m,n are integers with no common factors, we have P(X = m/n) = c2−(m+n) where
c is chosen so that P(X ∈ Q) = 1. Its distribution function is discrete because Q is countable.
Unfortunately, I can’t draw it. (There are no intervals (a, b) containing no rational points.)
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1 2 3 4 5
0

1

0

Figure 3.1: Distribution function of a discrete random variable

0
0

1

1

Figure 3.2: An absolutely continuous distribution function

Continuous distribution functions

A distribution function F is continuous if it is a continuous function, i.e. if F (x) − F (x−) = 0
for all x ∈ R.

Example 3.3. Consider the random variable U with P(U ≤ u) = u for all u ∈ [0, 1]. Such a
random variable exists (we constructed it). Its distribution function looks like in Figure 3.2.

Excepting the points 0, 1 we have that it is also differentiable with derivative f(u) = 1 if 0 <
u < 1 and 0 otherwise.. If we arbitrarily define f(0) = f(1) = 0, we also have

∫ u
−∞

f(t)dt = F (u)
for all u ∈ R. We like such distribution functions:

Absolutely continuous distribution functions

A distribution function F is called absolutely continuous if there exists a function f (called
density of F ) such that

F (x) =

∫ x

−∞

f(t)dt, x ∈ R.

e The density is not uniquely defined. For instance, it can be changed on a finite set and such a
change will not affect the integral above. Usually, onef imposes additional regularity conditions,
such as continuity, resulting in uniqueness.

But not all continuous distribution functions are absolutely continuous:

Singularly continuous distribution functions

A distribution function F is called singularly continuous if it is continuous but not abso-
lutely continuous. We need to show that there are such functions.

EXERCISE 12. Consider the space (Ω = {0, 1}N,F ,P), where F is the product σ-algebra,
and P is such that P{ω ∈ Ω : ω1 = i1, . . . , ωn = in) = 2−n, i1, . . . , in ∈ {0, 1}, n ∈ N. Let

V (ω) :=

∞
∑

n=1

2ωn
3n

.

eThe integral in the display is a Lebesgue integral. For a definition, see [4]. For the time being, you may think
of it as the standard Riemann integral of Integral Calculus.

f unconsciously
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Show that the random variable V defined in Example 12 has a continuous but not absolutely

Figure 3.3: A continuous distribution function without density

continuous distribution function.

General distribution functions

Suppose that F,G are distribution functions. Then, for any λ ∈ (0, 1), the function λF+(1−λG)
is a distribution function. (Probabilistically, if X,Y are random variables with distribution
functions F,G, respectively, then we can define a new random variable Z which equals X with
probability λ or Y with probability 1−λ.) So, if F is discrete andG continuous then λF+(1−λG)
is neither discrete nor continuous: it is mixed. The question is: Can we exhaust all distribution
functions by taking mixtures of the three types mentioned above? The answer is yes:

Theorem 3.1. Let F be a distribution function on R. Then F can be uniquely written as

F = λdFd + λacFac + λscFsc

where Fd, Fac, Fsc are discrete, absolutely continuous, singularly continuous distribution func-
tions, respectively, and where the coefficients are nonnegative such that λd + λac + λsc = 1.

The last two terms of this decomposition are known as the continuous part of F . The first two
terms are known as the singular part of F . We will not prove this theorem, but refer, e.g. to [2].

Differentiation: a word of caution

The subject of densities involves the concept of a derivative of functions that are not necessarily
everywhere differentiable. Mimicking the definition of a density, we will say that a function G
has density g if G′(x) = g(x) for almost all x. The latter statement means that it holds true that
G′(x) = g(x) for all x in some set A whose complement is small in the sense that for all ε > 0
there exist intervals In, n ∈ N with lengths λn, n ∈ N, such that

∑

n λn < ε and Ac ⊂ ∪nIn. For
further elaboration on this important notion, without which the concept of a density cannot be
properly understood, see [2, 3].

EXERCISE 13. Show that a continuous and piecewise differentiable function G is almost
everywhere differentiable.

3.3 Transformation rules and densities

Consider a random variable X : (Ω,F ) → (R,B). Suppose P is a probability on (Ω,F ). We are
interested in the distribution PX of X. Suppose, for some reason, we don’t like it and want to
change it to something else. There are two ways to do this. First, we can change the probability
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P and replace it by some other probability Q. Then PX will be replaced by QX . Second, we
can take a function H : (R,B) → (R,B) and replace X by H ◦X. Then PX is replaced by
PH◦X . The two procedures are not, in general, equivalent.

