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Abstract

For complex simple finite-dimensional Lie Algebras we study the structure of generalized Verma
modules which are torsion free with respect to some subalgebra isomorphic to s€(2). We obtain a
criterion of irreducibility and establish necessary and sufficient conditions for the existence of a non-
trivial homomorphism between such modules generalizing the BGG Theorem for Verma modules.

§1. Introduction

Let G be a complex simple finite dimensional Lie Algebra (G # G2) with a fixed Cartan subalgebra
‘H and root system A and let W be the Weyl group of A. For 3 € A we denote by Gg the corresponding
root subspace. Let a € A and G* ~ s£(2) be a subalgebra generated by G, and G_.

In the present paper we study a-stratified generalized Verma modules M, (\,p) on which G* acts
torsion-free, i.e. Gio \ {0} act injectively. Such modules have no highest weight unlike the classical
generalized Verma modules [GL].

Modules M, (), p) were studied in [F1] and more extensively in [CF] and [FP]. In the latter two papers
category 0%, a certain generalization of category O containing M, (), p) as its objects, was introduced
and analyzed. In particular, it was shown in [FP] that BGG duality with My (A, p) as intermediate
modules holds in the category O¢.

Recall that a well-known theorem of I.N. Bernstein, I.M. Gelfand and S.I. Gelfand on the inclusions
of Verma modules states that if M ()\) and M (u) are Verma modules with higest weights A —p and g — p
respectively, then M (X\) C M () if and only if there exists reflections sg,, sa,, .- -, g, in the Weyl group
such that

B=56,58,_1---56(A) <8g,_; -85, (A) < ... <sp,(A) <A,



where < is the standard order on H*. The main goal of our paper is to generalize this theorem in the case
of a-stratified modules M, (), p), i.e. to establish a criteria under which M, (u,q) will be a submodule of
M, (A, p), and to describe all irreducible subquotients of M, (), p). Earlier such criteria was obtained for
G = s£(3) [F2] and more generally for G = sf(n) [M1, M2]. Following the ideas of [M1, M2] we introduce
a group W, C Aut(H* x C) which is the Weyl group of a certain root system dual to A and thus is
isomorphic to W. We show that W, plays the same role for modules M, (A,p) as the Weyl group W
plays for Verma modules. In particular modules M, (u,q) and M, (A, p), belonging to one block, have
the same central character if and only if (u,q) € W, (A, p). We also obtain a criteria of irreducibility for
a-stratified modules M, (A, p).

Instead of the group W, one could talk about the classical group W with a new action on the space
of parameters H* x C. But we decided to stick with a new notation to avoid on one hand any confusion
due to the fact that 7* is not invariant under the action of W, and to underline, on the other hand, the
dependence of the action on a.

The proof of the main result (Theorem 7.6) follows closely the original proof of Bernstein-Gelfand-
Gelfand [BGG, Theorem 2,3]. We chose this “archaic” way of dealing with Verma-like modules since in
our case it did not require the development of a necessary technique for modern approach (i.e. Jantzen
filtration, translation functors etc.).

In subsequent papers we will discuss the analogs of BGG resolution and the character formula for
modules M, (A, p).

Now we briefly describe the structure of the paper. In §2 we introduce our main notations and
definitions while in §3 we recall the basic properties of the generalized Verma modules M, (A, p), a € A,
A € H*, pe C. In §4 we consider the modules M, (A, p) for algebra of rank two (except G2) and obtain
for them an analog of the BGG Theorem and criteria of irreducibility. The theory of a-stratified modules

for rank two Lie algebras plays the same role for generalized Verma modules with no highest weight



as sf(2) theory plays for Verma modules. These results are crucial for the definition of the group W,
and for the proofs of Theorems 6.5 and 7.6. We introduce in §5 a group W, acting on the space of
parameters ) = H* x C and prove that W, ~ W (Proposition 5.4). We also show that if two pairs
(A, p), (u,q) € Q belong to the same orbit of W, then corresponding modules M, (\,p) and M, (u,q)
have equal central characters (Proposition 5.5). In §6 we prove the generalized Harish-Chandra Theorem
(Theorem 6.3) establishing an isomorphism between the centre of the universal enveloping algebra of G
and the W-invariants of some algebra. Using this result we show that modules M, (A, p) and M, (u,q)
from one block have the same central character if and only if (u,q) € Wy (A, p) (Corollary 6.4, Theorem
6.5). In §7 we prove our main result, Theorem 7.6, describing all submodules of type M, (u,q) and all
irreducible subquotients for a-stratified modules M, (\,p). The proof of this Theorem is analogous to
the one of Bernstein-Gelfand-Gelfand for Verma modules [BGG, Theorem 2,3; D, Theorem 7.6.23].
Finally we obtain from Theorem 7.6 the criterion of irreducibility for a-stratified modules M, (A, p)

(Theorem 7.7).

§2. Notations and Preliminary Results

Let C denote the complex numbers, Z denote all integers, N denote all positive integers and Z, =
NuU{0}.
We fix @ € A for the remainder of the paper. Let m be a basis of A containing o, A* = A* ()

1
be the set of positive roots with respect to 7 and p = 3 Z v. For A\, p € H* we will say that

yeEAT
A>pif A—p= Zkgﬂ, ks € Z,. Denote by < -,- > the standard form on H* and by | - | the
pen
corresponding norm in Hy. If 3 € AT then s3 € W will denote a corresponding reflection in H*:
2< A 06>
A)=A—- ———0.
s5(A) <&ﬂ>ﬁ

Fix a basis {Hg,3 € 7} of # and non-zero elements X, in each subspace G,, v € A such that

B(Hp) =2 and [Xp, X_p] = Hg,B € m.



Denote No = » Gir, N$ = > Giy, H* = {h € H|a(h) =0}. Then wehave G = N_ & H &
yeEA+ yeAT\{a}

Ny =G"® N2 H*®NS. Also let Ho =G*NH and thus G% =G, @ Ha ® G_a.

For a Lie Algebra A with a fixed Cartan subalgebra B we will denote by U(.A) the universal enveloping
algebra of A, by Uy(.A) the centralizer of B in U(A) and by Z(A) the centre of U(A).

Let N§' = U(G)N$ NUp(G). Then N§ is two-sided ideal and Up(G) = N§ @ Up(G*) @ U(H®). The
projection ¢y : Up(G) = Up(G*) ® U(H?) is called the Harish-Chandra a-homomorphism [DFO].

Let § be an automorphism of S(#) such that §(f)(A) = f(A — p) for any A € H* and for any
polynomial function f € S(H). Also define an automorphism 8o of S(Ha) by 64(f)(A) = f(A— %a) and

let 0% = 6| g(z«)- Denote by i the restriction of (1 ® §%) 0 ¢, on Z(G). Then i(Z(G)) C Z(G*) ® S(H?).

We also have the following commutative diagram:

(0o 09*) ®1
Uo(6%) ® S(H*) — S(Ha) ® S(H*)=S(H)
1 1
Ya
Z(G*) ® S(H%) — S(H)W (@

where ¢“ is the Harish-Chandra homomorphism for G*, W(a) ~ Ss is the Weyl group of G* and v, is
a canonical isomorphism [Lemma 6, DFO].

Note that composition 1, o i gives the classical Harish-Chandra isomorphism
Z(G) ~ S(H)V[D).

Consider the linear space Q@ = %H* x C. For (\,p) and (u,q) in Q we say that
Ap) > (u,q) it A—p= Z ngB, ng € Z; and Z ng # 0. We will denote by Qg the real

ger\{a} pem\{a}

subspace of 2, thus @ = Qr + iQgr. If z € Q then Re x (resp. Im x) will be its real (resp. imaginary)
component.

Let r € C. Consider the linear space B, = Z CfB + ra with a fixed point ra, a Z-module

pem\{a}

B, =B, ®Za and let Q, = B, x C, 0, = B, x C.

