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Abstract

We give a description of Arkhipov’s and (Joseph’s and Deodhar-Mathieu’s ver-
sions of) Enright’s endofunctors on the category O, associated with a fixed triangular
decomposition of a complex finite-dimensional semi-simple Lie algebra, in terms of
(co)approximation functors with respect to suitably chosen injective (resp. projec-
tive) modules. We establish some new connections between these functors, for ex-
ample we show that Arkhipov’s and Joseph’s functors are adjoint to each other. We
also give several proofs of braid relations for Arkhipov’s and Enright’s functors.

1 Introduction

The blocks of the the BGG category O, associated with a fixed triangular decomposition of
a complex finite-dimensional semi-simple Lie algebra g (see [BGG]), are principal objects
of study in the representation theory. They are equivalent to the categories of modules
over certain quasi-hereditary algebras, which possess a lot of symmetries. In particular,
the (basic) quasi-hereditary algebra A, describing the principal block of O, is isomorphic to
its opposite algebra, is isomorphic to its Koszul dual, and is isomorphic to its Ringel dual.
The last isomorphism was first established by Soergel in [Sol], using a special endofunctor
on O, which was inspired by the work [Arl] of Arkhipov. Later on, in [Ar2], Arkhipov
proposed a construction, which associates an analogous functor to every simple root of g.
Basicly, every Arkhipov’s functor is tensoring with a bimodule. Reading [Ar2]| one gets a
very strong impression that Arkhipov’s functors must satisfy braid relation, especially as
the statement of [Ar2, Lemma 2.1.10] says that two braid tensor products of Arkhipov’s
bimodules are isomorphic as left modules. However, we did not manage to derive the braid
relations for functors (or tensor products of corresponding bimodules) from [Ar2]. Assum-
ing braid relations for Arkhipov’s functors one gets that in the case of finite-dimensional
Lie algebra the functor, used by Soergel in [Sol], is just the composition of Arkhipov’s
functors, constructed with respect to a reduced decomposition of the longest element in
the Weyl group.

Another famous example of functors, associated with simple roots of g, is the family
of the so-called Enright’s completions, originally defined by Enright in [En]. Later on
Deodhar, [De], proved that Enright’s functors satisfy braid relations on a (rather big)
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subcategory of O (see also the paper [Bo] of Bouaziz). This was extended by Joseph, [Jo2],
to the whole category O for a slight modification of Enright’s functors.

In [KM] it is shown that Enright’s functors (in Deodhar’s or, more generally, in Math-
ieu’s version, [Ma]) have a natural realization in terms of the approximation functor ([Au])
with respect to a suitably chosen (not necessarily indecomposable) injective module in O.
This realization is then used to get a short proof of the braid relations (on the subcategory
of O, considered by Deodhar), which is free from technicalities. Moreover, this realization
also allows one to establish an equivalence between several categories of g-modules, arising
in rather different contexts.

The aim of the present paper is to find analogous descriptions for Joseph’s version
of Enright’s functors and also for Arkhipov’s functors. To do this we “deform” in some
sense the definition of the approximation functor and define a new functor, which we
call partial approximation. The difference in the behavior of approximation and partial
approximation is very similar to the difference in the behavior of Enright’s and Joseph’s
functors, which suggests that the partial approximation can be a good candidate for a
description of Joseph’s functor. We show that the partial approximation really dercribes
Joseph’s functor. Finally, we also show that Arkhipov’s functor can be described by a dual
construction, called partial coapproximation.

Using our realization, we show that Joseph’s and Arkhipov’s functors are adjoint to
each other, moreover, that one of them is a conjugation of the other by the natural duality
on O, implying that the studies of the braid relations for these two families of functors
are equivalent. The results are quite surprising since the original definition of the functors
is purely “Lie theoretic” and uses either the structure theory of the universal enveloping
algebra or the theory of Harish-Chandra bimodules. Nevertheless, the description we get
is categorical and thus it can be transfered to the case of any finite-dimensional associative
algebra (provided that there exists a duality and a choice of injective modules, satisfying
some special properties). In some sense our description establishes one more path connect-
ing representation theory of Lie algebras and representation theory of finite-dimensional
algebras.

