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5.1 Binomial, Poisson, and multinomial

Consider the coin tossing experiment, i.e. consider a sequence ξ1, ξ2, . . . of i.i.d. random variables
with

P(ξ1 = 1) = p, P(ξ1 = 0) = 1 − p.

The law of
Sn = ξ1 + · · · + ξn

is called Binomial with parameters n and p. From this we have

ESn = np, varSn = n var ξ1 = np(1 − p),

and, since ξn+1 + ξn+m is Binomial with parameters m and p, and independent of Sn, we have
that the sum of two independent Binomial random variables with the same p is again Binomial.
We also have

P(Sn = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n,

and, from the Binomial theorem,

EeθSn = (peθ + 1 − p)n.

EXERCISE 1. Compute the moment generating function of n−1/2(Sn −ESn) and show that,
as n → ∞, it converges to the a function of the form e−cθ2

. (This is moment generating function
of a Gaussian random variable).

EXERCISE 2. Use Chernoff’s inequality to estimate P(Sn > n(p + x)) for x > 0.

5–1
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By letting p vary with n and taking limits we obtain a different fundamental law, the Poisson
law. Specifically,

Lemma 5.1. If pn = λ
n + o(1/n), as n → ∞, then

P(Sn = k) → λk

k!
e−λ,

for all k = 0, 1, 2, . . ..

Proof Use Stirling’s formula. �

This is the Poisson law with parameter λ. The Poisson law is fundamental when, roughly
speaking, we deal with independent rare events.

Let X be a Poisson random variable. Then We have

EeθX =
∞∑

k=0

(λeθ)k

k!
e−λ = eλ(eθ−1).

Differentiating a couple of times, we find

EX = λ, varX = λ.

Furthermore,

Lemma 5.2. If X1, X2, . . . are independent Poisson random variables with parameters λ1, λ2, . . .
such that

∑
λk < ∞ then

∑
k Xk is Poisson with parameter

∑
k λk.

Proof We prove this for a finite number n of random variables (which is enough by the way we
construct a probability on an infinite product). The moment generating function of X1+. . .+Xn

is
n∏

k=1

eλk(eθ−1) = e(eθ−1)
Pn

k=1
λk

and this is the moment generating function of a Poisson law with parameter
∑

k λk. �

Next we consider conditional probabilities:

Lemma 5.3. Suppose that X1, X2 are independent Poisson with parameters λ1, λ2. Then, con-
ditional on X1 + X2 = n, we have that X1 is Binomial with parameters n, λ1/(λ1 + λ2).

Proof Elementary conditioning: For 0 ≤ k ≤ n,

P(X1 = k|X1 + X2 = n) =
P(X1 = k,X2 = n − k)

P(X1 + X2 = n)

=

λk
1

k!
e−λ1

λn−k
2

(n − k)!
e−λ2

(λ1 + λ2)
n

n!
e−λ1−λ2

=

(
n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

.

�

Generalising this, we have:
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Lemma 5.4. Suppose that X1, X2, . . . , Xd are independent Poisson with parameters λ1, λ2, . . . , λd,
respectively. Then, conditionally on

∑
k Xk = n, the random vector (X1, . . . , Xd) has law given

by

P(X1 = n1, . . . , Xd = nd |
∑

k

Xk = n) =

(
n

n1, . . . , nd

)(
λ1

λ

)n1

· · ·
(

λd

λ

)nd

,

where (n1, . . . , nd) are nonnegative integers with sum equal to n, and λ =
∑

k λk, and where

(
n

n1, . . . , nd

)
=

n!

n1! · · · nd!

EXERCISE 3. Show this.

The symbol

(
n

n1, . . . , nd

)
is the multinomial coefficient since it appears in the algebraic identity

known as multinomial theorem:

(x1 + · · · + xd)
n =

∑(
n

n1, . . . , nd

)
xn1

1 · · · xnd

d .

The sum is taken over all nonnegative integers (n1, . . . , nd), with sum equal to n.

