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1 Introduction

The Brauer semigroup (or chip semigroup) ®8,, was introduced by Brauer in [B] in order
to study the representations of symplectyc and orthogonal groups. From that time the
semigroup algebra of 98,, was studied by several authors (see for example [K] and references
therein). Regretfully, it is a kind of tradition in semigroup theory that only few is known
about the semigroup structure of arbitrary concrete semigroup, in particular, about 8,,.
For example, among other recent results on the structure of special semigroups one can
find the description of special classes of subsemigroups in inverse symmetric semigroup
(|[GK]) or in factor power of finite symmetric group ([GM]).

The aim of this paper is to study the basic subsemigroup properties of 8, and its
partially defined analogue BB, (see section 2 for precise definitions). In particular, we
provide a description for the idempotents and maximal subgroups in ‘B,, and P*B, , clas-
sify completely isolated subsemigroups, determine all automorphisms and describe Green
relations on these semigroups.

The paper is organized in the following way: in section 2 we present all necessary defi-
nitions and preliminaries. In section 3 we study the idempotents and maximal subgroups.
In section 4 we define a natural aniautomorphism on our semigroups and determine all
regular and inverse elements. In section 5 we describe all completely isolated subgroups.
In section 6 we prove that any automorphism of B, or 3B, is inner. Finally, in section 7
we give a combinatoric description for the Green relations on 8, and p,.

2 The semigroups B, and P‘B,

Fix some positive integer n. Let M, = {1,2,...,n} and set N, = {z,2° |z € M,}.
Elements 1, 2,...,n will be called initial and elements 1°,2°,...,n° will be called terminal.
In general, for any subset A C M, we define A° = {z°|z € A}. Clearly, |N,| = 2n.
Arbitrary decomposition of IV, into a disjoint union of subsets containing exactly 2 elements
each is called a chip with 2n legs. If a chip a contains a set {z,y} we will say that z and y
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Figure 1: Chips and their multiplication.

are connected by a or that {z,y} belongs to a. On the set B, of all chips with 2n legs a
natural associative operation can be defined. In fact, having two chips a,b € B,, we form
their product ab in the following way: First we identify all initial elements from b with
the corresponding terminal elements from @ and redenote them by 1,2,... 7. Then we
construct the subsets of N, U {1,2,...,7} by taking union of those subsets from both a
and b that have a non-trivial intersection. Finally, we erase all the elements that do not
belong to N,, obtaining new chip ab. One can easily calculate that [B,| = (2n — 1)!l.

It will be convenient to realize a chip as a “scheme” with n initial and n terminal
legs. One can enumerate the initial (left-hand sided) legs and the corresponding terminal
(right-hand sided) legs for example from up to down (see Figure 1). Two legs = and y of
a chip a should be connected if and only if {z,y} do belong to a. In this realization the
multiplication of chips corresponds to their “concatenation” (see Figure 1) or simply to the
gluing of terminal legs from the first chip with corresponding initial legs from the second
one. In this way some “dead chains” can arise just like it happened for two lower legs on
Figure 1. In this realization the associativity of the multiplication is obvious.

Let a be a chip from 9B,,. We will denote by In(a) the set of all initial elements of a and
by Ter(a) the set of all terminal elements of a. The subset of In(a) (Ter(a)) consisting of
all elements those are connected with terminal (initial) elements will be called the initial
(terminal) image of a and will be denoted by Im(a) (Im°(a)). The subset of In(a) (Ter(a))
consisting of all elements those are connected with initial (terminal) elements will be called
the initial (terminal) kernel of ¢ and will be denoted by Ker(a) (Ker®(a)). Clearly, both
| Ker(a)| and | Ker®(a)| are even and | Im(a)| = | Im°(a)|.

There exists a natural monomorphism from the symmetric group S,, into B,,. It maps
any permutation on n symbols into the chip in which each initial leg is connected with the
corresponding permuted terminal leg. Clearly, the image of this monomorphism coincides
with the set of all chips a such that |Im(a)| = n or equivalently Ker(a) = Ker’(a) = 0.
An image of the identity permutation under this monomorphism is the identity element in
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Figure 2: Partial chips and their multiplication.

B,,. We will also call this element the trivial chip and will denote it by e. Sometimes we
will identify S,, with its image under this monomorphism.