For a G-module V with a Jordan-Holder series JH (V') will denote the set of all irreducible subquotients



of V. A G-module V is called weight if

V= (&) 1%\
AeH”

where V\ = {v € V|hv = A(h)v for all h € H}. If V) # 0 then ) is called a weight of V. A weight X is
called extreme if Vy;3 =0 or Va_g = 0 for any 8 € AT and highest weight if V415 = 0 for all 3 € A™T.
A weight G-module V is called a-stratified if X, and X_, act injectively on V.

Let V be a weight G-module. A non-zero element v € V is called a-primitive (with respect to G) if
v € V) for some A € H* and N{v =0.

Denote by K, the full subcategory of the category of G-modules consisting of weight modules on which
X_, acts injectively. In particular, a-stratified modules are the objects of K. Let r € C, 7 = r +Z and
K, 7 be the full subcategory of K, consisting of such modules V' that V) # 0 implies A 4+ p € B,. Then
we immediately obtain the following.

Proposition 2.1

K, = @ Kai
7€ C/Z

Thus if V € Ko7, Vi € Ko7, and 7 # 71 then Homg(V,V1) = Homg(V1,V) = 0 and one can work
within each subcategory K, 7 separately.

It is known that ¢ = (H, + 1)%2 + 4X_,X, generates Z(G%). Let a,b € C. Any such pair defines
a unique indecomposable weight G*-module N(a,b) on which X_, acts injectively and where a is an
eigenvalue of H, and b is an eigenvalue of ¢. The module N(a,b) has a Z-basis {v;} such that X_,v; =
vi—1, Hov; = (a + 2i)v; and Xqv; = 3(b— (a + 2i + 1)?)viy1.

Lemma 2.2. The following statements are equivalent.
(i) N(a,b) is irreducible
(ii) N(a,b) is torsion free

(iii) b# (a+20+1)? for all e € Z.



Proof. Follows immediately from the construction of N(a,b).

Set Q° = {(\,p) € Qp # £(A\(H,) +2¢) forall £ € Z}, Q2 = Q. N Q% O = Q, NQ°. Hence, if

(A, p) € Q° then N((A — p)(H,),p?) is irreducible and torsion free.

§3. Modules M,(\,p).

In this paragraph we discuss the construction and properties of certain universal objects in K, gen-
erated by a-primitive elements. We use [CF] as our main reference.

Since H = Ho ®H*, any element A € H* can be written uniquely as A = Ay + A* where A\, € H}, and
A% € (H*)*. Let a,b € C and A € H* such that (A — p)(Hy) = (Ao — p)(Hy) = a. Define an ‘H-module
structure on N(a,b) by letting hv = A*(h)v for any h € H* and any v € N(a,b). Thus N(a,b) becomes
an G + H-module. Moreover we can consider N(a,b) as D = H + G* & N*module with trivial action
of N¢.

Define a G-module

associated with a, A, b. We will call it generalized Verma modules in spite of the fact that unlike the
classical generalized Verma modules [GL], M, (A, b) has no highest weight. On the other hand it may have
some primitive elements. Also note that modules M, (A, b) are slightly different from the one considered
in [CF] where it is assumed that N(a,b) is irreducible. By Lemma 2.1 both constructions coincide if
b# (AMHy) +2¢) for all £ € Z.

Set M(A,b) = My (A, b).

Proposition 3.1.

i) M(\,b) ~ U(N®*) ®c N(a,b)] as a vector space and in particular it is a weight N%-free module
(i) g

with finite-dimensional weight spaces.



(if) M(A,b) has a unique maximal submodule.

(i) M(A\,b) =~ M(A+ ka,b) for all k € Z.

(iv) M(\,b) € K.

(v) M(\,b) is a-stratified if and only if b # (A(H,) + 2¢)? for all £ € Z.

Proof. (i) - (iii) follow directly from the construction on M(A,b); (iv) follows from [CF, Theorem

2.1] and (v) follows from Lemma 2.2 and [CF, Theorem 2.1].

It will be more convenient to use a slightly different parametrization of generalized Verma modules
replacing M (\,b) by M(\,p) where p?> = b. Thus we always have M (), p) = M (), —p).
Corollary 3.2. M(\,p) is a-stratified if and only if (A, p) € Q°.

Proof. Follows from Proposition 3.1, (iv).

It follows from [CF, Corollory 1.11] that module M (A, p) admits a central character 8, p) € Z*(G),
i.e. zv =0 (2)v for any z € Z(G) and v € M(A,p). Tt also follows from [CF, Theorem 2.8, (i)] that
M (A, p) has a Jordan-Holder series.

Denote by L(\,p) a unique irreducible quotient of M (), p). Note, that the subspace L(\, p)x—, can be
trivial. Using Proposition 3.1, (iii) we can always avoid such a situation and assume that L(X, p)a—, # 0.
Proposition 3.3 L(\,p) ~ L(A + ka, p) for all k € Z.

Proof. Follows from Proposition 3.1, (iii) and Lemma 2.2.

The following Proposition shows the universality of a-stratified modules M (A, p).

Proposition 3.4.



(i) If V is an a-stratified G-module generated by an a-primitive element v € V), — p such that cv = bv

then V is a homomorphic image of M (X, +v/b). If in addition V is irreducible then V ~ L(X, +v/b).

(ii) Every submodule and every subquotient of an a-stratified module M(\ p) is

a-stratified.

Proof. Since V is a-stratified, then U(G*)v ~ N((A — p)(H,),p?) and thus (i) follows from the

construction of M (A, p). Statement (ii) follows from [CF, Proposition 1.3].

Proposition 3.5. If M(\,p),—, contains a non-zero a-primitive element v such that cv = ¢*v then
M(p,q) € M(A,p).

Proof. Using Proposition 3.1, (iii) one can construct a G¥-module V ~ N((u— p)(Hy), q*) such that
V' 3 v. Since v is a-primitive we immediately obtain that N¢X™ v =0for all m € Z;. Let v = X 40’
and g € 7\ {a}. Then 0 = Xgv = X_,Xpv' and Xgv' = 0 by Proposition 3.1, (iv). Analogously,
X,v' = 0for any v € At\ {a} and thus N¢v' = 0. Applying the same arguments to every basis vector of

V' we conclude that N$V = 0. Hence, U(G)V ~ M (u,q) by Proposition 3.1, (i) and M(u,q) C M(A,p).

O

For A € H*, M()) will denote a Verma module with highest weight A — p [D].
We will need the following two lemmas.
Lemma 3.6. Let A\, u € H*. If M(u) C M(X) then M (u, u(Hy)) C M(A,A(Hy)).
Proof. Since M(MA(Hy)) D M(X\) D M(u) there exists a non-zero a-primitive element v €

M(X\,A(Hy))u—, such that cv = (u(Hgy))?v. Thus M (u, u(Hy)) C M (X, A(Hy)) by Proposition 3.5.
O

Let B € m\ {a} and a + 3 € A. Then a subalgebra G*# C G generated by X+, and X1 is simple

Lie Algebra of rank two. Clearly, the subspace My g(\,p) = Z M\, p)r-ptma—rg of M(A,p) is
k,m€eZ



H + G¥P-module. Moreover it follows from the construction of M (a,p) that as G**-module M, (A, p)
isomorphic to a generalized Verma module for G*7.

Lemma 3.7. Let § € 7\ {a}, A e H*, pe C.

(i) fa+p ¢A and sgA < A then

M(spX,p) C M(A,p)

(i) fa+ B € A, p € H*, g € C and there exists a non-zero a-primitive element (with respect to G*F)

ve Ma,ﬂ(/\,p)u_p such that cv = q2U then

M(u,q) C M(A,p).

Proof. Let 0 # u € M(A,p)x—,- Since sgA < A then A\(Hg) = m € N and thus v’ = X™v €
M (X, p)a—p—mp is a-primitive element. Moreover, cv’ = p?v’ since a+3 ¢ A. Applying Proposition
3.5 we conclude that M(sg),p) C M(X,p) that completes the proof of (i). Since v is a-primitive
element (with respect to G*P) one can easily see that it is also a-primitive (with respect to G).

Thus M (u,q) C M(A,p) by Proposition 3.5 which proves (ii) and completes the proof of Lemma.