Suppose, for instance, that X is a discrete random variable. Then any one-to-one function H
will not change the probabilities of singletons {s} such that PX{s} > 0, but, merely, will rename
them: {s} will be transformed to {H(s)} and its probability will remain the same. Even if H
is not one-to-one, there is not much that H can do to change the probabilities. Consider, for
instance, a random variable X with values 1, 2, 3 and probabilities p1, p2, p3, respectively. Then
the most a function H can do is either be one-to-one, in which case H(1),H(2),H(3) will retain
the old probabilities, or map two points, say 1, 2, to a single point, with probability p1 + p2 and
leave the the third intact. Thus, the types of changes in the distribution of a discrete X that
can be achieved by taking a function of it are quite restricted. To really change its distribution
ad libitum, we need to change the underlying probability P.

For the case of absolutely continuous random variables, the story is different: a merely one-to-
one function H can simultaneously change the values and the distribution in a quite general
fashion.

Theorem 3.2. Let X be an absolutely continuous random variable in R with density f . Let
ϕ : R → R be strictly increasing differentiable function and let ψ be its inverse function. Then
ϕ(X) a random variable with absolutely continuous distribution function and density

ψ′ · f◦ψ on ϕ(R),

and 0 elsewhere.

Proof Since ϕ is strictly increasing, its inverse function exists and has domain ϕ(R). Then,
the distribution function of ϕ(X) is, for any t ∈ ϕ(R),

P(ϕ(X) ≤ t) = P(X ≤ ψ(t)) =

∫ ψ(t)

−∞

f(x)dx.

By changing variable in the integral we have

∫ ψ(t)

−∞

f(x)dx =

∫ t

−∞

f(ψ(s))ψ′(s)ds,

where we set ψ′(s) = 0 for s 6∈ ϕ(R). From the definition of an absolutely continuous distribution
function we see that, indeed, ϕ(X) has absolutely continuous distribution function and its density
is the function inside the last integral. �

EXERCISE 14. Let U be a uniform random variable in the interval (0, 1). Find the density

function of ee
U

.

Theorem 3.2 assumes that ϕ is strictly increasing. It is immediate to find out the formula for
strictly decreasing ϕ. Generalising to more general functions is possible and relatively easy for
random variables with values in R (the story in Rd is more complicated). For instance, we
may assume that ϕ is piecewise differentiable. The problem becomes a problem in differential
calculus and the general theorem is omitted. However, an example is due:

EXERCISE 15. Let X be a random variable with density f(x) = c(1 + x2)−1, x ∈ R. Let
ϕ(x) = cosh(x). Find the density (and hence show that it exists) of ϕ(X).
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3.4 Expectation

The expectation EX of one real random variable X is, if it can be defined, justified (for instance)
by the Theorem (Law) of Large Numbers which will be proved at a later chapter. It is easy to
define the expectation of a discrete random variable X with values in R and probability mass
function p(x). Let S be the set of x such that p(x) > 0. Then

EX =
∑

x∈S

xp(x),

provided that this sum can be defined. We know from Analysis (see [2]) that the sum of positive
numbers can be defined irrespective of which order we sum the numbers up. However, not all
the summands above are necessarily positive. So let us consider the positive and negative terms
separately and try to define

EX =
∑

x∈S+

xp(x) −
∑

x∈S
−

(−x)p(x),

where S+ := {x ∈ S : p(x) > 0}, where S− := {x ∈ S : p(x) < 0}. Each of the two sums,
separately, is a sum of positive terms, hence it is well-defined. The only “problem” is that such
a sum can take value +∞. If both sums are finite then EX is a finite number. If the first sum is
+∞ but the second finite then EX = +∞. Similarly, if the first is finite but the second infinite,
then EX = −∞. The only case where we cannot talk (cannot define) EX is when both sums
are infinite.

When X has absolutely continuous distribution function with density f , one can define EX
similarly:

EX =

∫ ∞

0
xf(x)dx−

∫ 0

−∞

(−x)f(x)dx,

provided that not both integrals are infinity.

The general case requires an approximation procedure, known as integral with respect to a
measure. When X is a nonnegative random variable, there always exists a sequence ξn of
nonnegative random variables, each of which takes finitely many values, such that ξn(ω) → X(ω),
as n→ ∞, for all ω ∈ Ω. We then define

EX = lim
n→∞

Eξn.