Now we can define a partial analogue of ‘B,,. Consider the set P*B,, of partially defined
chips (partial chips), i.e. decompositions into pairs of subset in NV, containing even number
of elements. If x € N,, does not belong to any subset of a fixed chip a we will say that a
is undefined in z. It follows directly from the definition that

BB, | = i (227;) (2i — 1)1,

1=0

Analogously to the chip situation a natural associative multiplication on B*B,, is defined.
In fact, given two partial chips a, b € 3*B,, we form their product ab in the following way:
First, for any z € N, such that a (b) is undefined in z we will say that a (b) contains
the subset {z,*}. Now we identify all initial elements from b with the corresponding
terminal elements from a and redenote them by 1,2, ..., 7. Then we construct the subsets
of N, U {i, 2,..., n} by taking union of those subsets from both a and b that have a non-
trivial intersection and erase all the subsets that contains * element. Finally, from the rest
of subsets we erase all the elements that do not belong to V,, obtaining new partial chip
ab.

At the same way as for chips, any partial chip can be realized as a “scheme” with 2n
legs. Those legs of a chip in which it is undefined can be marked for example with circles.
In this realization the multiplication defined above is again a concatenation and thus is
associative. An example of the multiplication of two partial chips is given on the Figure 2.

For any partial chip ¢ we retain the same notions of In(a), Ter(a), Im(a), Im°(a), Ker(a)
and Ker°(a) as used for 9B,

Clearly, there exists a natural monomorphism from ‘B,, into 3*B,, since any chip can
be viewed as partial chip defined in all legs. Thus S, is a subgroup of P*B, and e is



the identity element in P3*B,. Moreover, there exists a natural monomorphism from the
inverse symmetrical semigroup ZS,, into P*B,, (see, for example, [GK] for definition). This
monomorphism is coordinated with all mentioned above. Sometimes we will identify ZS,,
with its image under this monomorphism. Nevertheless, unlike any classical partial semi-
group ‘PB,, does not contain any zero element. Really, the standard pretender for this
role — partial chip v undefined in all legs is, in fact, idempotent but not zero. The prod-
uct of any chip e with non-empty initial and terminal kernels with u does not equal to
u since it inherits the non-emptiness either of initial or of terminal kernel of a. It the
subsequent sections we will describe a lot of unusual properties of 3*8,, more carefully.

3 Idempotents and maximal subgroups

One of the most important question related to an arbitrary semigroup is the structure of
its idempotents. First of all we will study the structure of idempotents in B,,.

Let 1 < k < n be an odd number and A C M,, such that |A| = k. Fix a linear order <
on A. Rewrite elements from A with respect to this order: A = {aq,a0,...,ax}, a; < a1
for all 7. Consider the chip e4  defined as follows: e4 .~ contains all subsets {z,z°} for
r € M, \ A, all subsets {a;,a;11} where 1 < i < k is odd, all subsets {af,a;, ;} where
1 < i < k is even and the subset {ay, aj}. The same construction can be applied for k£ =1
that gives one an identity idempotent e.

Let 1 < k < n be an even number and A C M, such that |A| = k. Fix a linear order <
on A. Rewrite elements from A with respect to this order: A = {aq,aq,...,ax}, a; < a1
for all 4. Consider the chip e4 « defined as follows: e4 < contains all subsets {z,2°} for
r € M, \ A, all subsets {a;,a;11} where 1 < i < k is odd, all subsets {af,af, ;} where
1 < i < k is even and the subset {ay, af}.

It is straightforward that e4 < is idempotent for any A and < described above. We will
call these idempotents elementary. In the case when |A| = 2 the idempotent e4 . will be
called atom. The structure of the elementary idempotents in the “scheme” realization is
quite clear. The examples are shown on Figure 3.

Let T be a finite linearly ordered set T = {t,ts,...,%;}, t; < t;11. By primitive cyclic
permutation of 7" we will mean the permutation ¢; — ¢;11, 1 <17 <, t; — t;. An order <°
on 1" such that t; > ¢;,; for all ¢ will be called opposite to <.

Lemma 1. es, = ep <, if and only if one of the following holds:
1. A= B, <;=<g3.

