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4.1 Joint distributions

Consider a random element (X,Y ) : (Ω,F ) → (R2,B(R2)). This random variable is called two

random variables.

If P is a probability of (Ω,F ), the joint distribution of (X,Y ) is another name for
the law PX,Y of the random variable (X,Y ).

The joint distribution function of (X,Y ) is the function

FX,Y (x, y) := P(X ≤ x, Y ≤ y) = PX,Y ((−∞, x] × (−∞, y]), (x, y) ∈ R2. (4.1)

The law PX of X is referred to as the first marginal of the law PX,Y . The distribution function
FX of X is referred to as the first marginal distribution function of the joint distribution function
FX,Y and, of course,

FX(x) = lim
y→∞

FX,Y (x, y).

Note that we chose ti use ≤ instead of < in (4.1) for no good reason other than a mere arbitrary
convention.

aThese notes contain almost no proofs. For a complete set of notes, see [3]; alternatively, read the introductory
book [4], or the more advanced book [1].
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4.1.1 Knowledge of FX,Y implies knowledge of PX,Y

Explaining why knowledge of the function FX,Y implies knowledge of PX,Y (B) for all B ∈ B(R2)
is beyond the scope of these lectures. The explanation can be found in [1, 3, 4]. But we give
some intuition. Consider a rectangle (with sides parallel to the axes–please think geometrically)

(a1, b1] × (a2, b2] := {(x, y) ∈ R2 : a1 < x ≤ b1, a2 < y ≤ b2}. (4.2)

We allow a1, a2 to take any value, including −∞. Since (−∞, b1]×(−∞, b2] is the disjoint union
of four rectangles, using additivity, we obtain

PX,Y ((a1, b1] × (a2, b2]) = FX,Y (b1, b2) − FX,Y (b1, a2) − FX,Y (a1, b2) + FX,Y (b1, b2).

Rectangles of the form (4.2) have the following nice properties: First, intersection of two of them
is a rectangle of the same form. Thus, if R denotes the collection of these rectangles we have
that R is closed under finite intersection, i.e. it is a π-system. Second, the complement of a
rectangle from R is a finite union of disjoint rectangles from R.

EXERCISE 1. Write, explicitly, the complement of (a1, b1] × (a2, b2] as the disjoint union of
elements of R. Notice we can do that in at least two different ways. Do so.

Now consider the class

C := {finite disjoint unions of elements of R}.

It is easy to visualise, geometrically, what kind of elements C contains. Then

EXERCISE 2. Show that C is a field, i.e. if A ∈ C then Ac ∈ C and if A,B ∈ C then
A ∪ B ∈ C .

Hence, if A ∈ C , we can write A = ∪m
i=1Bi, where Bi are disjoint rectangles from R, and, since

for each such rectangle Bi we can use FX,Y to compute PX,Y (B), we have that

PX,Y (A) =

m
∑

i=1

PX,Y (B), A ∈ C ,

can be computed by using FX,Y only.

But there are many sets in B(R2) that do not belong to C , so we wish to continue our endeavour.
If it were true that every set in B(R2) was a limit of sets of C then we would be finished, by
the continuity property of a probability. However, there are many elements in B(R2) that are
not limits of sets in C .

Example 4.1. The set of all points (x, y) where x, y are rationals cannot be obtained as a limit
of elements of C 2. To illuminate this point, consider “straightforward” procedure that places a
little rectangle around each such point and then let the little rectangle shrink. Specifically, let
Q = {q1, q2, . . .} be an enumeration of the rationals. To each (qm, qn) associate the rectangle

Im,n(ε) := (qm − ε2−m, qm + ε2−m] × (qn − ε2−n, qn + ε2−n],

and let I(ε) := ∪m,nIm,n(ε). Show that ∩ε>0,ε∈QI(ε) is not equal to Q × Q.
Hint: The set I(ε) is uncountable.

We will denote by P0 the function PX,Y restricted to C . Clearly, P0 is uniquely specified by
FX,Y . If P0 can be uniquely extended to a probability on (R2,B(R2)) then our claim that
FX,Y completely specifies PX,Y will be proved. The proof of this is contained in [3]. The most
important step in the proof is to show that P0 is countably additive on C .

EXERCISE 3. Let V,W be independent random variables with FV (t) = FW (t) = 1 − e−t,
t > 0. Let X = 2V , Y = V − W . Compute the joint distribution function FX,Y of the random
element (X,Y ).
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4.2 Independence

Recall that X,Y are independent random variables on (Ω,FP) if σ(X), σ(Y ) are independent
σ-fields. We would like to show that

Proposition 4.1. X,Y are independent on (Ω,F ,P) if and only if FX,Y (x, y) := P(X ≤
x, Y ≤ Y ), FX(x) := P(X ≤ x), FY (y) := P(Y ≤ y) are related by

FX,Y (x, y) = FX(x)FY (y).

This is a consequence of the following:

Lemma 4.1. Let (Ω,F ,P) be a probability space. Let R1,R2 be two classes of sets, each of
which is closed under the intersection operation. Then σ(R1), σ(R2) are independent if and only
if

P(B1B2) = P(B1)P(B2), B1 ∈ R1, B2 ∈ R2.