The random variable (X1, . . . , Xd) with values in Z
d
+ is said to have a multinomial distribution

with parameters d, n, p1, . . . , pd (where p1 + · · · + pd = 1, so one of them is superfluous) if

P(X1 = n1, . . . , Xd = nd) =

(
n

n1, . . . , nd

)
pn1

1 · · · pnd

d ,

where (n1, . . . , nd) are nonnegative integers with sum equal to n,

Of course, a multinomial distribution with parameters 2, n, p, 1 − p is a binomial distribution
with parameters n, p.

5.2 Thinning

Suppose an urn contains n balls. There are d colours available. Let the colours be denoted by
c1, c2, . . . , cd. To each ball assign colour ci with probability pi, independently from ball to ball.
Let Si

n be the number of balls that have colour ci, 1 ≤ i ≤ d. It is easy to see that (S1
n, . . . , Sd

n)
has a multinomial law:

P(S1
n = k1, . . . , S

d
n = kd) =

(
n

k1, . . . , kd

)
pk1

1 · · · pkd

d ,

where (k1, . . . , kd) are nonnegative integers summing up to n. Clearly,

S1
n + · · · Sd

n = n,

so the random variable S1
n, . . . , Sd

n cannot be independent. The question is:

Suppose that the number of balls is itself a random variable, independent of every-
thing else. Is there a way to choose the law of this random variable so that the above
variables are independent?

To put the problem in precise mathematical terms, let ξ1, ξ2, . . . be i.i.d. random colours, i.e.
random variables taking values in {c1, . . . , cd} such that

P(ξ1 = ci) = pi, 1 ≤ i ≤ d.
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Let

Si
n :=

n∑

k=1

1(ξk = ci).

(In physical terms, Si
n denotes precisely what we talked about earlier using a more flowery

language.) Now, independent of the sequence ξ1, ξ2, . . ., let N be a random variable with values
in Z+. The problem is to find its law so that

S1
N , . . . , Sd

N are independent random variables. (?)

It turns out that this is a characterising property of the Poisson law. We will contend ourselves
by proving one direction:

Lemma 5.5. If N is Poisson then (?) holds. Moreover, if N has expectation λ, then S i
N is also

Poisson with expectation λpi.

EXERCISE 4. Prove the last lemma.

5.3 Geometric

A random variable X with values in N is geometric if it has the memoryless property:

For each k ∈ N, the conditional distribution of X − k given {X > k} is the same as
the distribution of X:

P(X − k = n|X > k) = P(X = n).

Think of X as a random time, e.g. the day on which a certain volcano will erupt. The property
above says that if by day k the volcano has not erupted then the remaining time X − k has the
same law as X, no matter how large k is.

Lemma 5.6. If q = P(X > 1) then

P(X > k) = qk, k ∈ N

and
P(X = k) = pqk−1,

where p = 1 − q.

Proof By the property of X,

P(X > k + n|X > k) = P(X > n),

for all k, n, which means that

P(X > k + 1) = P(X > k)P(X > 1).

Iterating this, we find
P(X > k) = P(X > 1)k, k = 0, 1, . . . .

�

People refer to X as geometric with parameter p. The terminology is not standard because
other people refer to X − 1 (which also has the memoryless property but takes values in Z+) as
geometric with parameter q. A matter of taste, really.

It is easy to see that
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Lemma 5.7. If X is geometric in N with P(X = 1) = p then

EX = 1/p, varX = (1 − p)/p2, EeθX =
peθ

1 − (1 − p)eθ
.

EXERCISE 5. Do all that.

A concrete way to get a geometric random variable is by considering ξ1, ξ2, . . . to be i.i.d. with

P(ξ1 = 1) = 1 −P(ξ1 = 0) = p

and by letting
X = inf{k ≥ 1 : ξk = 1}.

We have P(X < ∞) = 1, so
X = min{k ≥ 1 : ξk = 1}

and
P(X > k) = P(ξ1 = · · · = ξk = 0) = (1 − p)k,

as required.