2. A= B, |A| is even and <p is obtained from <4 by an even power of the primitive
cyclic permutation.

3. A = B, |A| is even and <p is obtained from <% by an odd power of the primitive
cyclic permutation.



a)k=>5 b) k=6 ¢) atom

Figure 3: Elementary idempotents and an atom.

Proof. The if part is obvious. To prove the only if part we have to consider two different
cases of odd and even | A|. In the case when |A| is odd the result follows from the uniqueness
of the subset containing both initial and terminal elements from AU A°. In the case of even
|A| one has to consider only A = B situation with <p and <4 (<%) that differs on a power
of the primitive cyclic permutation. Then the result follows by trivial calculation. O

By lemma 1 any atom depends only on the set A such that |A| = 2. In the sequal we
will denote all atoms simply by e 4.

A product ey, «<,€4,<, ---€4,<, Will be called simple if the subsets A;, 1 <4 < [ are
pairwise disjoint.

Lemma 2. Any idempotent f € B, f # e splits into a simple product of the elemen-
tary idempotents. Moreover, the shortest product of this kind is uniquely defined up to a
permutation of the multiplicands.

Proof. Let f be an idempotent in B,,. First we define an “orbits” of f on M,,. Two elements
x and y from M, is said to belong to the same orbit provided {z,y} or {z,y°} or {z°,y}
or {z°,y°} belongs to f. In such way we split M,, into disjoint union of subsets. For any
orbit A containing more that one element we define an element f4 as follows: f4 contains
{z,2°} for any x € M, \ A, fa contains {z,y} ({z°,y}) with z € A, y € N, if and only if
f contains {z,y} ({z°,y}). Since f is idempotent and A is an orbit it follows immediately
that f4 is idempotent. Moreover, one can see that each f4 is elementary. Further, it follows
directly from the construction of f4’s that they commute and f = H fa. The uniqueness

A
of the shortest decomposition is trivial. O

Lemma 3. Any elementary idempotent in B,, can be decomposed into a product of atoms.



Proof. Let es < be a given elementary idempotent. We will proceed by induction in |A].
The base is trivial. Suppose that |A| is odd. Let z be the minimal element of A with
respect to < and y be the minimal element of B = A \ {z} with respect to the natural
restriction of < on B. Shift this restricted order on B by the primitive cyclic permutation
obtaining <’. One can check that es« = ez 1ep«. Now let [A| be even. Using the
same notations as above we have €4 « = e( 416 <o again. We complete or proof using the
inductive assumption. O

Corollary 1. Any idempotent f € B, f # e can be decomposed into a product of atoms.
Proof. Follows from lemmas 2,3. O

It is well-known that there is a natural one-to-one correspondence between idempotents
in a semigroup S and maximal subgroups in S. Using the results above we can describe all
maximal subgroups of 98,,. Let f be an idempotent in B,,. Set O(f) be the set of all orbits
of f on M, defined in the proof of lemma 2. Let O.(f) be the subset of O(f) consisting of
all A € O(f) such that |A| is odd. One can easily remark that [O.(f)| = [Im(f)|.

Theorem 1. The mazimal subgroup S(f) of B, with the unit f is isomorphic to the
symmetric group S\o,(p). Moreover, a € S(f) if and only if the following two conditions
are satisfied:

e For any x,y € M, the subset {x,y} belongs to a if and only if {x,y} belongs to f.

e For any z,y € M, the subset {z°,y°} belongs to a if and only if {z°,y°} belongs to
f-

Proof. Let a € S(f). Since fa = af = a one obtains that for any z,y € M, the subset
{z,y} ({z°,y°}) belongs to a if and only if {z,y} ({z°,3°}) belongs to f. Clearly, the set
of all those a satisfying these conditions form a subgroup of ‘B,, isomorphic to S|o, (). This
completes the proof. O

An analogue of all the results above can be obtain for P*B,. As a first step we will
construct partial analogues of elementary idempotents.

Let 1 < k < n be an odd number and A C M,, such that |A| = k. Fix a linear order <
on A. Rewrite elements from A with respect to this order: A = {aq,a9,...,ax}, a; < @41
for all 4. Consider the chip % _ defined as follows: €} _ contains all subsets {z,z°} for
x € M, \ A, all subsets {a;, a,+1} where 1 < i < k is odd and all subsets {a7, a3, .} where
1 <i <k is even. Set that €} _ is undefined in a), and af. The same construction can be
applied for £ = 1 that gives one the chip e, z € M,, which will be called p-atom.