Let « be a simple root of g, and let O3, be the block of the category O for g cor-
responding to an integral dominant weight A. Denote by A® Arkhipov’s functor, by C¢
Joseph’s version of Enright’s functor and by Cf; Deodhar-Mathieu’s version of Enright’s
functor associated with . Let T denote the set {w - A}, where w is the longest repre-
sentative of a left coset of the Weyl group of g modulo the subgroup, generated by s,.
Denote also by ¢y, 9y and 9y the functors of approximation, partial approximation and
partial coapproximation with respect to Y. The principal results of the paper can now be
collected in the following three statements.

Theorem 1. 1. The functors A* and oy are isomorphic;
2. The functors C§ and 0y are isomorphic;

3. The functors C$; and ¢y are isomorphic.



Theorem 2. The functors A%, a simple, satisfy braid relations.
Theorem 3. The functor A® is left adjoint to the functor C§.

The paper is organized as follows. In Section 2 we define our main objects: Arkhipov’s
and Enright’s functors (the latter ones are defined both in the original and in the modified
versions) on the category O and various approximations functors on module categories
of finite dimensional algebras. In all cases the action of the functors is illustrated on the
regular block of O for the Lie algebra s[(2, C). In Section 3, 4 and 5 we study the properties
of and give a description for the original Enright’s functor, the modified (Joseph’s) version
of Enright’s functor and Arkhipov’s functor respectively. In particular, we prove Theorem 3
and all statements combined in Theorem 1. In Section 6 we derive braid relations for
Arkhipov’s functors and transfer them to the case of Enright’s functors. We finish the
paper with an application of our results to some parabolic analogs of the category O in
Section 7.

We have to say that during the preparation of the paper we learned that there is some
overlap between our results and the recent results of Andersen and Stroppel, [AS]. We are
indebted to Catharina Stroppel for this information. Moreover, as it was pointed out by
Catharina, some of our original methods, especially those used for the study of Arkhipov’s
functors needed a serious revision. In particular, in the final form, presented in this paper,
we use the fact, first completely proved in [AS], that Arkhipov’s functors commute with
translation functors.

2 Functors

We denote by C, Z, Z, and N the sets of complex numbers, integers, non-negative integers
and positive integers respectively.

We fix a triangular decomposition, g =n_ @ h & n,, for g and denote by 7 the corre-
sponding basis in the root system A for g with respect to the Cartan subalgebra h. We
also fix some Weyl-Chevalley basis {X, : « € A}JU {H, : @ € 7} in g. For a simple root «
we denote by U, the Ore localization of the universal enveloping algebra U(g) with respect
to the multiplicative set {X*  : k € N}, see [Ma, Section 4] for details. Let W be the Weyl
group of A. It is generated by simple reflections s,, o € m. We denote by [ : W — Z, the
length function with respect to 7. Let (-,-) be the standard W-invariant form on h*. We
also denote by g(«) the sl(2, C)-subalgebra of g, generated by X.,.

From now on we restrict our consideration to the full subcategory O;,; of the category
O, which consists of all modules having integral support. The general case can be easily
reduced to the integral case via the equivalence of categories established in [So2]. Further-
more, with respect to the action of the center Z(g) of U(g) we can decompose O;,; into a
direct sum of full subcategories O2,,, where \ is dominant and O}, consists of all modules
in Oy, having the same (generalized) central character as the Verma module M ()). We
will also widely use the natural duality on O, denoted by x, which is defined in terms of
the Chevalley anti-involution on g.