We have that

Lemma 5.8. If X1, X2, . . . , Xd are independent and geometric then X = min(X1, . . . , Xd) is
geometric.

Proof

P(X > k) = P(X1 > k, . . . ,Xd > k)

= P(X1 > k) · · ·P(Xd > k)

= qk
1 · · · qk

d = (q1 · · · qd)
k.

�

EXERCISE 6. Let X,Y be independent and geometric. Show that

P(X − Y > n|X > Y ) = P(X > n),

for all n, and interpret the formula.

5.4 Uniform

We have already seen, in detail, how to construct a uniform random variable, from first principles.
Recall that U is uniform in the interval [0, 1] if P(U ≤ x) = x, 0 ≤ x ≤ 1. More generally,

X is uniform in [a, b] if, for all intervals I, the probability P(X ∈ I) is proportional
to the length of I.

Of course, if X is uniform in [a, b], then cX + d is uniform in the interval with endpoints ca + d
and cb + d.

Recall that if F is a distribution function and U is uniform in [0, 1] then F −1(U) is a random
variable with distribution function F .
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Lemma 5.9. Let p1, . . . , pd be positive numbers adding up to 1. Split the interval [0, 1] into
consecutive intervals I1, . . . , Id of lengths p1, . . . , pd, respectively. Let U1, . . . , Un be i.i.d. uniform
in [0, 1]. Let

Si
n =

n∑

k=1

1(Uk ∈ Ii), 1 ≤ i ≤ d.

Then (S1
n, . . . , Sd

n) has a multinomial law. In particular, S i
n is Binomial with parameters n, pi.

EXERCISE 7. Show this last lemma.

EXERCISE 8. Let U1, . . . , Ud be i.i.d. uniform in [0, 1]. Compute the probability P(U1 <
U2 < · · · < Ud).

EXERCISE 9. Consider a stick of length 1 and break it into 3 pieces, by choosing the two
break points at random. Find the probability that the 3 smaller sticks can be joined to form a
triangle.

EXERCISE 10. Pick a random variable U1 uniform in [0, 1]. Let U2 be the midpoint of
the interval [0, U1] or of [U1, 1], with equal probability. Continue in the same manner and
define U3 to be the midpoint of [0, U2] or of [U2, 1], with equal probability. Show that the
x 7→ limn→∞ P(Un ≤ x) is continuous but not absolutely so.

5.5 Exponential

A random variable T with values in R+ is exponential if it has the memoryless property:

For all t, s > 0,
P(T − t > s|T > t) = P(T > s).

Lemma 5.10. If T is exponential then there is λ > 0 such that

P(T > t) = e−λt, t ≥ 0.

Proof Implicit in the definition is that P(T > t) > 0 for all t. Hence α := P(T > 1) ∈ (0, 1).
We have

P(T > t + s) = P(T > t)P(T > s)

for all t, s. Using this and induction, we have that, for all n ∈ N,

P(T > nt) = P(T > t)n.

This gives that, for all m ∈ N,

P(T > 1 = m(1/m)) = P(T > 1/m)m

and so P(T > 1/m) = P(T > 1)1/m. Letting t = 1/m in the pre-last display, we have

P(T > n/m) = αn/m.

Now, for t > 0, let q1 > q2 > . . . be rational numbers with inf{q1, q2, . . .} = t. Then

P(T > t) = P(∪k{T > qk}) = sup
k

P(T > qk) = sup
k

αqk = αinfk qk = αt.

Since α < 1, we have λ := − log α > 0. �

We say that T is exponential with parameter (rate) λ.

It is easy to see that
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Lemma 5.11. If T is exponential with rate λ then T has density

f(t) = λe−λt, t ≥ 0.

Also,

EeθT =
λ

λ − θ
,

defined for all θ < λ, and
ET = 1/λ, varT = 1/λ2.

Proof Note that ∫ t

0
f(s)ds = 1 − e−λt,

showing that f is a density for T . The rest are trivial. �

Lemma 5.12. Let T1, T2, . . . , Td be independent exponential random variables with parameters
λ1, λ2, . . . , λd, respectively. Then min(T1, . . . , Td) is exponential with parameter λ1 + · · · + λd.