Let 1 < k£ < n be an even number and A C M, such that |A| = k. Fix a linear order <
on A. Rewrite elements from A with respect to this order: A = {ay,a9,...,ax}, a; < @41
for all :. Consider the chip eﬁi < defined as follows: eff, . contains all subsets {z,z°} for
x € M, \ A, all subsets {af, a7, } where 1 < ¢ < k is odd and all subsets {a;, a;11} where

1 <7 < k is even. We set that e’;;’< is undefined in a; and a.
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Figure 4: p-elementary idempotents and a p-atom.

Let 1 < k < n be an even number and A C M, such that |A| = k. Fix a linear order <
on A. Rewrite elements from A with respect to this order: A = {ay,aq,...,ax}, a; < @41
for all 5. Consider the chip €’ _ defined as follows: €’ _ contains all subsets {z,z°} for
x € My, \ A, all subsets {a;,a;;1} where 1 < ¢ < k is odd number and all subsets {a;, a5 ;}
where 1 < i < k is even number. We set that ¢/, _ is undefined in af and ag.

It is straightforward that ei, <, €2 and e’;;, . are idempotents for any A and <. We will

call this idempotents p-elementary. The structure of the elementary idempotents in the
“scheme” realization is shown on Figure 4.

Lemma 4. ¢}, . =¢€} . (e’ig = e§,<B) if and only if A= B, <,=<p.
Proof. Follows immediately from the construction of idempotents. O

We retain the same notation of the simple product of idempotents as in the case of B,,.
This allows us to formulate the following “partial” analogue for lemma 2.

Lemma 5. Any idempotent f € PB,,, [ # e splits into a simple product of the elementary
and p-elementary idempotents. Moreover, the shortest product of this kind is uniquely
defined up to a permutation of the multiplicands.

Proof. Proof is essentially the same as that of lemma 2. O

Lemma 6. Any p-elementary idempotent in PB*B,, can be decomposed into a product of
atoms and p-atoms.

Proof. Tt is easy to verify that any p-elementary idempotent ef’4, < (e’j: <) can be obtained as
a product of some p-atom with the elementary idempotent. Indeed, let x be the minimal
element of A with respect to < and let <’ be obtained from < by the primitive cyclic
permutation. For [A| odd one has e . = es ceh. For [A| even one has eﬁ; = eley o,
ey« = ea<eh. Now the statement follows from lemma 3. O
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Corollary 2. Any idempotent f € P*B,,, f # e can be decomposed into a product of atoms
and p-atoms.

Proof. Follows from lemmas 5,6. O

The structure of maximal subgroups in ‘B, is analogous to that of ®B,. Let f be
an idempotent in BB, . By a non-degenerate orbit of f we will mean a subset A C M,
defined as follows: either A = {z} such that {z, z°} belongs to f or e4 < occurs in a shortest
decomposition of f into a simple product of elementary and p-elementary idempotents. One
can see that this definition coincides (in 2B, case) with that given in the proof of lemma 2.
Set O(f) be the set of all non-degenerated orbits of f and let O.(f) be the subset of O(f)
consisting of all A € O(f) such that |A] is odd. Clearly, |O.(f)| = | Im(f)]|.

Theorem 2. The mazimal subgroup S(f) of B, with the unit f is isomorphic to the
symmetric group Sio,(p)|. Moreover, a € S(f) if and only if the following four conditions
are satisfied:

e For any x,y € M, the subset {x,y} belongs to a if and only if {x,y} belongs to f.

e For any x,y € M, the subset {x°,y°} belongs to a if and only if {°,y°} belongs to
f-

e a is undefined in x € M, if and only if f is undefined in x.
e a is undefined in x°, x € M,, if and only if f is undefined in z°.

Proof. Proof is essentially the same as that of lemma 2. O

4 Anti-involution, regular and inverse elements

A natural anti-involution o on 9B, (fB,,) can be defined. We set o(a), a € B, (a € BB,,)
be the chip (partial chip) that is obtained from a by interchanging elements x <+ z° for all
x € M,. Geometrically, o(a) is the mirror reflection of a (see Figure 5).