All the categories, which we consider, have enough injective and projective objects. For
every module M we fix some inclusion, 37, of M into its injective envelope I/, and some
projection, 1, from the projective cover Py, to M. To simplify notation we are going to
omit the index M in 35, and ,, and write simply 3 and y. For a (Lie) algebra A and a (Lie)
subalgebra B C A we denote by Res% the restriction functor from A-mod to B-mod. By
a duality on a category we mean an exact contravariant involutive self-equivalence, which
preserves (isomorphism classes of) simple objects.

Later in the paper we will need the following general statement, which we call the
Comparison Lemma.

Lemma 1. Let A and B be two abelian categories and F,G, H be three additive functors
from A to B. Assume that

1. A has enough injective objects.
F and G are left exact.

For any injective I € A the objects F(I) and G(I) are isomorphic.

There are natural transformations natry : H — F and natg : H — G such that for
any injective I the maps natp(I) and natg(I) are epimorphisms.

5. For any injective object I we have Ker(natp(I)) = Ker(natg (1)), that is there exists
an isomorphism i : Ker(natp(I)) — Ker(natg(I)) such that the following diagram
commutes:

Ker(natp(I)) — H(I)

: |

Ker(natg(I)) — H(I)
Then the functors F' and G are isomorphic.

Proof. Since both functors are left exact and A has enough injective objects, taking the
first two steps of the injective resolution it is sufficient to prove that F' and GG are isomorphic
on the full subcategory A™ of A consisting of injective objects. Let I € A™. Since both
natr(I) and natg(I) are epimorphisms and Ker(natr(I)) = Ker(natg (7)), there exists an
isomorphism p(I) : F(I) — G(I) such that the following digram commutes:

F) 2 G

natF(I)T AZ @

H(I)

Let us show that {p(I) : I € A"} defines a natural isomorphism from F to G. Since
all p(I) are isomorphisms, It is enough to show that {p(I) : I € A"} defines a natural
transformation from F' to G.



Let I,.J be injective objects in A and f : I — J be a morphism. As both natz and
nate are natural, we have the following commutative diagrams:

P 22 p G -2 G )
natF(I)T Tnatp(J) natg(I)T Tnatg(])
(1) 2 H () H(I) 2 H ()

Hence all triangles and small quadrangles in the following diagram commute:

F(I) =) F(J)
“n\atp(l) natV

(1) HID 2L g b()
s et

G(1) — G(7)

Since the map natr(I) is an epimorphisms, we have the commutativity of the big square,
which completes the proof. O

2.1 Arkhipov’s functors

In this subsection we follow [Arl, Section 2|. For o € m we define the functor A = A* :
Oint = Oint, which we will call elementary Arkhipov’s functor, as follows:

M- 0, ((Resg‘zg) (U ®u(g) M)) /w(M)> ;

where O, denotes the twist with respect to the automorphism of g, corresponding to s,
and ¢ (M) denotes the canonical image of M in the module Resg‘zg) (Us ®u(g) M). The
same functor can be realized as tensoring with a special “a-semi-regular” U(g)-bimodule,
namely the bimodule S, = U,/U, followed by ©,-twist (we refer the reader to [Arl,
Section 2] for details). It is obvious that A is covariant and from the last realization it
follows that it is right exact.

For any finite-dimensional g-module F the functor A commutes with the functor F® .
A complete proof of this can be found in [AS], where it is shown that the statement is closely
connected to the fact that U, has a comultiplication (over a completion). The isomorphism
fp: Ao (E®_) —» (E®_) oA (modulo the obvious ©, part) can be constructed as follows:
If M € O;p; then the corresponding natural transformation fz : Ao (EQ_) — (F®_) o A
from U, ®pg) (M ® E) to (Us ®u(g) M) ® E is given by