Proof
P(min(T1, . . . , Td) > t) = P(T1 > t) · · ·P(Td > t).

�

Whereas an exponential is the natural analogue of a geometric, in that they are both memoryless,
the former also enjoys the important scaling property:

If T is exponential with rate λ then, for any c > 0, cT is exponential with rate λ/c,

and this is obvious.

EXERCISE 11. Let T1, T2, . . . , Td be independent exponential random variables all with rate
1. Show that

law of max(T1, . . . , Td) = law of

(
T1 +

T2

2
+ · · · + Td

d

)
.

Another relation between geometric and exponential is the following: Let p be very small. Let
X be geometric with parameter p. Consider a scaling of X by p, i.e. the random variable pX
which takes values p, 2p, 3p, . . .. Then the law of pX converges to an exponential law with rate
1:

Lemma 5.13 (Rényi). For X geometric with parameter p,

lim
p→0

P(pX > t) = e−t, t > 0.

Proof P(pX > t) = P(X > t/p), and, since X is an integer,

P(X > t/p) = P(X ≥ dt/pe) = (1 − p)dt/pe+1.

Since limn→∞(1 + n−1)n = e, we have that the last expression converges to e−t as p → 0. �
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5.6 Gaussian (normal) variables

5.6.1 The Gaussian law

The motivation of the Gaussian probability comes from the central limit theorem (which, long
time ago, was known as the “law of errors”). This was stated, without proof, in 2.3.2 . We
work heuristically in order to motivate the definitions. Let Sn = ξ1 + · · · + ξn be the sum of n
independent indicator (also known as Bernoulli) random variables ξi with P(ξi = 1) = p for all
i. Let Ŝn = Sn − ESn. Then, as n → ∞, the distribution function of Ŝn/

√
n converges to an

absolutely continuous distribution function with a famous formula. Let X be a random variable
with such a distribution function. Note that

Ŝ2n√
n

=
1√
2

Ŝn√
n

+
1√
2

Ŝ′
n√
n

,

where Ŝ′
n = ξn+1 + · · · + ξ2n is a random variable with the same law as Ŝn. So the distribution

of
bS′

n√
n

will also converge to the distribution of X. Moreover, Ŝ′
n, Ŝn are independent. Therefore,

if X1, X2 are independent random variables with the same law as X, then we expect that

X =
X1 + X2√

2
.

Even if we do not know what this famous distribution is, it should be such that this “addition
law” holds. From this, we can discover its density. One way to do that is by imposing the
extra assumption (which is not necessary) that the generating function of X exists for all θ:
M(θ) = EeθX . Then

M(θ) = M(θ/
√

2)2.

Letting θ =
√

η and taking logarithms, we have

log M(
√

η) = 2 log M(
√

η/2).

So, if we temporarily let m(η) = log M(
√

(η)) we have

m(η) = 2m(η/2).

So m(0) = 0 and with some work, we can actually find that the only continuous function
satisfying the latter is linear: m(η) = cη. (This should be geometrically obvious.) Hence

M(θ) = ecθ2

.

We know that the moments of X are given by the derivatives of M at 0. We find

M ′(0) = 0, M ′′(0) = 2c.

So EX = 0 (as it should), while EX2 = 2c. So c > 0. Since EX = 0, the second moment is the
variance and we customarily denote it by σ2. We arrive at

M(θ) = e
1

2
σ2θ2

.

We know that there is only one probability distribution with a given moment generating function.
Instead of trying to figure out which one it is, let us reveal the result and then just verify that it
is correct. We claim that the probability distribution corresponding to the last M is absolutely
continuous with density

f(x) = Ce−x2/2σ2

.

Here, C is such that
∫

R
f(x)dx = 1. This is the famous normal or Gaussian density with

mean 0 and variance σ2. It is called standard if σ2 = 1.
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EXERCISE 12. Show that
∫ ∞
−∞ eθxf(x)dx = e

1

2
σ2θ2

. (Hint: Complete the square and use the
definition of C.)