It can be proved [3] that the limit exists and is independent of the approximation procedure. If
X has no restriction on sign, we define

EX = EX+ −EX−,

provided that not both terms are +∞.

We say that X is integrable (with respect to P) if both EX+ and EX− are finite or, equivalently,
if E|X| <∞. (The latter follows from the identity |x| = x+ + x−.)

Lemma 3.8 (algebraic properties of expectation). Suppose X,Y are integrable random variables
on the same probability space (Ω,F ,P). Then:
(i) If P(A) = 0 then EX1A = 0.
(ii) E(cX) = cE(X) for all c ∈ R.
(iii) E(X + Y ) = EX + EY .
(iv) If P(X ≥ 0) = 1 then EX ≥ 0. If P(X ≤ Y ) = 1 then EX ≤ EY .

Theorem 3.3 (monotone convergence theorem). For ANY sequence Xn of nonnegative random
variables such that Xn ↑ X, we have EXn ↑ EX.
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Lemma 3.9 (Fatou’s lemma). For any sequence Xn of nonnegative random variables, E limXn ≤
limEXn.

If A ∈ F we can define the expectation of X on A by:

E(X;A) := E(X1A).

If P(A) > 0 we can define the expectation of X given A by:

E(X|A) :=
E(X;A)

P(A)
.

We remark that E(X|A) is expectation with respect to the restriction PA of P on A, i.e. with
respect to the probability

PA : F → R; PA(B) := P(AB), B ∈ F .

In other words,
E(X|A) = EPA

X.

EXERCISE 16. Show that |EX| ≤ E|X| (whenever EX is defined).

Theorem 3.4 (Dominated Convergence Theorem). Let Xn be a sequence of random variables
such that X(ω) = limn→∞Xn(ω) exists and such that |Xn(ω)| ≤ Y (ω) for all n and ω, and
E|Y | <∞. Then E|Xn −X| converges to zero.

3.4.1 Substitution rule

There is a little problem with the notation EX in that it uses the same letter regardless of the
probability P. More correctly, one should write EPX instead of EX or

∫

ΩXdP. Let us consider
compositions of random elements.

Lemma 3.10. Consider the measurable functions

(Ω,F )
Z
−→ (S,S )

H
−→ (R,B).

Let P be a probability on (Ω,F ). Let PZ be the law of Z. Then

EPH◦Z = EPZ
H,

whenever either side exists. (Here, H◦Z is one real random variable on the probability space
(Ω,F ,P) and H is one real random variable on the probability space (S,S ,PZ).)

Sketch of proof: Suppose H is an indicator random variable, i.e. H = 1B for some B ∈ S .
Then EPZ

1A = PZ(A) by the definition of the expectation of a simple random variable. On the
other hand, H◦Z = 1A(Z) is an indicator random variable on (Ω,F ): it is the indicator of the
set {ω ∈ Ω : Z(ω) ∈ A}. Hence, again by the by the definition of the expectation of a simple
random variable, EPH◦Z = P(Z ∈ A). But PZ(A) = P(Z ∈ A) by the definition of the law of
the random variable Z (see section 3.1.3). Suppose next that H is a simple random variable.
Use the above and linearity of expectation to get the result. Suppose that H is a general random
variable. Use an approximation by simple random variables to conclude.

Corollary 3.3 (the expectation of a random variable depends only on its law). If X is a real
random variable on (Ω,F ,P) with expectation EPX and law PX then

EPX = EPX
ι

where ι : R → R is the identity function: ι(x) ≡ x.
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Suppose that X is a discrete random variable with values in a finite set S ⊂ R and probability
mass function p(x), x ∈ S. Since X =

∑

x∈S x1(X = x) is a simple random variable, we
immediately have that EX =

∑

x∈S xP(X = x) =
∑

x∈S xp(x), as needed. The same formula
holds for a discrete random variable with values in a countable set S: Simply enumerate the
elements of S and use monotone convergence theorem.

Let us now consider an absolutely continuous random variable X with density f . We would like
to show that EX is compatible with the definition given at the beginning of the section, namely
that it equals

∫

R
xf(x)dx. To do this, requires understanding of Lebesgue-Stieltjes integral. The

step is omitted and can be found in [1, 4], and in [3].

Lemma 3.11. Let PX be the law of a random variable X with density f . Then, for any
measurable g : (R,B) → (R,B),

∫

R

g(x)f(x)dx = EPX
g

provided that wither side exists.

If you want to see the proof, look at [3]. But do notice that, if g = 1B, then this is what was
discussed before the Lemma. For g simple, we use linearity. For general g we approximate.