We recall that an element @ from a semigroup S is called regular provided there exist
b € S such that aba = a. If this element b is uniquely defined, a is called inverse. It
happened that both B, and 3*B,, contain a lot of regular but only few inverse elements.

Theorem 3. 1. Any element in B, (PBB,,) is reqular.
2. An element a € B, is inverse if and only if | Im(a)| = n or |Im(a)| =n — 2.

3. An element a € PB,, is inverse if and only if |Im(a)| =n or |Im(a)| =n — 1.
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Figure 5: Anti-involution o.

Proof. The first part of the theorem follows from the obvious formula ao(a)a = a for all
a € B, (a € PB,). Clearly, any element a € B, (a € PB,,) satisfying | Im(a)| = n is
inverse. It is straightforward to show that any a € B, (a € P*B,,) satisfying | Im(a)| = n—2
(|Im(a)] = n — 1) is inverse. Thus, it is enough to prove that any a € B, (a € PB,)
satisfying | Im(a)| < n —2 (|Im(a)| < n — 1) is not inverse. Under the conditions above
there exists b € B,, (b € P*B,,), b # o(a) such that for any A C N,,, AN Ker(o(a)) =0
chip b contains A if and only if o(a) contains A (and for any z € N, \ Ker(o(a)) chip b
is undefined in z if and only if o(a) is undefined in z). It follows that aba = a. The last
implies that a is not inverse. O

It follows from theorem 3 that a € PB,, is inverse only if a is contained in ZS,, (see
section 3).

5 Completely isolated subsemigroups

We recall that a subsemigroup 7" of a semigroup S is called completely isolated provided
for all a,b € S holds: ab € T impliesa € T or b e T.

Lemma 7. Let S be a finite semigroup with unit element 1 and S be the maximal subgroup
of S corresponding to 1. Suppose that S satisfies the following conditions:

1. There exists a subset P of idempotents of S that generates the set of all non-invertible
tdempotents.

2. For any x,y € P there exists a,b € Sy such that axb =y.
Then the only completely isolated subsemigroups of S are S, S; and S\ S;.

Proof. Since S has unit element it follows that all S, S; and S\ S; are completely isolated.
Let T be a completely isolated subsemigroup. Since S is finite it follows that 7N S; # ()
implies S; C T'. Suppose that T differs from S; and S\ S;. Then there exists t € TN(S\S1).



Thus 7T contains an idempotent (# 1) of S. Since T is completely isolated it follows from
the first condition of the lemma that T contains an element from P. If S; C T it follows
from the second condition of the lemma that 7" contains P since 7T is subsemigroup. If
T NS; = 0 it follows from the second condition of the lemma that 7" contains P since T is
completely isolated. Finally, P C T and hence (S\ S;) C T. This implies T = S. O

Corollary 3. The only completely isolated subsemigroups of B, are B,, S, and B, \ Sp.

Proof. We set P to be the set of all atoms. The first condition of lemma 7 is satisfied by
corollary 1. The second condition is obvious. Thus the result follows from lemma 7. [

We remark that using lemma 7 one can describe completely isolated subsemigroups in
inverse symmetrical semigroup ZS,, ([GK]) and in factor power of a symmetrical group
FP*(S,) (|[GM, Theorem 3]).

Unlike the case of B, the description of completely isolated subsemigroups in ‘B,
is quite non-trivial. To proceed we need the following notations: Let D; (D,) be the set
of all non-invertible elements a from ‘B, that satisfy the following condition: @ contains
{z,y} ({z°,y°}) for some x,y € M,. Clearly, both D; and D, are subsemigroups of B,,.
Let S; (S;) be the set of all non-invertible elements a from BB, that satisfy the following
condition: a does not contain {z,y} ({z°,y°}) for any z,y € M,,. Clearly, both S; and S,
are subsemigroups of ¥B,,. Set P, =D,ND,; P,=D, NS, Ps=5,ND;, P,=5nNS§,.
Clearly, all P;, 7 = 1,2, 3,4 are subsemigroups.

Lemma 8. Let T be a completely isolated subsemigroup of PB,,. Suppose that T NS, s
non-empty. Then S, C T.

Proof. Let x € TNS,. Then z* € T for all k and thus 1 € 7. Since y™ =1 for any y € S,
it follows that y™ € T and thus y € T.. 0O

Lemma 9. Any idempotent in P (Py) can be decomposed into the product of idempotents
of the form € (e ), A C M,, |A| =2.