Theorem 3.8 [CF, Theorems 3.7 and 3.9]. If (A,p) and (i, q) € Q° then each non-zero element of H =
Homg(M(u,q), M(X,p)) is injective and dim H < 1.

In §7 we will establish the conditions under which dim H = 1.

84. Generalized Verma Modules for Simple Lie Algebras of Rank Two except G,.

Let G be a simple Lie Algebra of rank two and G # G,. Here we study generalized Verma G-modules.
The results of this paragraph are essential for the definition of the group W, in §5. Also the developed

theory of representations of rank two algebras plays the same role in the general setup for generalized



Verma modules as the sl(2)-theory plays for classical Verma modules. For instance, all results of para-
graph 6 heavily depend on the Theorems 4.1,4.3,4.5.

First we consider the case of G = Ay. Let m = {a, 8} be a basis of root system A for As. Then
A = {+a,+8,+(a + B)}.

For (A,p) € Q denote n*(\,p) = $(A(Ha + 2Hp) £ p).

The following theorem describes the structure of the module M (A,p). / Theorem 4.1 [F2]. Let G = A,

and (A, p), (i, q) € Q.
(i) M(p,q) € M(\,p) if and only if g = A —nB + ka, n, k € Z, n > 0 and one of the following
conditions holds:
a) n=0and ¢ = +p;
b) n € {nT(\,p)} and ¢®> = (p F nT(\,p))2.
(ii) fny =n=(\,p) € N and ny = nt(A,p) € N then

M\, p) D M(A—n18,p+n1) D M(A—n2f,p—ns)

(iii) Let (X, p) € Q5. The module M (), p) is irreducible if and only if n*(),p) € N.

Next we consider the case of G = By. Let m = {a, 8} be a basis of root system A for B and a a
long root. Then A = {+a,+8, +(a + 8), £(a+26)}. We will use the following realization of G by 5 x 5
matrices: Xo = €21 + €54, Xg = €30 + €a3, X_o = €12 + €s5, X3 = 2(e23 + €34), Xot+3 = €53 — €31,
X_a—p = 2(ess — €13), Xayop = es2 + €41, X_q_23 = 4(eas + e14), Hy = €22 — €11 + €55 — e,
Hy = 2(eqs — €22) where ege = (a;5) € M5(C) with age =1 and a;; =0 if i # k or j # £. All commuting
relations between the basis elements can easily be computed.

Consider the Casimir operator B [K, p.22]. Since B belongs to the centre of U(G), B acts as a scalar

on M(\,p) for any (A,p) € Q.

10



Proposition 4.2. Let G = Bs, « a long root and (\,p), (u,q) € Q. If M(u,q) C M(A,p) then p =
A—nB+ka, k,n € Z,n >0 and ¢* = p* + 2nA(H, + Hg) — n?.

Proof. If M(u,q) C M(\,p) then obviously 4 = A — n8 + ka for some k, n € Z, n > 0. Using [K,
Corollary 2.6] and comparing the eigenvalues of B on M (A,p) and M (A —nf,q) ~ M(u,q) we obtain

that ¢*> = p? + 2nA(H, + Hg) — n? which completes the proof.

For (A, p) € Q denote m*(\,p) = A(Hq + Hp) £p and m(\, p) = m+(\,p) +m~(\,p) = 2X\(Hqa + Hp).
Theorem 4.3. Let G = By, a a long root and (\,p), (u,q) € Q. Then M (u,q) C M (), p) if and only if

p=A—mp+ka, k,m € Z, m > 0 and one of the following conditions holds:
(i) m=0and ¢ =+£p
(i) m € {m*(\,p)} and ¢* = (p F m*(A, p))*.
(iii) m =m(\,p), 3m € N and ¢ = *p.
(iv) m=m(\,p), 3m € N, m*(\,p) € N and ¢ = +p.

Theorem 4.3 immediately implies the following criteria of irreducibility for M (A, p).
Corollary 4.4. Let G = Bs, « a long root and (\,p) € Q5. The module M (), p) is irreducible if and only

if m*(\,p) € N and im(\,p) € N.

Corollary 4.5. Let G = Bs, « a long root and (A,p) € Q. Assume that m; = m~(\,p) € N, ma =
mt(\,p) € N and ms > my. Then M(\,p) D M(A—m1B,p+m1) D M(A —ma8,p— mz2) D M(\ —
(m1 +m2)8,p) if p € N and

D MA—-—miB,p+mi) D

M(A,p) M(X— (m1+m2)B,p) if pgN.
D> MA\—maf,p—m2) D

11



Proof of Theorem 4.3. Let 0 # v € M(\,p)a—, and AM(Hy) = z, A(Hg) = y. Since M(u,q) =~
M (p — ka, q) we will assume that g = A — mp for some m € N U {0}. Since M(u,q) C M(\,p) then
q = ¢ where g2, = p*> + m(2\(H, + Hg) — m) by Propsition 4.2.
Step 1. The statement of the Theorem is obvious if m = 0.
Step 2. Assume that m = 1. Thus y= A — 3 and P =p*+2x+y) -1

The elements v1 = X_,_3X ;o0 an vo = X_gv form a basis of the weight subspace M (A, p)a—,—3.

Let a,b, € C and u = av; + bvz be an a-primitive element, i.e. Xgu = Xo4pu = 0. Then the coefficients

a, b must satisfy the following equations.

{ (P? —22)a+2y—-1)b=0
2z +y-1)a+2b=0

The system has a non-trivial solution if and only if z +y+p=1orz+y—p=1. Hence, M(A—3,q) C
M (), p) if and only if mT (XA, p) =1 or m~()\,p) = 1.

Step 3. Let m > 1. Then the elements

gy = XEgXT o XTI A2 X,

—k
k=0,1,..,m; j=0,1,.., [m—]
2
form a basis of the weight subspace M (A, p),—,.
Let 0 £ u = Zk,j arjug; be an a-primitive element, ay; € C. Then Xgu = Xoygu = Xqyogu = 0.

One can show that Xgu = 0 if and only if the coefficients ay; satisfy the following system of equations
bijaij + diy1jaiv1; +2(j + 1)aij1 =0 (1)
where b;; are quadratic expressions in p and z and d;; are linear expressions in y.
Also X4 pu = 0 if and only if the coefficients ay; satisfy the following system of equations
cijaij + 2(i + 1)ait1; + tijaizij—1 + 9ij@i—1j41 =0 (2)

12



where ¢;; are linear expressions in z and y and t;;, ¢;; € Z. It follows immediately that if agg = 0 then
systems (1) — (2) have only a trivial solution. Hence, we can assume that ago = 1. Then for ¢ = j =0
we have from (1)

1

Sm2(p? = (@ +2m = 2)%) + (y — 2m + Das + 2a01 = 0 3)

and from (2)

m(2x +y+m —2)+2a10=0 4)

Also we have from (2) for ¢ =1, j = 0 that
(m —1)(2z +y 4+ m — 5)aig — 2a01 + 4az =0 (5)

Consider the equation Xy 25u = 0. We have

Xa+23u00 = —%m(m — 1)(p2 - (m + 2m — 2)2)XT(;—25X31711)'
Xatzpuo =2(m —1)(2z +y+m —3)X™ 2 X1y 4.
Xotopuor =4z +y — m)X’_n(;_zﬂXg’*IU +...

Xoyopuzo = 4X" 2, X0 1o+ ..

and

1
Xotopu = (—Em(m —1)(p* — (z 4+ 2m — 2)%)ago + 2(m — 1)(2z + y + m — 3)aio+
+4(z +y —m)aos + 4a20)XT;2ﬂX;”_1v +...

Thus
—%m(m —D@P*—(z+2m—2)?) +2(m —1)(22 +y +m — 3)aio + 4(z + y — m)ag1 +4ax =0 (6)
The system (3) - (6) has a solution if and only if p, z, y, m satisfy the following condition
hm(2,y,p) = (m =2(z +y))(m — (2 +y +p))(m — (2 +y —p)) =0 (7)

Therefore, if M (X, p)x—mp—p, ™M > 2 contains a non-trivial a-primitive element then m € {m*(\,p),

m(X,p)}.
Step 4. Suppose that m € {m*(\,p)}, m > 2. We will show that in this case M (\,p)r—mg—, always

contains a non-trivial a-primitive element and hence M (A —mp, ¢) C M (A, p). Indeed, the consistency

13



of the system (1)-(2) is equivalent to the condition that m, x, y, p satisfy certain polynomial equations.