For a proof see [3].

Proof of Proposition 4.1: Let R1 = {X−1(a, b] : a < b}, R2 = {Y −1(a, b] : a < b}.
These are both classes of sets closed under intersection. It is easy to see that the assumption
FX,Y (x, y) = FX(x)FY (y) implies that P(B1B2) = P(B1)P(B2), B1 ∈ R1, B2 ∈ R2. Hence
P(A1A2) = P(A1)P(A2), A1 ∈ σ(R1) = σ(X), A2 ∈ σ(R2) = σ(Y ).

4.3 Joint density

The concept of joint density requires understanding of the Lebesgue integral of functions of two
variables. You will not be asked to understand this, but you may think of it, roughly, as a
Riemann integral. For a complete understanding, see [1, 4], and also consult the notes [3].

We do mention, without proof of course, the following:

Theorem 4.1. (i) If h is Riemann integrable on a rectangle R = [a, b]× [c, d] then its Lebesgue
integral on R coincides with its Riemann integral on R.
(ii) If h is bounded and measurable then it is Riemann integrable on R of the set of discontinuities
D of h satisfies P((U1, U2) ∈ D) = 0.

Given two distribution functions F1, F2 on R, we can define the product measure F1 × F2 on
(R2,B(R2)) by defining it first on rectangles,

(F1 × F2)(B1 × B2) := P(F−1
1 (U1) ∈ B1, F−1

2 (U2) ∈ B2),

and then extending it to B(R2) using the procedure explained in [3]. One could define the
Lebesgue-Stieltjes integral by

∫

R2

h d(F1 × F2) := Eh(F−1
1 (U1), F

−1
2 (U2)),

where U1, U2 are independent random variables, uniform in [0, 1].

Theorem 4.2 (Fubini). If h ≥ 0 or if
∫

R2 |h| d(F1 × F2) < ∞, then

∫

R2

h d(F1 × F2) =

∫

R

(
∫

R

h(x, y)F2(dy)

)

F1(dx) =

∫

R

(
∫

R

h(x, y)F1(dx)

)

F2(dy).
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Proof [sketch]: The statement is obvious when h(x, y) = 1B1
(x)1B2

(y). Hence it is obvious
for linear combinations of such functions. The general statement follows from an approximation
procedure (see [1, 4] and the notes [3].)

Occasionally, it so happens that there exists a function f such that FX,Y can be written as a
Lebesgue integral:

FX,Y (x, y) =

∫

(−∞,x]×(−∞,y]
f(s, t)dsdt.

In such a case, we say that (X,Y ) is absolutely continuous (jointly absolutely continuous, I
suppose, if you want to be pedantic) and that fX,Y is a density. Using Fubini’s theorem, we see
that

fX(x) =

∫

(−∞,x]
f(s)ds

is a density for X (i.e. X is absolutely continuous, and so is Y ).

Another consequence of Fubini’s theorem is:

Lemma 4.2. If X,Y are independent then

E(XY ) = (EX)(EY ),

whenever the expectations are defined.

And another, useful consequence of Fubini’s theorem is:

Lemma 4.3. If X is a positive random variable then

EX =

∫ ∞

0
P(X > x) dx.

A standard criterion for independence between X,Y , for absolutely continuous (X,Y ), is:

Lemma 4.4. Suppose that (X,Y ) is absolutely continuous. Let fX,Y be a density of (X,Y ).
Let fX , fY be densities of X,Y , respectively. Then X,Y are independent if and only if

f(x, y) = fX(x)fY (y),

for all (x, y) except, possibly, on a set of measure zero.

4.4 Joint moment generating function

When (X,Y ) is a random variable in R2 we can define its joint moment generating func-

tion by
MX,Y (η, θ) := EeηX+θY , η, θ ∈ R.

whenever it exists. Let also MX ,MY be the moment generating functions of X,Y . One can
prove that:

Lemma 4.5. Suppose that MX,Y exists in a (one sided) neighbourhood of zero. If MX,Y (η, θ) =
MX(η)MY (θ) then X,Y are independent.

EXERCISE 4. Let X,Y be independent random variables with common moment generating
function MX(θ) = MY (θ) = eθ2

. Let X ′ := X + Y , Y ′ := X − Y . Compute the joint moment
generating function of (X ′, Y ′). Show that X ′, Y ′ are independent.
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4.5 Correlations

We now consider random variables X on some probability space (Ω,F ,P) with EX 2 < ∞. The
aggregate of all these random variables will be denoted by

L2(Ω,F ,P).

If EX2 < ∞, EY 2 < ∞, then E(X + Y )2 < ∞ (indeed, (x + y)2 ≤ 2x2 + 2y2). This means that
if X,Y ∈ L2(Ω,F ,P) then, for any a, b ∈ R, aX + bY ∈ L2(Ω,F ,P). Hence L2(Ω,F ,P) is a
linear space (a linear subspace of RΩ). The correlation between X and Y is defined by

E(XY ).

The covariance between X and Y is defined by

cov(X,Y ) = E(X −EX)(Y −EY ).