(n—l—k—l

Xpemee ) (-7

)X_gf—k @me X" e.
k>0



The map in the opposite direction is

(X_2@m)®@e— X_J® Z (Z) X @ X e,
k>0

where r,a € N are chosen such that X?_ annihilates F and (r — 1)a > n — 1 (it is easy to
see that the final map does not depend on the choice of a and r). Both formulae above are
taken from [AS, Section 3]. Since A obviously preserves the (generalized) central character
of the module, it follows that A commutes with all translation functors. An important
property of the maps above is the following statements ([AS, Theorem 3.2]), which are
checked by direct calculation (below for a finite-dimensional g-module E by E° we denote
the usual dual module and we also remark that E° 2 E* in general):

Lemma 2. Let M € O. For any finite-dimensional g-modules E and F the following
diagram commutes:

AF @ Eo M) MY po A(E e M)
roriit le(M)@)Id
F®E® AM)

Moreover, if E is a finite-dimensional g-module, then the following diagram commutes:

frogr(M)

A(E° @ E @ M) E°® E® AM)
A(em®1d) T T%@Id
A(C® M) fe () C® AM)

where ev : C — E ® E° is defined by 1 — Z;i:l el ® e; for a fived basis {e;} in E and the
corresponding dual basis {e}} in E°.

Dualizing the second part of Lemma 2 one easily gets the following statement:

Corollary 1. Keep all the notation from Lemma 2, then the following diagram commutes:

—1

Fosgm(M)
AECQE@M) <" " E°® E® AM)
A(ev®Id) l lev@ld

A(C® M) C® A(M)

fo ' (M)
where ev : E ® E° — C is the evaluation map.

A very important new property of A is given by the following statement.



Theorem 4. There is a homomorphism of functors v : A — Id such that for every M €
Oint the cokernel of the map v : A(M) — M is the mazimal X_,-finite quotient of M.
Moreover, for projective M € Qi the map v: A(M) — M is injective.

We remark that by [AS, Proposition 5.4] the existence of a non-trivial homomorphism
of functors v : A — Id implies that the cokernel of the map v : A(M) — M is the maximal
X _,-finite quotient of M. However, during the proof of Theorem 4 we derive this property
from the construction.

Proof. Since A commutes with translation functors, it is enough to prove the statement
for the block OF),. Our aim is to reduce the statement to s[(2, C)-case, where we will check
it by direct computation (using Lemma 2 and Corollary 1). Set a = g(a) + §. Let us for a
moment denote by A; Arkhipov’s functor for the algebra g and by A, Arkhipov’s functor
for the subalgebra a. We also denote by S2 and S the corresponding a-semi-regular

bimodules.

Lemma 3. The functors Res? oAy and Aq o Res? are isomorphic as functors from Oipy to
a-mod.

Proof. The functor Res? can be realized as the functor y()U(g)u(g) ®uv() —- From the
PBW Theorem it follows that the multiplication induces an isomorphism of U(a) — U(g)-
bimodules

v@Seve Q) v U (@)ve = vwSiuw-
U(a)

It is obvious that ©, o Res 0O, is isomorphic to Res? and the statement follows. O

We take the projective cover M(0) in O of the trivial g-module. M (0) is the Verma
module with the highest weight 0 € h*. First we want to show that A(M(0)) = M (s, - 0).
It is easy to see that the module N = S8 ®y(g) M(0) is generated by the weight space N,
and hence the module A(M(0)) is a highest weight module with the highest weight s, - 0.
Comparing the characters we derive the necessary statement. In particular, the module
A(M(0)) embeds into M(0), this embedding is unique up to a scalar, and the cokernel of
this embedding is the maximal X _,-finite quotient of M (0). Let us fix some embedding of
A(M(0)) into M(0), g say.

For every finite-dimensional g-module E the composition

AE® M(0)) 2 Ee AM(0) % E © M(0)

gives a map, which we will denote by gg. To complete the proof it is enough to show that



for every homomorphism f : EQ M(0) — E® M(0) the following diagram is commutative:

E® M(0 A(E ® M(0)) (1)
E® AM A(f)
fEoA(f)of 5"
E ® M(0) L 9e— A(F @ M(0))
‘m /

E ® A(M(0))

Indeed, choose E such that for every indecomposable projective module @ in O, the
projective module F ® M(0) contains at least one direct summand isomorphic to Q). With
this choice of E we have for any M € O . an exact sequence

E®M(0) L E® M(0) = M — 0.