Let i (z,y,p) = 0 be one of them. We will show that
(m_ ()‘ap) - m) (m+()‘ap) - m) divides ﬁm(xayap)a

ie. h(z,p) = hm(z,—zFp+m,p)=0.

Consider ﬁi as polynomial in z and p. Assume that p € N, x, = p — 2k, k € Z, and consider
the Verma module M (u) where u(H,) = zo, p(Hg) = —2p+ m if m = m*(\,p) and p(Hg) = m if
m =m~(A,p). It follows from [D, Theorem 7.6.23] that M (u — m(a+ 8)) C M(u) if m = m™ (), p) and
M(u—mpB) C M(u) if m = m~(\,p). Thus by Lemma 3.6, M (1 — m(a + 8),qm) C M(p — ma,p) if
m=m*(\p) and M(u—mf, qyn) C M(u,p) if m = m~(\,p). We conclude that M (u—ka —mp3,q,) C
M (u — ka,p) for any k € Z by Proposition 3.1, (iii). Therefore, h (zy,p) = bt (p — 2k,p) = 0 for any
p € N and k € Z and thus ﬁﬁ = 0. This completes the proof of (ii).

Step 5. Suppose that m = m(A,p), m > 2 and %m € N. Let again fzm(:c,y,p) = 0 be any polynomial
equation on m,z,y,p that follows from the consistency of the system (1) - (2). Consider a polynomial
function ﬁm(x, p) = hm(z, im — z,p) in z and p. We will show that iLm(.’L', p) = 0 which implies the
existence of a non-trivial a-primitive element in M (A, p)a—mp—p- Let p € C, z, = p— 2k, k € Z and
p € H* such that p(Ha) = T, p(Hg) = 3m —xo. Consider the Verma module M () with highest weight
p— p. Since u(H, + Hg) = 3m € N it follows from [D, Theorem 7.6.23] that M (u—mfB— $ma) C M ()
and thus M (u—mfB—3ma, gn) C M (p, p) by Lemma 3.6. Therefore, M (u—mfB—ka, ¢m) C M (p—ka, p)
for any k € Z. Thus hpy(zk,p) = 0 for any p € C and k € Z which implies that A, = 0 and hence
M(A —mp,qm) C M(A,p). This completes the proof of (iii).

Step 6. Suppose that m = m(A,p), m > 2 and %m ¢ N. Let m = 2k + 1. Denote fi(p,z,y) =
PP —(z+y—02 £=1,3,...,2k+ 1. If fo(p,z,y) =0 for some £ = 1,3,...,2k — 1 then it follows from
Step 4 that

M()‘_mﬂ7qm) C M(A_elg7qf) C M()‘a p)
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Also if fogy1(p,x,y) = 0 then

Consider the following subsystem of (1)
bojaoj + dijarj +2(j + 1)aoj+1 =0 (8)
and the following subsystem of (2)
cojag; + 2a1; + toja15—1 =0 9)

where ago =1 and j =0,..., k.

Solving the system (8) - (9) we obtain that p,z,y must satisfy a polynomial equation g(p,z,y) =
p?k*+2 4 . = 0. Thus g(p,z,y) is a polynomial of degree 2k + 2 with respect to p. It follows from the
discussion above that the zeros of polynomial function f(p,z,y) = H fe(p, z,y) is a subset of the

£=1,3,...2k+1

zeros of g(p,z,y). Since in addition the degree of f(p,z,y) with respect to p equals 2k + 2 we conclude

that f(p,z,y) = g(p,z,y) and hence

if and only if f;(p,z,y) = 0 for some £ = 1,3, ...,2k + 1. This completes the proof of (iv) and the whole

Theorem.

Suppose now that G = Ba, 7 = {a, 8} and a is a short root. We will use the same realization of G
simply interchanging o and 8. The Casimir operator B acts scalarly on M (\,p) and the corresponding

scalar can be obtained by using Corollary 2.6 in [K].

Proposition 4.4. Let G = Bs, a a short root and (\,p), (u,q) € Q. If M(u,q) C M(\,p) then p =
A—nB+ka, k,n€Z n>0and ¢ =p? + 4n\(H, + 2Hg) — 4n?.
Proof. The proof is analogous to the proof of Proposition 4.2.
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For (A, p) € Q denote k*(\,p) = S(AN(Ha+2Hg)£p) and k(A,p) = k+ (A, p)+k~(\,p) = A(Ho +2Hp).
Theorem 4.5. Let G = By, a a short root and (\,p), (u,q) € Q. Then M(u,q) C M(A,p) if and only if

p=A—nf+ka,nk €Z,n>0 and one of the following conditions holds:
a) n=0and g = £p;
b) n € {kT(\,p),k(\,p)} and ¢*> = p? + 4n\(Hy + 2Hpg) — 4n.

Theorem 4.5 implies the following criterion of irreducibility.
Corollary 4.6. Let G = B, «a a short root and (A\,p) € Q°. Module M (), p) is irreducible if and only if

{ki(/\,p),k()\,p)} NN = @

O
Corollary 4.7. Let G = Bs, a a short root and (\,p) € Q. Assume that k1 = k= (\,p) € N, ko =
kT(\,p) € N and ks > k;. Then
M\, p) D M\ —Fki18,p+2k1) D M(A— k28, p+2k1) D M (X — (k1 + k2)3,p).
O

Proof of Theorem 4.5. Let 0 # v € M(\,p)a—, and A(Hy) =z, A(Hg) = y. Since M (p,q) C M (A, p)
it follows from Proposition 4.4 that u = A — nf + ka for some n,k € Z, n > 0, and ¢ = ¢, where ¢2 =

p? +4n(z+2y) —4n?. Using the fact that M (u,q) ~ M (u—ka, q) we may assume that u = A—nf3, n > 0.

The case n = 0 is trivial. Assume that n > 0. Then the elements uy; = XﬁﬁXiﬁ_Z.aXf;f?Xg_kﬂ,

Jj=0,..,n—k; k=0,...,n, form a basis of the weight space M (X, p)x—,—ng- Suppose that M (X, p)x—,—ng,
n n—k
contains a non-trivial a-primitive element u = Z Z apjurj. Then Xgu = Xqigu = Xgyoqu =0. An
k=0 j=0
equation Xgu = 0 is equivalent to the following linear system on ay;:

(n—k—jp*—(@+2n-2k+2j—2)%ar; +2(n—k—j+1)(n -k —jagj—1—

—(k+1)(y—2m+k+1)ags1; =0 (10)
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An equation Xy gu = 0 is equivalent to the following linear system:

m—k—j)z+2y—n—j—k—2ay; —2(k+1)(j + Dart1j+1 — (k + Dak41;— (11)
=30 + D[P — (& +2n — 2k + 2j)%]agj1 =0

Finally, an equation Xg2,u = 0 induces the following linear system on as;:
2ln—k—jlag; +2(n—k—j+1)(n—k —jag—1; —4(G + 1)z +y + j)akj+1 =0. (12)

One can easily check that if the system of equations has a non-trivial solution then p, z,y must satisfy

the following condition:
hn(p,z,y) =(2n -2 -2y —p)2n—z -2y +p)(n -z —-2y) =0 (13)

Therefore, if M(A,p)r_,—ns contains a non-zero o-primitive element then n € {kT(),p),
kE(A\,p)}. Now the same arguments as in the proof of Steps 4 and 5 of Theorem 4.3 show that the
converse is also true. Indeed, assume for example that k(\,p) = n € N. Consider an arbitrary po € N
and v, € H* such that ve(H,) = po — 2¢, v¢(Hg) = n — $po + ¢, £ € Z. Then k(v¢,po) = n for any
¢ € Z. Let M(vg) be a Verma module with highest weight vy — p. Since sq15(vp) = o — n(a + ) it
follows from [D,Theorem 7.6.23] that M(vy — n(a + 3)) C M (vp) and thus M (v, —nB,po) C M (Vn,po)
by Lemma 3.6. Therefore M (vy —nB,po) C M (ve,po) for any £ € Z. Since pg was arbitrary we conclude
that whenever k(\,p) =n € N then M(A—nf,q,) C M(\,p). One can consider similarly the case when

k*(\,p) € N. This completes the proof of the Theorem.