Proof. For Pj this follows by induction from the formula

D D D D
e e =e e
{z,y} {y,2} {zy} 2

that holds for any pairwise different elements {z,y, z} € M,. For P, one has to apply o
to the both sides of the above formula. O

An idempotent of the form €% (¢% ) will be called an l-atom (r-atom).

Theorem 4. Any completely isolated subsemigroup of PB*B,, is one of the following com-
pletely isolated subsemigroups: PBB,,, Sy, BB, \ Sn, Si, SnUS,, Sr, SpUS,, Dy, S, U D,
D,, S,UD,.
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Proof of theorem 4. First we note that D; and S; (D, and S,) are complements in BB, \ S,,.
Thus by lemma 8 to prove our theorem it is enough to show that the only completely
isolated subsemigroups in BB, \ S, are D;, D,, S; and S,.

Let T be a completely isolated subsemigroup in BB, \ S,. Clearly, T’ contains an idem-
potent and S,,T'S,, = T. By corollary 2 any idempotent (# 1) in BB, can be decomposed
into a product of atoms. Since ey = ¢4¢” for any A C M, such that |A| = 2 it follows
that any idempotent (# 1) in B, can be decomposed into a product of p-atoms, l-atoms
and r-atoms.

Note that as soon as T" contains a p-atom, an l-atom and an r-atom it should contain all
p-atoms, all l-atoms and all r-atoms since S, 7'S,, = T. Thus T contains all non-invertible
idempotents and hence, coincides with BB, \ S,. For the rest of the proof we suppose
that T does not coincide with B, \ S,.

It follows from the discussion above that T contains a p-atom, an l-atom or an r-atom.
If T contains both l-atoms and r-atoms it follows from 61{11’2}61{110’20} = eleb that T contains
a p-atom and thus coincides with BB, \ S,. Moreover, it follows from the same formula
that 7" can not contain only p-atoms. Thus there can be exactly four possibilities: (a) T’
contains only an l-atoms (and thus all l-atoms), (b) 7" contains only r-atoms; (¢) 7" contains
both l-atoms and p-atoms but not r-atoms; (d) 7" contains both r-atoms and p-atoms but
not l-atoms.

(a) By lemma 9 any idempotent in P can be decomposed into a product of l-atoms.
Thus T contains P;. From

6?1,2} = eq1,2)€16
it follows that 1" contains ey and thus contains all atoms. Hence, T' contains all idem-
potents from P; and therefore T contains P;. Since 7" does not contain any p-atom it does
not contain any element from P;. Finally, suppose that 7' contains an element a € Ps.
From lemma 9 it follows that 71" should contain an r-atom. The last is impossible. Thus
T = P1 U P3 = Dl

(b) Applying the o anti-involution to the case (a) we obtain 7' = D,.

(c) Since T contains l-atoms it follows from (a) that 7" contains P3;. From the other hand
T contains Py since it contains all p-atoms. Suppose that T contains an element a € P;.
We prove that T contains a element from P,. Indeed, let f be the partial chip undefined in
all legs. Clearly, f € P, C T and thus fa € P, NT. It follows immediately from lemma 9
that T contains an r-atom. And the last is trivially impossible. Hence T'= P, U P; = S,.

(d) Applying the o anti-involution to the case (c) we obtain T' = S. O

The list of all completely isolated subsemigroups of LB, \ S is shown on the Figure 6

6 Automorphisms

The classical result about symmetric groups states that any automorphism of S, is inner
provided n # 6 ([KM, Theorem 5.3.1]). It is also known ([S]) that any automorphism of
IS, is inner. In the present section we will prove the same results for B,, and PB,,.

11
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Figure 6: Completely isolated subsemigroups of LB, \ Ss.
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Theorem 5. Any automorphism of B, is inner.
To prove this theorem we will need the following lemma:
Lemma 10. B, is generated by S, and any single atom e4.