Corollary 3.4. Let PX be the law of an integrable random variable X with density f .
(i) If ι is the identity function on R then

∫

R

xf(x)dx = EPX
ι.

(ii)

EX =

∫

R

xf(x)dx.

The proof of (i) follows from Lemma 3.11 with g = ι. The proof of (ii) follows from corollary
3.3.

EXERCISE 17. Suppose that Z is a real random variable with absolutely continuous distri-
bution function and density fZ . Let H : (R,B) → (R,B) be a measurable function. Suppose
that the random variable X = H(Z) has density fX . Show that the expectation of X (if it
exists) can be computed in two ways:

EX =

∫

R

xfX(x)dx =

∫

R

H(z)fZ(z)dz.

EXERCISE 18. Let B ∈ B and let λ(B) :=
∫

R
1B(x)dx (Lebesgue integral). Show that

λ : B → R satisfies λ(∪nAn) =
∑

n λ(An) whenever the An are mutually disjoint elements of B

and that λ(A+ t) = λ(A) for all A ∈ B, t ∈ R, where A+ t := {a+ t : a ∈ A}. The function λ
is called length.

EXERCISE 19. Consider a compass with a laser pointer attached at both ends of the needle.
Suppose there is an infinite screen at some distance from the compass. Give it a spin and see
mark X the location of the light with respect to a fixed point O on the screen (positive if it is
to the right of O; negative if it is to the left). Show that EX is not defined. (You first must
translate this problem in Mathematics.)
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3.5 Inequalities

3.5.1 Markov, Chebyshev, Chernoff

Lemma 3.12 (Markov inequality). If X is a nonnegative random variable then

P(X ≥ t) ≤
EX

t
, t > 0.

Proof We have
t1(X ≥ t) ≤ X

and E is preserved by ≤. �

Definition 3.2. The variance of a real random variable X with EX 2 <∞ is defined by

varX := E(X −EX)2.

Lemma 3.13 (Chebyshev inequality). If X is a real random variable with EX 2 <∞ then

P(|X −EX| ≥ t) ≤
varX

t

Proof Apply the Markov inequality to |X −EX|. �

Lemma 3.14 (Chernoff inequality). If X is a real random variable then

P(X ≥ t) ≤
Eg(X)

g(t)

where g is a positive increasing function.

Proof Since g is increasing,
{X ≥ t} ⊂ {g(X) ≥ g(t)}

Now apply the Markov inequality to g(X). �

EXERCISE 20. Let X be a discrete random variable with P(X = k) =
(

n
k

)

2−k, k = 0, 1, . . . , n.
Estimate P(X > na) for a > 0.5 using the above inequalities.

3.5.2 Jensen

A function ϕ : R → R is convex if

ϕ(pa+ (1 − p)b) ≤ pϕ(a) + (1 − p)ϕ(b)

for all a, b ∈ R and all 0 ≤ p ≤ 1. Notice that if ξ is a random variable with P(ξ = a) = p,
P(ξ = b) = 1 − p, this definition can be written as

ϕ(Eξ) ≤ Eϕ(ξ).

Jensen’s inequality generalises this observation:

Lemma 3.15. Let X be a real integrable random variable and ϕ a convex function. Then

ϕ(EX) ≤ Eϕ(X).

EXERCISE 21. Let a1, . . . , an be positive real numbers. Define their arithmetic, geometric
and harmonic mean by

An =
a1 + · · · + an

n
, Gn = (a1 · · · an)

1/n, Hn =
n

a−1
1 + · · · + a−1

n
,

respectively, and show that An ≥ Gn ≥ Hn.



SMST C: Probability 3–13

3.6 Moments

Definition 3.3. When r > 0, the r-moment of a nonnegative RV X is defined as the quantity
EXr. The r-norm of a real RV X is defined as ||X||r := (E|X|r)1/r.

Lemma 3.16. The r-norm of X is increasing in r.

Proof Let r < s and ϕ(x) = xs/r, x > 0. Notice that ϕ is convex. (This follows from the fact
that its second derivative is positive.) Now apply the Jensen inequality. �

Corollary 3.5. If E|X|p <∞ for some p > 0 then E|X|r <∞ for all 0 < r < p.

3.7 Hölder, Minkowski and Cauchy-Bunyakowskii-Schwarz

Definition 3.4. If X,Y are real random variables on the same (Ω,F ,P), the quantity E(XY )
(whenever it is defined) is called correlation between X and Y . The quantity cov(X,Y ) :=
E((X −EX)(Y −EY )) is called covariance between X and Y .