Remark. The conditions on the parameters for one generalized Verma module to be a submodule of
another obtained in Theorems 4.1,4.3,4.5 can be reformulated (see Theorem 7.6) in terms of the action

of a certain group anologously to the classical resalt of Bernstein, Gelfand, Gelfand for Verma modules.

§5. Generalized Weyl Group W,
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In this section we define the group W, that acts on the space of parameters 2 and plays the same
role for modules M (), p) as the Weyl group plays for Verma modules.

Consider the following partition of m: m# = m Ume U Umy where m = {y E mla+v € A, |a| =
W} m={yenlatyeA, laf <P}, m={yenlat+y€eA, |a|>h}, m={yenlat+y¢A}

For (A\,p) € Q and 3 € 7 \ 74 denote

ni(A p) = %()\(Ha+2Hﬁ)ip)7 ,3€7r1U7r2
o )\(Ha+Hﬁ)ip: B € ms3

and define 3 pairs (Ag,p5) € ©, i = 1,2,3 where A\g = X\ —ng (X, p)3, py = n5 (A, p), pj = p+ 2n5(\,p),

pp=p+nz;(\p).

For each 3 € 7 consider £z € GL(2) such that

()‘7 _p)7 ﬂ =
tg(A\p) = (Sﬂ’\vp)a B € i\ {a} (*)
(As,pp), B €m;, i=1,2,3.

Remark. One can see that for rank two algebras the formulae (*) coinsides with the conditions on the
parameters obtained in section 4. Indeed, in this case m4 = @), Theorem 4.1 corresponds to (*) for g € =y,
Theorem 4.3 corresponds to (*) for 8 € w3, Theorem 4.5 corresponds to (*) for § € ms.

Define the generalized Weyl group W, =< {g,3 € m >.

Lemma 5.1. For any r € C, Q,. and Q, are invariant under the action of W,.

Proof. Follows immediately from the definition of W,.

Let A° be a root system dual to A, ' : A — A° be a canonical bijection and 7° = n'(m). Construct

a map ny : A° — Q, as follows. For 3 € 7 let

(Ta’|a0|2)= B=a

oo 28 +ra,~4B82), a+BEA, |of >

- (6°) (%ﬂ-i—ra,—l), a+B €A, |a<|g| (%x)
(lﬁ;|2ﬂ+ra,0), a+B&A, a#p.

Thus (**) defines a map from 7° to Q, that can be extended to whole A° by linearity. Define
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nr=ng0on : A= Q.. We will denote n = 1y, Tar = 0(7), Aar = n(A), AL, =n(AT). Clearly 7,
forms a basis of ;..

Examples.
1. Let G = Ay, m = {a, 8}. Then ma 0 = {(0,1), (58, —3)}, Al o =m0 U{(36, 3)}-
2. Let G = Bo, m = {e, 8}, |a| > |B|. Then ma,0 = {(0,1), (8, ~1)}, A% o = ma,0 U{(5,0), (8, 1)}.
3. Let G = By, m = {a, 8}, [a| < |B|. Then ma,0 = {(0,2), (58,~1)}, A0 = Ta,0 U {38,1), (8,0)}.

Define a bilinear form (-,-), : @, x Q@ — C as follows. For § € 7y, (A, p) € Q let

P, 17 (B) =a
(B, (Ap))r = AHp-1(5)), 07 1(B) € ma \{a} (x5 %)
n;— (g) (Aap)7 77_1(5) S \ T4

We can extend (***) to the form on a whole space by linearity.

Proposition 5.2. The form (-,-) is non-degenerated on Q..
Proof. If for some (A, p) € Q,, (8,(A,p))r =0 for all 8 € 7wy, then we immediately obtain that p =0

and A(H,-1(3)) = 0 for all 3 € Ty . Thus A = ra which completes the proof.

O
We will denote by | - |, the norm in (Q,)r induced by (-,-).
Using (**) and (***) one can easily verify the following lemma.
Lemma 5.3. A, is a root system in (Q,, (-,-),) of the same type as A° and 7, , is its basis.
O

It follows immediately from Lemma 5.3 that the Weyl group of A, , is isomorphic to W. For 8 € A;T

we will denote by og the corresponding reflection in €2,:

2(8,(A\,p))

os(A\,p) = (\,p) — B.5), =43 for any (A,p) € Q.
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Naturally, we can also view o4 as an element of Aut ((,).
Proposition 5.4. W, ~ W.

Proof. Let 8 € ma,r, (A,p) € Q.. Then one can check that o5(\, p) = £,-1(3)(, p). Since 0, B € Ta,r
generate the group isomorphic to W and £,-1(3), B € Ta,r generate W, the statement of Proposition

follows.

Proposition 5.5. Let (A,p), (X',p') € Q, and (X,p') € W,(X,p). Then 0, ;) = Ox 1)

Proof. Clearly, 0;_(x) = 0(x,—p) = 0(rp)- Let B € 7\ {a} and 0 # 2z € Z(G). For t € C denote by
7¢ : Clc] = C the evaluation map, 74(c) = t?, and consider a polynomial function f, € S(2*) such that
f(,q) = (13, ©1) 0 (1 ® %) 0 ¢a (2)) (1) = b(y,q) (2) for any (p,q) € Q. Clearly, f. o lg(A,p) = bgy(rp)-
Let g.p = fo0l3 — f.. If B € s\ {a} then for any (u,q) € Q, such that u(Hg) € N we obtain
M(€s(p,q)) C M(u,q) by Lemma 3.7, (i). Thus for any such pair (1,q), 0e,(u,q)(2) = O(u,q)(2) which
implies g, s = 0. Let now 8 € w\m4. Then for any pair (i, ¢) € Q, such that ng(u, q) € N, the Theorems

4.1, 4.3 and 4.5 and Lemma 3.7, (ii) imply that

M(Ls(p,q)) C M(p,q)

and hence g 5 = 0 again. Since g, 5 = 0 for any z € Z(G) we conclude that 6y ;) = 0y,(x,)- Since the

group W, is generated by £g, 3 € w the statement of Proposition follows.

O
We make the following simple observation that follows from (¥**).
Lemma 5.6. Let (A,p) € Q. Then
{8, 0p)r, BE D\ @)} ={(B,N =), B AL\ (@)}
O
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§6. Generalized Harish-Chandra Theorem

In this section we establish an analog of the Harish-Chandra theorem for the centre Z(G). Consider
amap x : Z(G%) ® S(H*) = C[t] ® S(H?), such that x(c) = t, and algebra A = C[v/t] ® S(H*) that
acts on (2, by polynomial functions. Denote by AW= C A the polynomial functions invariant under W,.
Then AW~ C C[t] ® S(H%), since l, € W,.
Lemma 6.1. (x 04)(Z(G)) C AW=.

Proof. Let 0 # z € Z(G), w € W,, (A\,p) € Q,. Then by Proposition 5.5 w(x o i)(z)(A,p) =

(x 0 8)(2) (w1 (A, p)) = bu-1(0,) (2) = O(r,p(2) = (x 09)(2)(A, p). Hence w(x 0i)(2) = (x °i)(2).

Lemma 6.2. (1o 0o x~1)(AW=) c S(H)W.
Proof. Let ¢ : W5W,, be the isomorphism established in Proposition 5.4. One can easily check that

for any w € W, and f € AW : w(9pe o X 1) (f) = (Wa 0o x 1) (¥(w) f) and thus Lemma follows.

