$\textstyle \parbox{0.45\textwidth}{\begin{flushleft}\vspace{-\baselineskip}
{\L...
...tet}\\ \textbf{Matematiska Institutionen}\\
Thomas Erlandsson
\end{flushleft}}$



DIFFERENTIAL GEOMETRY MN1 FALL 1999


PROBLEM 11

11. Let $\,M\,$ be a Riemann surface with constant Gauss curvature $\,K = K_0.$

a)
Calculate the circumference and area of a circle with radius $\,r.$

b)
Calculate the geodesic curvature $\,k_{g}(r)\,$ of a circle with radius $\,r.\,$ Determine $\,\lim_{r\to\infty}k_{g}(r).$

c)
Let $\,c(t)\,$ be a geodesic and $\,\gamma (t) \,$ a curve whose distance to $\,c(t)\,$ is constant $\,= d.\,$ Calculate the geodesic curvature $\,k_{g}\,$ of the equidistant curve $\,\gamma.$

RESULTS

WARNING! THERE ARE VERY LIKELY MISPRINTS HERE!

a)

\begin{displaymath}L(C(r)) =
\left\{\begin{array}{rrrr}
&\frac{2\pi}{\sqrt{K_0}}...
...qrt{-K_0}}\sinh (r\sqrt{-K_0}), \quad K_0<0.
\end{array}\right.\end{displaymath}




\begin{displaymath}A(c(r)) =
\left\{\begin{array}{rrrr}
&\frac{\pi}{K_0}(1 - \co...
...0}(\cosh(r\sqrt{-K_0}) - 1), \quad K_0 < 0.
\end{array}\right.
\end{displaymath}



b)

\begin{displaymath}k_{g} =
\left\{\begin{array}{rrrr}
&\sqrt{K_0}\cot (r\sqrt{K_...
...rt{-K_0}\coth (r\sqrt{-K_0}),\quad K_0 < 0.
\end{array}\right.
\end{displaymath}



c)

\begin{displaymath}k_{g} =
\left\{\begin{array}{rrrr}
&-\sqrt{K_0}\tan (d\sqrt{K...
...rt{-K_0}\tanh (d\sqrt{-K_0}),\quad K_0 < 0.
\end{array}\right.
\end{displaymath}



Tillbaka till Differentialgeometri MN1