$\textstyle \parbox{0.45\textwidth}{\begin{flushleft}\vspace{-\baselineskip}
{\L...
...tet}\\ \textbf{Matematiska Institutionen}\\
Thomas Erlandsson
\end{flushleft}}$

DIFFERENTIAL GEOMETRY MN1 FALL 1999


PROBLEM 12 PAGE 3

The Poincaré Disc Model of H2

The surface $\,H^2\,$ in the Poincaré disc model is the set

\begin{displaymath}U=\{(u,v) \in R^2\vert u^2+ v^2 < 4\},\end{displaymath}

with the Riemann metric

\begin{displaymath}\,ds^2=\left(1-\frac{u^2 + v^2}{4}\right)^{-2} (du^2+dv^2).\end{displaymath}

Using Gauss' equation we find that the surface has constant Gauss curvature $\,K=-1.$ The geodesics in the disc model correspond to the circles orthogonal to the boundary of the disc and the diameters. This is most easily seen by showing that the map

\begin{displaymath}w=\frac{z+2i}{iz+2}\end{displaymath}

is an isometry of the disc model onto the half plane model.

d)
Calculate the arc length $\,r\,$ of the geodesic $\,c(t)=(t\cos \vartheta, t\sin \vartheta),\,\,0 \le t <
2\,$ beginning at origo.

$\quad $ (Result: $r=\ln\frac{2+t}{2-t}=2 \frac{1}{2}\ln\frac{1+t/2}{1-t/2}=
2\tanh^{-1}(t/2)$)

e)
Show that in geodesic polar coordinates

\begin{displaymath}ds^2 = dr^2+\sinh ^{2}(r)\, d\theta^2.\end{displaymath}

Hint: From the problem above follows that $\,t = 2\tanh (r/2).$
Use $\,u=t\cos\theta, v=t\sin\theta\,$ and the given metric.



To Problem 12 page 1

To Problem 12 page 2

Tillbaka till Differentialgeometri MN1