Theorem 6.3 (Generalized Harish-Chandra Theorem)

xoi: Z(G) = AW= is an isomorphism that does not depend on the choice of m containing a.

Proof. Consider the following commutative diagram

Xoi J
Z(G) — AWa — S(H)W
4 4
waOX_l

Citl@ S(H*) —  SH)V@®

where j is the restriction of 9, 0 x~! on AW=. Since j o (x 0i) is an isomorphism then Ker(x o4) = 0 and
j(AW=) = S(H)W. On the other hand 1, o x~! is an isomorphism too. Thus, ker j = 0 which implies
that x o4 is epimorphism and hence isomorphism. This isomorphism does not depend on the choice of 7

containing « by [D, Th.7.4.5].
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Corollary 6.4. Let (X, p), (X,p') € Q. If (5 p) = Oxr 1y then (X, p") € Wo (A, p).

Proof. Let O; and O3 be two different orbits of W, in 2,.. Then there exists a polynomial function

f € C[t] ® S(H%) such that f(O1) = 0, f(O2) = 1. Consider g = Z w-feA" and 2 =

|Wa| weW,
(x i)~ 1(g) € Z(G). Then g(O,) =0, g(O2) = 1 and hence z takes different values on O; and Os.

Combining the results of Proposition 5.5 and Corollary 6.4 we obtain

Theorem 6.5. Let (A, p), (N, p") € Q.. The following statements are equivalent

(i) Oap =00 p)

(ii) (N, p") € Wa(A,p).

§7. Submodule structure of M(}\,p)

In this section we establish a criterion for a module M (p, g) to be a submodule of M (A,p) (Theorem
7.6) and hence obtain an analog for a-stratified modules of the classical BGG Theorem for Verma modules.
The proofs follow the general lines of the proofs of corresponding results for Verma modules [BGG,D].
First we find some sufficient conditions for the inclusions of generalized Verma modules (Proposition
7.5) following [BGG, Theorem 3], [D, Lemma 7.6.13]. We prove the necessity of those conditions in
Theorem 7.6 using the idea of tensoring with finite-dimensional modules. We can apply the proof of
Theorem 2 in [BGG] thanks to the fact that the groups (W, #*) and (Wy, Q) are similar in the category
of transormation groups. We start with the following essential result.

Proposition 7.1 For any (\,p) € Q. the set A = {(u,q) € Q.| M(u— X, q —p) C M(u,q)} is closed in the
Zariski topology in €,.
Proof. Let (u,q) € A and £ € N. Then there exists k = k(¢) € N such that M(y,q)p—r—ptra =

U(N*)XfaM(ua Q)u+ka7p-
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Choose the following basis in U(G):
Xk xRy XU HD L HEXEXEXP, e At\{a}, i=1,...,s.

Denote by 7’ the minimal subset of A* \ {a} containing 7 \ {a} that generates A™ \ {a}.

n T
Let 0 #u € UN_)X¢,, B €n'. Then Xgu=1uo+ Y uiHa, + Y tnyi XL +v, where u; € U(N_),

i=1 =1
i =0,...,n+r and each basis element in v contains at least one X, with v € A*\ {a}. For ¢ big enough
we can assume the un4; contains Xt  for all i = 1,...,7. Then un; X} =l X* X¢ =ul (e, Hy)

where (;(¢, Hy) is some polynomial in ¢ and H,. Since U(G) is a free Z(G)-module [D,Th.8.2.4], such u;,
i = 0,...,n and Uy, 1 js

j=1,...,r are defined uniquely. Let

Ty (@) = w0 + 3 = ) (HiJus + 3t Gila® (1 = p) (Ha))-

i=1

" "

Also there exist uniquely defined u,, u;, u; € U(N_) such that

(c— (g —p)*)u = uy +uy Hy + uy(c — ¢%).

We let f¢, (u) = ug +uy (n— p)(Ha).

Denote ¢ = || and define the linear map g, q) : U(N-)X*¢, — (U(N-)"" for which

g(N,Q)(u) = (faj,q)(u)a' "Jfaz,q)(u)a f(cu,q)(u))a i € 71", L= 1:- --;t-

Denote

X ={u e UN_)XE |[hu] = —(\+ (k—r)a) (h)u, for all h € H}.

Obviously, dim X < oco.

Let v, r # 0 be an a-primitive element in M (4, ) ytka—p. Then the condition M((u,q) — (A, p)) C
M (s, q) is equivalent to the existence of a non-zero element v € M(u,q)u—r—ptrar such that N¢v = 0
and (¢ — (¢ — p)*)v = 0. Thus it is equivalent to the existence of u € X \ {0} such that Nfuv,r =

(¢ — (g — p)*)uv,r, = 0 and hence f(ﬁu’q) (Wvpk = Fina) (w)vy,r = 0 for all 8 € «'. Since module M (u, q)
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is U(N_)-free we can rewrite the last condition in the form that there exists u € X \ {0}, such that
f(ﬁu 9 (u) = Fin) (u) = 0 for all 3 € 7' which is equivalent to the fact that rank(g(, 4)|X) < dim X. This
means that some determinants, whose elements are the polynomial functions on p and ¢, equal zero. The

proposition is proved.

O
Lemma 7.2. Let r, a € C,(\,p) € 0, € A} and B, = 8+ (aa,0) € A} .
(i) (8, (Ap)r = (B, (A + aa,p))-.
(i) og, (A +aa,p) =05\, p) + (acx,0).
(iii) If p = A(Hy,) then og(,p) = (4, u(Hy)) where p = sp-1()(A).
Proof. The statements (i) and (iii) can be checked by direct computations, (ii) follows from (i).
O

Lemma 7.3. Let 8 € AT\ {a}, (\,A(Hy)) € Q,, M(H) € N and n € Z,. Then
M (on(g) (A —na, M(Ha))) C M(A, A(Ha))

Proof. Let u = sg\. Then p < XA and M (p — na, p(Hy)) C M (M, MN(H,)) by Proposition 3.1, (iii)
and Lemma 3.6. But oy,(g)(A — na, A\(Ha)) = (sg, () (Ha)) — (na, 0) = (p — na, u(H,)) by Lemma

7.2. This completes the proof.

Proposition 7.4. Let 8 € AL\ {n(a)}, (A\,p) € Q. If (B, (A, p))r € N then M(os(X,p)) C M(A,p).
Proof. Consider the following two sets Ag = {(u,q) € Q.|M(o5(i,q)) € M(u,q)} and By g =
{(p,q) € flr|(ﬂ, (4,9))r =k}, k € N. To prove our statement we will show that By g is a subset of Ag.

One can easily check that for n € Z,, v € mo,, and (u, u(Hy)) € Q,

(7, (1 = na, u(Ha)))r = p(Hy=1(5))-
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Using the fact that 7 is a composition of the canonical bijection 7' with the linear isomorphism g, , we

conclude that (7, (u—na, w(Hy)))r = p(H,; ' (7)) for any n € Zy and v € AL . Thus, (u—na, u(Hy)) €

By, s if and only if p € B, and w(Hy-1(5)) = k. For any such p we have s,-1(3) (1) < p. Therefore,

M(op(p —na, w(Ha)))) € M(p, p(Ha)) = M(p — nev, p(Ha))

by Lemma 7.3. Hence,
Crp = { (=, w(Ha)) € Qrlp(Hy-19) =k, n€ 2y} C B As.

But C} g is dense in By, g in the Zariski topology. Thus, By g C Ag by Proposition 7.1 and the statement

is proved.

Remark. If 8 = n(a) then M(og(A,p)) = M(A\,—p) = M(A,p).

Definition. Let (A,p), (1,q) € Q, and g € Af,.

(i) We will write (A, p)2 (1, q) if (11, q) = o5(A, p) and for 8 # n(a), (B, (A, p))» € N.

(ii) We say that a sequence 3,, ..., B of elements of A¥ , satisfies condition (A) for a pair {(},p), (1,q)}

and write (u,q) << (A,p) if
A 0)Bos, (A9 Bog,0s (Ap) = ... Bop, .. o5, (A D) = (1,9)

orA=pu, p=gq.