Now, to find C is a very important thing. It is based on the following:

Lemma 5.14. ∫

R

e−x2

dx =
√

π.

(Liouville said that a Mathematician is someone for whom this integral is obvious.)

EXERCISE 13. Use Fubini’s theorem to write
(∫

R
e−x2

dx
)2

=
∫

R2 e−x2−y2

dxdy and do the

latter integral using polar coördinates.

Using this we find that

C =
1√

2πσ2
.

Therefore, the standard normal density is

ϕ(x) =
1√
2π

e−x2/2.

We write N (0, 1) for the law of a random variable X with standard normal density. We write
N (µ, σ2) for the law of σX + µ.

EXERCISE 14. Show that a density for N (µ, σ2) is

1√
2πσ2

exp

{
−(x − µ)2

2σ2

}
.

EXERCISE 15. Show that if Xi, i = 1, . . . , d are independent and Xi having law N (µi, σ
2
i )

then
∑d

i=1 Xi has law N (
∑

i µi,
∑

i σ2
i ). Therefore linear combinations of independent normal

variables are normal.

5.6.2 The multidimensional Gaussian random vector

We now pass on to defining a Gaussian (or normal) random variable in R
d.

We say that (X1, . . . , Xd) is Gaussian in R
d if, for all a1, . . . , ad ∈ R, the random

variable a1X1 + · · · + adXd is normal.

The next lemma shows what the moment generating function of a normal vector is:

Lemma 5.15. If (X1, . . . , Xd) is Gaussian vector with

µj = EXj , rjk = cov(Xj , Xk),

then

E exp
d∑

j=1

θjXj = exp





d∑

j=1

µjθj +
1

2

d∑

j=1

d∑

k=1

rjkθjθk



 .

Proof By definition
∑d

j=1 θjXj should be normal, i.e. have a law N (µ, σ2), for some µ, σ2. We
have

µ = E

d∑

j=1

θjXj =

d∑

j=1

µjθj, σ2 = cov

d∑

j=1

θjXj =

d∑

j=1

d∑

k=1

θjθk cov(Xj , Xk).
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�

Since the moment generating function of a Gaussian vector is the exponential of a quadratic
form, there is no better way to express it other than using Linear Algebra. To this end, we
think of the elements x of R

d as column vectors. We use x′ to denote transposition, i.e. the
corresponding row when x is a column. And, of course, (x′)′ = x. Consider the mean (column)
vector

µ = (µ1, . . . , µd)
′

and the symmetric covariance matrix
R = [rjk].

Write also X for the column with entries X1, . . . , Xd. We then have

Eeθ′X = exp

{
θ′µ +

1

2
θ′Rθ

}
.

This uniquely defines the law of (X1, . . . , Xd). This law is denoted by N (µ,R), where µ is the
mean vector and R the covariance matrix.

Lemma 5.16. A Gaussian vector (X1, . . . , Xd) is absolutely continuous if and only if R is
invertible. In this case, its density is given by

f(x) =
1√

(2π)d det(R)
exp

(
−1

2
(x − µ)′R−1(x − µ)

)
.

Proof Assume µ = 0, to ease notation. Assume R is invertible. It is easily seen that

R = E(XX ′)

where XX ′ is a d × d matrix and E(XX ′) is the matrix formed by taking the expectations of
the entries of XX ′. This R has two important properties:
(i) it is symmetric (obviously);
(ii) it is positive semi-definite, i.e. the quadratic form

u′Ru =
∑

k

∑

`

Rk`uku` ≥ 0

for all values of the variables, positive or negative. The reason for the latter is that u ′Ru is the
expectation of a non-negative quantity:

u′Ru = u′EXX ′u = E(X ′u)′(X ′u) = E(X ′u)2 ≥ 0.