Lemma 3.17 (Hölder inequality). Let X,Y be real random variables. Then

|E(XY )| ≤ ||X||p||Y ||q,

for any p, q > 0, p−1 + q−1 = 1, as long as all terms involved exist and are finite.

Proof Let (Ω,F ,P) be a probability space on which both X,Y are defined. Without loss
of generality assume that they are both nonnegative. Let q > 1 and assume that E(Y q) < ∞.
Consider the probability

Pq(A) :=
E(Y q

1A)

E(Y q)
, A ∈ F .

Let Eq denote expectation with respect to Pq. Therefore, for any nonnegative random variable
W : (Ω,F ) → (R,B),

EqW =
E(Y qW )

E(Y q)
. (3.2)

Letting, in (3.2), W = XY 1−q, we obtain

E(XY ) = E(Y q) Eq(XY
1−q).

Let p be defined from p−1 + q−1 = 1. Necessarily, p > 1. From Lemma 3.16 we have

EqZ ≤ (EqZ
p)1/p,

for any nonnegative random variable Z : (Ω,F ) → (R,B) with EZ p <∞. Therefore,

E(XY ) ≤ E(Y q) (Eq((XY
1−q)p))1/p

= E(Y q)

(

E(XpY qY (1−q)p)

E(Y q)

)1/p

= (E(Y q))1−1/p (E(XpY q+(1−q)p))1/p.

Since 1 − 1/p = 1/q and q + (1 − q)p = 0, the result follows. �

Corollary 3.6. (Cauchy-Bunyakowskii-Schwarz) Let X,Y be real random variables. Then

|E(XY )| ≤ ||X||2||Y ||2,

as long as all terms involved exist and are finite.
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Proof Notice that 1
2 + 1

2 = 1 and apply Hölder. �

Corollary 3.7. Let X,Y be real random variables. Let

ρ(X,Y ) := cov(X,Y )/
√

var(X)
√

var(Y ),

whenever the terms exist. Then
−1 ≤ ρ(X,Y ) ≤ 1.

Lemma 3.18 (Minkowski inequality). Let X,Y be real random variables. Then

||X + Y ||p ≤ ||X||p + ||Y ||p,

for any p > 1, as long as all terms involved exist and are finite.

Proof Use the Hölder inequality as follows:

E(|X + Y |p) = E(|X| |X + Y |p−1) + E(|Y | |X + Y |p−1)

≤ [E(|X|p)]1/p [E(|X + Y |(p−1)q)]1/q + [E(|Y |p)]1/p [E(|X + Y |(p−1)q)]1/q

= (||X||p + ||Y ||p) [E(|X + Y |p)]1/q,

�

3.8 Moment generating functions

Let X be a real random variable. Since, for any θ ∈ R, the random variable eθX is nonnegative,
its expectation exists (but may be equal to +∞). We define the function M : R → R ∪ {+∞}
by

M(θ) := E(eθX), θ ∈ R.

Notice that M(0) = 1. This function is useful if M(θ) < ∞ for some θ 6= 0. (Indeed, there are
cases where θ = 0 is the only point at which M is finite.) If X is a positive random variable,
then M(θ) <∞ for all θ ≤ 0. If X is a negative random variable, then M(θ) <∞ for all θ ≥ 0.
M depends only on the law of X. Indeed, using the Substitution Rule (Lemma 3.10) we can
write

M(θ) = EPX
(eθι), where ι(x) ≡ x,

and, if X has absolutely continuous distribution function F with density f , we can write

M(θ) =

∫

R

eθxf(x)dx (Lebesgue integral) .

The function M is called moment generating function because of the following:

Lemma 3.19. Suppose there exist a < 0 < b such that M(θ) <∞ for all a < θ < b. Then
(i) the r-moment of X exists for all r ∈ N and is given by the r-derivative of M at 0:

E(Xr) = DrM(0).

(ii)

M(θ) =
∞
∑

r=0

E(Xr)

r!
θr, a < θ < b.

(iii) There is only one distribution function F such that if X has distribution function F then
it has moment generating function M .

Proof [sketch] Using the Dominated Convergence Theorem 3.4, we can see that M is infinitely
differentiable at 0 with r-derivative equal to the r-moment of X. Moreover, we can see that
M is a real analytic function around 0. Hence Taylor’s theorem holds, which yields the second
claim. �
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