Example. Let G = By, m = {a, 8}, la| > |8], A7 o = {(0,1), (8,-1),(8,0),(8,1)}. Consider (,p) € Qo
such that A(Ho + Hg) = k+ %, k € Zy and k+ L £p ¢ N. Then ((8,0),(A\,p))o = p+nz(\,p) =
MHo+Hg) =k+35 ¢ N, ((8,-1),(\p)o=n5\p) =k+3-p¢N, ((5,1), (\p)o=nf(\p) =
k+ % +p¢&N. Thus, 0(5,0)(A,p) = (A= (2k +1)8,p) £ (A, p).

Proposition 7.5. Let (A, p), (1, q) € Q.. If (1,q) € (A, p) then M (u,q) C M (A, p).
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Proof. Let (u,p) < (A,p) and (u,q) # (A, p). Then there exists £, ..., B, € Af, such that
Ap)Bos (0 p)B .. s A p) =
(A p)=os (A p)= ... Fop,, ..o (A p) = (1)

Without loss of generality we may assume that 8; # n(a) for all i (see Remark after Proposition 7.4).
Hence, (8i,08,_, ---058,(A,p))r € N for all i = 2,...,m and (81, (A,p))r € N and thus Proposition 7.4

implies that

M(u,q) = M(op,, ---05,(A,p)) C M(0p,,_, ---0p,(Ap)) C ... C M(op, (A, p)) C M(A,p).

In particular Proposition 7.5 gives sufficient conditions for the existence of a submodule of type
M(u,q) in an a-stratified module M (\,p). We will show the necessity of these conditions. Our main
result is the following theorem.

Theorem 7.6. Let (\,p) and (i, q) € Qf. The following statements are equivalent.

(i) M(u,q) C M(X,p);
(it) L(u,q) € TH(M (X, p));
(iii) There exists k € Z such that (p + ko, q) < (A, p).
Using Theorem 7.6 we obtain the following criterion for the irreducibility of the a-stratified modules
M(X,p).

Theorem 7.7. Let (\,p) € Q°. The module M (), p) is irreducible if and only if (3, (), p)), ¢ N for all

peal, \{nx)}
Proof. If (3,()\,p))r € N for some 8 € A} .\ {n(a)} then M(o5(X, p)) C M(X,p) by Proposition 7.5

and M (), p) is reducible. Conversely, assume that (3, (X, p)), € N for all 8 € AL, \ {n(a)}. Then for
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all such B we have that (3, (A, —p)), ¢ N by Lemma 5.6 and thus (A, £p) 4 og(\, £p) which implies the

irreducibility of M (), p) by Theorem 7.6.

To prove the Theorem 7.6 we will need several Lemmas.
Lemma 7.8. [M2] Let V be an irreducible finite-dimensional s£(2)-module with highest weight $ and
N be an irreducible weight s¢(2)-module such that (¢ — p?)N = 0. Then the eigenvalues of c on V @ N

are: (p—p)2%, (p—pP+2)%,...,(p+p)>

O
Lemma 7.9. Let F' be a finite-dimensional G-module and (A, p) € Q. Then there exists a filtration
ocVocWViCc...CVe=M\p) ®F
such that V;/V;_1 ~ M (\;,p;), where \; — X\ is a weight of F', i=1,...,k.
Proof. Follows from Lemma 7.8 (cf. [BGG, Lemma 5] and [M2, Lemma 4.7]).
O

Denote by P the set of all different highest weights of sf(2)-submodules in a finite-dimensional module
F. Then in Lemma 7.9 p? = (p — p+m)? for some p € P and some m € {0,2,...2p} by Lemma 7.8. We
will assume that p; € {p—p+mlpe P, m=0,2,...,2p} forall i =1, ..., k.

Set P(F) = {(Mi,pi)—(\,p), i=1,...,k}. Tt is clear that P(F') does not depend on (A, p). It follows
from Lemma 7.8 that if z € Q° and y € P(F) for some finite-dimensional G-module F then z +y € Q°.

Let T C Q, and (\,p) € T. We will say that (), p) is maximal in T if there is no (u,q) € T such that

(1, q0) > (A, p)-

Lemma 7.10. Let M € K, and let

0O=MyCcM;C...CM,=M
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be a filtration such that M;/M;_1 ~ M(X\;,p;), i =1,...k. Suppose that (\,p) € {(\i;,p;), i=1,...k}
is maximal in Wy (A, p) N {(Ai,p;), ¢ =1,...,k}. Then there is a submodule N C M isomorphic to
M(\p).

Proof. If follows immediately that M, _, contains a non-zero a-primitive element v such that (c —

p?)v = 0. Then U(G)v ~ M(),p) and Lemma is proved.

It follows from Lemma 7.9 or more generally from [Fe, Theorem 4.21] that if (\,p) € Q and F is an
irreducible finite-dimensional G-module then the module M (A, p) ® F' has a Jordan-Holder series.
Lemma 7.11. Let z € Q, F be a finite-dimensional G-module and y € P(F). If z + y is maximal in

the set Wo(z +y) N (z + P(F) + Za) then

Lz +y) e JH(L(z) ® F).

Proof. The proof is analogous to the proof of Lemma 7.6.16 in [D].

Lemma 7.12. Let x,£ € Q, L(z) € JH(M(£)), F is a finite-dimensional G-module, y € P(F) and

x + y is maximal in Wy (z +y) N (z + P(F) + Za). Then there exists ¢ € P(F) such that

Lz +y) € TH(M(£ + Q).

Proof. It follows immediately from Lemmas 7.9 and 7.11 that

Lz +y) e TH(L(x) ® F) C TH(M (&) ® F) C Urepr) TH(M (€ + 7))

(cf. [D, Lemma 7.6.17]).
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Let r € C and Qz = {(\,p) € Q|(8, (\,p))r € Z for all B € 7y, }. Obviously, Qz does not depend on
r. One can also check that (aa,0) + P(F) C Qg for any finite-dimensional G-module F' and any a € C.
Denote €2,z = Qz N QT.
Lemma 7.13. If (\,p) € Q, z and 8 € 7, then og(\,p) € Q. 7.

Proof. For any v € 7o, we obtain using Lemma 7.2, (i) that

2(ﬁ7 ()\JP))"'
(8, B)r

2
which is an integer since (v, (A, p))- € Z, (8, (A, p))» € Z and % € Z. This completes the proof.
7 T

(’Y’o—ﬁ()‘ap))r = (’77 (Aap))r - (’7} /B)r

For r € C consider a linear space (2, with fixed point (ra,0). Let E, = Ugea, . {z € Q|(8, Rex), =
0} C Q. We define the Weyl chambers in , as connected components in Q, \ E,. Let C be a Weyl
chamber in Q, and a € C. Then C, = C + ((a — ), 0) is a Weyl chamber in Q,. Set C' = UgecCl.
We will call C' the Weyl chamber in Q corresponding to C. Let C, C' be the Weyl chambers in Q, and
C, C' be the corresponding Weyl chambers in Q. It follows from Lemma 7.2, (i) that if o3C = C' for
some # € A, then o, ,C, = C} for all a € C where 8,_, = 8 + ((a —r)a,0). We will simply write
05C = C'. Denote by C, the closure of chamber C, and set C' = UyecCl.

Lemma 7.14. Let C and C’ be the Weyl chambersin Q,,z € C,2' € C',y € C,y' € C',y—z € Oy 2,
Yy —2' €Qrz, 2 € Woz and y' € Wyy. If 2/ < 2 then y' < y.