Since, for X1, X2, Y ∈ L2(Ω,F ,P), a1, a2 ∈ R,

cov(a1X1 + a2X2, Y ) = a1 cov(X1, Y ) + a2 cov(X2, Y ),

the covariance is linear in each of its arguments when the other is kept fixed and it can thus be
used to define an inner product:

〈X,Y 〉 := cov(X,Y ).

We also define the semi-norm

||X|| :=
√

cov(X,X) =
√

var(X,X),

where the word ‘semi-norm’ means that it has the following properties:

1. ||X|| ≥ 0

2. ||a1X1 + a2X2|| = |a1| ||X1|| + |a2| ||X2||.

3. ||X + Y || ≤ ||X|| + ||Y ||.

Another name for ||X|| is ‘standard deviation’. We also note that

If ||X|| = 0 then P(X = 0) = 1.

We cannot deduce, from ||X|| = 0 alone that X(ω) = 0 for all ω ∈ Ω, but only that X(ω) = 0
for all ω except those in a set of probability zero. If we could deduce that X(ω) = 0 for all
ω ∈ Ω, we would say that || · || is a norm. To get around this problem, we merely identify all
random variables in L2(Ω,F ,P) which differ on a set of measure zero: That is, we let [X] be
the set of all Y such that P(X 6= Y ) = 0, and redefine L2(Ω,F ,P) to be the collection of all
such [X]. It is not hard to see that this is still a linear space and if we let ||[X]|| := ||X|| (which
is well defined), then this is a norm.

Being a normed space with an inner product, L2(Ω,F ,P) has a structure much like the geometric
structure of the usual Euclidean space, for instance, Pythagoras’ theorem holds:

||X + Y ||2 = ||X||2 + ||Y ||2 if 〈X,Y 〉 = 0.

For more properties, see [3].

EXERCISE 5. Let U1, U2 be independent, both uniform in [0, 1]. Compute the correlation
and covariance between X1 := U1 + eU2 , X2 = U2

1 − U3
2 .
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4.6 Conditioning

4.6.1 Näıve conditioning

Recall that, if (Ω,F ,P) is a probability space and B ∈ F , P(B) 6= 0, we define

P(A|B) = P(AB)/P(B), A ∈ F .

This is a new probability, called P conditional on B. We easily see that (Ω,F ,P(·|B)) is a new
probability space.

The problem is that, in many cases, we want to condition with respect to an event B that has
probability zero. This can be done. Loosely speaking, what saves us is the fact that if P(B) = 0
then P(AB) = 0 as well.

We can use many methods for defining conditioning in a more general sense. There is a geometric
approach based on the structure of L2(Ω,F ,P), and this can be found in any good book,
like [1, 4], and also in the notes [3]. In Chapter 8 you will see another approach.

What we will do, instead, is to define conditioning in very special cases, using formulae.

4.6.2 Conditional density

Suppose that (X,Y ) is an absolutely continuous random element of R2 with some joint density
f : R2 → R. Then X is an absolutely continuous random variable. Let f1 : R → R be a density
for X. Similarly, Y is an absolutely continuous random variable. Let f2 be a density for Y . We
call f1, f2 marginal densities of f . Define the conditional density of X given Y by

fX|Y (x|y) :=







f(x, y)

f2(y)
, if f2(y) 6= 0,

0, otherwise.

Lemma 4.6. For B,C ∈ B, let

gB(y) :=

∫

B

fX|Y (x|y)dx.

Then
P (X ∈ B, Y ∈ C) = E[gB(Y )1C(Y )],

This is hard to prove in general. But you can sort of see it is true by considering

EXERCISE 6. Convince yourselves that the lemma is true if B, C are intervals.

4.6.3 Conditional probability mass function

Let (X,Y ) be a random variable on (Ω,F ,P) with values in the discrete set (S1 × S2, 2
S1×S2).

As usual, define its joint probability mass function and marginal probability mass

functions by

p(x, y) := P((X,Y ) = (x, y)), p1(x) := P(X = x), p2(y) := P(Y = y), (x, y) ∈ S1 × S2.

Define the conditional probability mass function of X given Y by b

pX|Y (x|y) :=







p(x, y)

p2(y)
, if p2(y) 6= 0,

0, otherwise.
(4.3)

bThe notation pX|Y is terrible. We only use it out of some respect to the undergraduate probability courses.
The reason that the notation is terrible is that in the subscript ‘X|Y ’ in pX|Y (x|Y ) plays a merely cosmetic rôle,
as opposed to the essential rôle played by the last variable Y inside the parenthesis.
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Lemma 4.7.
P(X = x|Y = y) = pX|Y (x|y)p2(y).

Proof If p2(y) = 0 then P(X = x, Y = y) = 0. If p2(y) > 0 then multiply both sides of (4.3)
by p2(y) to obtain the desired result. �
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[2] E. Hewitt & K. Stromberg, Real and Abstract Analysis, Springer, 1965.

[3] T. Konstantopoulos, Extended set of lecture notes, with proofs,
www.ma.hw.ac.uk/∼takis

[4] D. Williams, Probability with Martingales, Cambridge, 1991.