Standard linear algebra shows that R has exactly d (counting multiplicities) non-negative eigen-
values. (In fact, they are strictly positive, due to the invertibility of R which is tantamount to
det(R) 6= 0). Furthermore, the eigenvectors can be chosen to be orthonormal. Letting U be the
matrix whose columns are these d orthonormal eigenvectors and Λ the diagonal matrix with the
eigenvalues in its diagonal, we have

RU = UΛ,

from the very definition of the eigenvectors. Now

U ′ = U−1,

hence
R = UΛU ′ = UΛ1/2Λ1/2U ′ = PP ′,
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with
P = UΛ1/2.

The matrix P is non-singular and is called the square root of R. We now define new random
variables Z by

X = PZ .

The thing to observe is that the covariance matrix of Z is

cov(Z) = EZZ ′ = EP−1XX ′P ′−1 = P−1R′P ′−1 = P−1PP ′P ′−1 = I,

I being the identity matrix. Thus

Eeθ′Z = eθ′θ/2 =
d∏

j=1

eθ2

j /2 =
d∏

j=1

EeθjZj ,

implying that the components of Z are independent standard normal. Hence the density g of Z
is product:

g(z) =
∏

j

1√
2π

e−z2

j /2.

Now X = PZ, hence its density f is computed easily by

f(x) = g(P−1x)/|det(P )|,

which yields the desired formula. �

If R has determinant zero then it is possible to “reduce the dimension” of the random vector X
so that the density exists. In fact,

Lemma 5.17. The support of X is the range of its covariance matrix R.

Proof Suppose that R has rank r. Then it has d − r eigenvalues at zero, so that the matrix
Λ consists of a d − r size block of zeros and the remaining non-zero eigenvalues. Hence now
R = PP ′, where P is a d × r matrix with rank r. We try again to find Z so that

X = PZ,

where Z is an r-dimensional random vector with density. If we manage to do this we will finish,
since the range of P is the range of R. Observing that P ′P is an r × r non-singular matrix, we
pre-multiply by it to get P ′PZ = P ′X, hence Z = (P ′P )−1P ′X. So if we define Z this way, we
see that

EZZ ′ = (P ′P )−1P ′RP (P ′P )−1 = (P ′P )−1P ′PP ′P (P ′P )−1 = I,

i.e. Z is a collection of r independent standard normal variables. The formula for Z is the
formula that solves a full-rank over-estimated linear system. We usually write Z = P +X and
call P + the pseudo-inverse of P . It remains to show that every linear function of X is a linear
function of Z. Let

F = λ′Xa ,G = λ′PZ

with Z = P +X. Consider
F − G = λ′(X − PZ).

Then

E(F − G)2 = Eλ′(X − PZ)(X ′ − Z ′P ′)λ = Eλ′(XX ′ − XZ ′P ′ − PZX ′ + PZZ ′P ′)λ.
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But
EZX ′ = (P ′P )−1P ′EXX ′ = (P ′P )−1P ′PP ′ = P ′.

So
E(F − G)2 = λ′(PP ′ − PP ′ − PP ′ + PP ′)λ = 0.

�

Terminology: If X has law N (0, R) with R having rank r then
∑

j X2
j is called χ2 with r degrees

of freedom.

5.6.3 Conditional Gaussian law

If it appears that we’ve done a lot of Linear Algebra, then this is because it is so: Dealing with
Gaussian random variables (and processes!) is mostly dealing with Linear Algebra (or Linear
Analysis!).

Without proof, we mention the following:

Lemma 5.18. Let (X;Y1, . . . , Yd) be a Gaussian random variable in R
1+d. Then the conditional

law P(X ∈ ·|Y1, . . . , Yd) is normal with mean E(X|Y1, . . . , Yd) and deterministic covariance
matrix. Moreover, E(X|Y1, . . . , Yd) is a linear function of Y1, . . . , Yd) and is characterised by
the fact that X − E(X|Y1, . . . , Yd) is independent of (Y1, . . . , Yd).

EXERCISE 16. Let X,Y be independent standard Gaussian variables. Based on the last part
of the lemma above, compute E(X + 2Y |3X − 4Y ).