Proof. Let S be the semigroup of B, containing 5,, and e4. First we note that S contains
all atoms ep cause eg = s~ teys for some s € S,,. It follows from corollary 1 that S contains
all idempotents of 8,,. For any a € 8, one can easily construct a permutation s € S,
such that as is an idempotent. Indeed, fix some bijection 7 : Ker(a) — Ker®(a) such that
{z,y} C M, belongs to a if and only if {m(x),7(y)} belongs to a. Let s be the chip defined
as follows: if a contains {z,y°} for some z,y € M, then s contains {z°,y}, s contains all
{z,y°} such that y € Kera, 2° = 7(y). One can see that asas = as. This implies that
B,, C S and the lemma follows. O

Proof of theorem 5. First we suppose that n = 6 and consider a non-inner automorphism
of Sg. It sends each elementary transposition into a product of three pairwise commuting
transpositions. For each elementary transposition s € Sg there exists an atom e4 such
that sey = e4. Clearly, any automorphism of B8,, sends any atom to atom. But for any
product t of pairwise commuting transpositions and any atom eg holds teg # ep. This
implies that our automorphism of S,, can not be continued to an automorphism of B,,.
Now suppose that ¢ : B,, — *B,, is an automorphism. From the remark above it follows
that the restriction ¢ of ¢ on S,, is some inner automorphism of S,,. Composing ¢ with
the natural inner automorphism ¥ ~! of S,, we can suppose that 1 is trivial. It follows from
lemma 10 that it is enough to show that ¢(eq1,93) = eq1,93. Clearly, ¢(eq12;) is an atom,
say ep. Let T} (T3) be the set {s € S, | seq12) = eq1,2)5} ({5 € Sy | sep = eps}). Since ¢ is
an automorphism it follows that 77 = T5. But T3 contains all those permutations s under
which B is invariant. This implies B = {1, 2} and completes our proof. O

Lemma 11. PB*B,, is generated by IS, and any single atom e 4.
Proof. Proof is analogous to that of lemma 10. O
Theorem 6. Any automorphism of ‘BB, is inner.

Proof. Let ¢ be an automorphism of PB*B,,. Since ¢ preserves inverse elements and ZS,
is generated (as a subsemigroup in PBB,,) by inverse elements of LB, it follows that the
restriction of ¢ on ZS,, is an automorphism of ZS,, and thus is inner. Thus we can suppose
that this restriction is trivial. Applying the arguments analogous to that used in the proof
of theorem 5 one can show that ¢ preserves all atoms and thus is trivial by lemma 11. [

7 Green relations

Since both B, and P*B,, are finite semigroups it is necessary to describes only four basic
Green relations £, R, D and H on them. We recall that for arbitrary semigroup S the
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Green relations are defined as follows: st if and only if Ss = St; sRt if and only if
sS=tS;D=L-Rand H=LNR.

The elements a,b € B, is said to be left (right) neighbors provided a contains {z,y}
({z°,y°}) if and only if b contains {z,y} ({z°,y°}) for any z,y € M,. If elements a and b
are both left and right neighbors we will call them neighbors.

Theorem 7. Let a and b be two elements from B,
1. aLb if and only if a and b are right neighbors;
2. aRb if and only if a and b are left neighbors;
3. aHb if and only if a and b are neighbors;
4. aDb if and only if | Im(a)| = | Im(b)|.

Proof. The necessity of all conditions are obvious. Moreover, the sufficiency in the last two
statements follows from that of the first and the second. We only will prove the sufficiency
of the second one. The first will follow by applying the anti-involution o described in
section 4.

It is enough to show that a € b®B,, for any left neighbors a and b in B,,. Clearly,
there exist permutations s; and s, in S, such that as; and bs, are idempotents. Since
a and b are left neighbors, we can assume that as; = bss and thus a = b5231_1. Finally,
a € bS5, C b¥B,. O

The elements a,b € B, is said to be left (right) neighbors provided a contains {z,y}
({z°,y°}) if and only if b contains {z,y} ({z°,y°}) for any z,y € M,, and «a is undefined in
x (z°) if and only if b is undefined in x (2°) for any = € M,. If elements a and b are both
left and right neighbors we will call them neighbors.

Theorem 8. Let a and b be two elements from PB*B,,
1. aLlb if and only if a and b are right neighbors;
2. aRb if and only if a and b are left neighbors;
3. aHb if and only if a and b are neighbors;
4. aDb if and only if | Im(a)| = | Im(b)|.

Proof. Proof is analogous to that of theorem 7 O
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