Proof.  Since 2z’ <« xz there exist fi,...0 € Af, such that :cﬁ—lmglm% ... @iag,c
0, = «'. Thus if B; # n(a) we have (8i,05,_,...08,2), € N. Denote y; = 0g,...08Yy, i =
1,...,k , We have by Lemma 7.2, (i) that if 8; # n(a) then (8;,yi—1)r = (Bis08_1---08,y — z))r +
(Bi,08;,_1 -..0p,2), and hence (B;,y;—1)r € N U {0} since z and y belong to the same chamber and
y—x € Qz. If (Bi,yi—1)r =0 then y; = y; 1. Let iy,...,9m € {1,...,k}, 4; <ijy1, j=1,...,m be

indexes that (83;;,yi;_,)r # 0 for all j =1,...,m. Then yﬁ—iiyilﬁ—i? ...ﬁ"ﬁyim = yp. But gy, € C'NWyy'
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and thus Ry = Ry'. Now using the fact that y —2 € Q,,z and y' —z' € Q,. 7z we obtain that y' —y; € Q. 7

and hence Sy’ = Syg. One can conclude now that ¥’ = y;, and thus ' < y. Lemma is proved.

Lemma 7.15 [BGG, Lemma 8]. Let C' and C' be two neighbour chambers in Q,, z € C, y € C' and

B € Af, such that (3,R z), <0, (6,R y)r > 0. Then 05C = C".

Lemma 7.16. Let (\,p) € Qz. Then there exist a € C and finite-dimensional irreducible G-module F’
such that (A + aa,p) € P(F) and X' = A + aa is an extreme weight of F'. In particular, if (X, p) € Qz_
then X' is a highest weight of F'.

Proof. Suppose that (\,p) € Qz,, i.e. (8,(A,p))r € Z; for all B € m,,. Denote a = 1p — LA(H,)
and X' = A+ aa. Then N(H,) = (n(v),(A,p))r € Zy for all v € 7 and in particular X' ((Hy,) = p.
Consider a finite-dimensional irreducible module F' with highest weight X'. Then (\',p) € P(F) and

Lemma follows. The general case can be treated analogously.

Proof of the Theorem 7.6. Our proof is analogous to the proof of BGG Theorem for Verma
modules [BGG, Theorem 2; D, Theorem 7.6.23].
(i) = (ii). This implication is obvious.
(iii) = (i). Assume that (u + ka,q) < (A\,p) for some k € Z. Then M(u + ka,q) C M(\,p) by
Proposition 7.5 and hence M (u,q) C M (A, p) by Proposition 3.1, (iii).
(i) = (iii). For z € Qf denote by Y,.(z) the following statement: for any y € Q2 such that L(z) €

JH(M(y)) there exist f1,...,8n € AL, satisfying

T =0g,,.-03Y K03, _,---05Yy<K..<KL0gy<Ky.

To show the implication (ii) = (iii) it is enough to prove Y, (z) for all z € Q2 by Proposition 3.3.
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Let p, = % Z B and let CT C Qf be a Weyl chamber containing p,.. Obviously, ¥,.(z) holds for
+
any z € C+. OﬁEAchrl reduce the general case to this one by the following three steps.

Step 1. Let C C Q} be a Weyl chamber, z € C and 3 € Aj;,,, such that (8,® z), < 0 and 03C is a
neighbour-chamber of C. Let F be a finite-dimensional G-module such that z + P(F) C CUoC and let
y € P(F). If z +y € 05C,, a € C then Y,(z + y) implies Y, (z).

Proof. Suppose that ¢ € Q2 and L(x) € JH(M(£)). Since z+y € 05C, we have that z+y is maximal
in Wo(z +y) N {z + P(F) + Za}. Applying Lemma 7.12 we conclude that there exists { € P(F) Ny,
b € C such that L(z +y) € JH(M(£ + (). Since M(E+ () 2 M(E+ ), ¢ =C+ ((a—b—-1r)a,0),
we obtain that L(z +y) € JH(M (& + (')). From Y,(z + y) we conclude that there exists a sequence
of elements of A} , that satisfies the condition (A) for a pair {£ 4+ ¢',z + y}. Since the groups (W, H*)
and (W,,,) are similar as transdormation groups then using Theorem 6.5, Lemmas 7.13, 7.14 and
7.15, and applying the same arguments used in the proof of step 1 in [BGG, Theorem 2; D, Theorem
6.6.23] one can show the existence of a sequence of elements of Al , satisfying the condition (A) for
{£+ ((a —71)a,0),z + ((a — 7)a,0)}. Finally, Lemma 7.2 implies the existence of a sequence of elements
of A, that satisfies the condition (A) for {¢,z}, which completes the proof.

Step 2. Let C' C §2; be a Weyl chamber, z € C and F be such finite-dimensional module that z + P(F) C
C, the Weyl chamber in Q corresponding to C. If y € P(F) N Qq, a € C then Y, ,(z +y) implies Y, (z).

Proof. Analogous to the proof of Step 1.

The steps 1 and 2 imply the statement Y,.(z) for all z € Qf that are “far from the walls”. Indeed,
let d, be the distance in (Q%)r and z € QF such that d(R =, E,.) > 3|p,|. Then following [BGG] one can

construct a sequence g = &, 1, ..., of elements of Qf such that d(R z;, E;) > 2|pr|, 2iy1 — z; € Qz,

z, € C* and one of the following two conditions holds:

(i) #; and z;41 belong to the neighbour chambers C' and ogC for 8 € At ., (B,R z;), < 0 and

a,r?

|z;+1 — 25| is much less than the distance from z; to any other Weyl chamber;
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(ii) z; and z;11 belong to the same Weyl chamber and |z;11 — ;| < 2|py|-

We will say that zg,z1, ...,z form an r-sequence. Let z; — ;-1 = (A;,p;), ¢ = 1,...,k. Since
T1 — 29 € gz it follows from Lemma 7.16 that there exists a; € C such that A\; + a;« is an extreme
weight of a finite-dimensional irreducible G-module F' and (A\; + aja,p;) € P(F). Then using Step 1 or
Step 2 we conclude that Y, 4, (z1 + (a1, 0)) implies Y;.(zg). Denote z} = z; + (a1,0), i = 1,..., k. Then
xy, 25, ..., 2}, form an (r+aq)-sequence. By induction on k we conclude that there exist as, ..., ar, € C such
that Yeya, 4. 4a, (@ +((a1+...+a)a,0)) = ... = Vg 4a,(2+((a1+a2),0) = Vg, (21+(a10,0)) =
Y, (zo). Since z € Ct the statement Yyiq,4...4a,(zk + ((a1 + ... + ax)a,0)) holds and Y (z¢) follows.
Step 3. Let z € O, R x # 0. We will prove the statement Y, (x).

For b > 0 consider Dy, C (28)r consisting of such elements ¢ that the angle between ¢t and R z is less
than b. We can choose b to be so small that a Weyl chamber C' C €)? intersects Dy, if and only if z € C.
Now choose y € Q,z such that d(R (z+y), E,) > 3|p,| and R (z+y) is maximal in W, (R (z+y))N Dy .
Let y = (\, p). It follows from Lemma 7.16 that there exist a € C such that A+ aa is an extreme weight of
a finite-dimensional irreducible module F' and (A+aa, p) € P(F'). Note that d(R (z+y+(aa,0)), Eryqa) >
3|prta| and R (z +y+ (aca, 0)) is maximal in W, (R (z+y + (aq,0)) N Dp yyq. As in the proof of Step 3 of
Theorem 2 in [BGG] one can show that z+y+ (aa, 0) is maximal in (W, (z+y+ (ac, 0)))N(z+ P(F)+Za)
and thus we can apply Lemma 7.12. Suppose that L(z) € JH(M(£)), £ € Q2. Then there exists ¢ € Q,
such that L(z + y + (aw,0)) € JH(M (£ + {)). Since z + y + (aa, 0) is “far from the walls” we conclude
that Y,14(2z + v + (aa,0)) holds and hence there exists a sequence of elements of A;T Lo that satisfies

condition (A) for a pair {£ + ¢, = + y + (aa,0)}. Applying Lemma 7.14 we obtain that there exists a

+

sequence of elements of A7, ,

satisfying condition (A) for a pair {£ + (ac,0), z + (ac,0)} and therefore
by Lemma 7.2 there exists a sequence of elements of Af . satisfying condition (A) for {z,y}. This proves

the statement Y;.(z) and completes the proof of the Theorem.
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