Applying A we get a unique morphism g,;, which makes the following commutative dia-
gram:

E ® M(0) E ® M(0) M 0

AE @ M(0)) 292 A(E @ M(0)) —>A(iM) —0

It is easy to see that g;, does not depend on the choice of f.

Both triangles and right quadrangle in this diagram (1) commute by construction. So,
to prove the commutativity it is enough to prove that the left quadrangle also commutes
(this will imply the commutativity of the back quadrangle). Hence the question reduces
to commutativity of the diagram

E® M(0) 19 E ® A(M(0))
fl leoA(f)OfEI
E ® M(0) ld®g E ® A(M(0))

But the last diagram commutes if and only if it commutes after restriction to a. This
means that it is now left to show that the following diagram commutes:

Res?(Id ®g)

Res(E ® M(0)) ResS(E @ A(M(0)))
Resﬂ(f)l lResﬂ(fEOA(f)sz;l)
Res? (B ® M(0)) =% pess(B @ A(M(0)))



Obviously, the functor Res! commutes with the functor E®_. Now observe that the
orthogonal complement b to h, = CH, (this complement is taken in b with respect to
(+,-)) forms the center of a. Moreover, as all modules in O are h-diagonalizable by definition,
for all M € O we have the h.-weight decomposition M = Drept)- My, where M, consists
of all elements from M on which h} acts via v. It is clear that all g-morphisms respect this
decomposition and thus to prove the commutativity of the last diagram it is sufficient to
prove the commutativity of its restriction to every hi-weight space. However, for a fixed
hi-weight space all components of the diagram become finitely-generated g(a)-modules
and all morphisms become g(«)-morphisms.

Let 0 be the zero h-weight (it is of course the restriction of 0 to h=). One has that
the g(a)-module M (0)1 is the Verma module with one-dimensional simple top. Thus, by
Lemma 2, the restriction of the map g, which we fixed above, to M (0),. fixes a map from
the image of M(0)o: under the Arkhipov’s functor A* for the algebra g(a) to M(0)o..
Let us denote the last map by ¢’ for a moment. The universal enveloping algebra U(g)
is a direct sum of finite-dimensional g(a)-modules under the adjoint action. This implies
that for every h,-weight v the g(c)-module M (0), is isomorphic to E(r) ® M (0)os, where
E(v) is some finite-dimensional g(«)-module (in fact this module is spanned over C by all
products of elements X_s, where 8 # « is positive, which have hi-weight v). Moreover,
using the fact that g is a g-homomorphism, and thus commutes with all X_g above, it is
easy to see that, under this identification, the restriction of g to M(0), is exactly Id ®¢'.
From this and the first statement of Lemma 2 we derive that all maps gz are coordinated
with the restriction to g(«), i.e.

Resg(9e|pem(0),) = 9E0EW)-

This observation and Lemma 3 reduce our problem to the situation g = g(«), which we
now assume to be the case till the end of the proof.

The advantage of the sl(2, C)-case is that we can do it by direct computation. Let A be
a dominant weight and denote by Pr% the projection of Oy, onto O3 ,. It would certainly
suffice to show that the following diagram is commutative (for all \):

Pr}(1d
Pry(E @ M(0)) o P (E ® A(M(0))) (2)
Pr%(f)l lPr?g(onA(f)OGI)
A Pr}(1d ®g) A
Pry,(E ® M(0)) Pry(E ® A(M(0)))

Now let us fix a decomposition of E® M (0) into a direct sum of indecomposable modules.
Using the additivity of all our functors we get that it is enough to prove that for any two
indecomposable direct summands P; and P, of E® M (0) the following diagram commutes:

Py L iR(A(PY))
ft leoA(f)OfEI
P, 2 ip(A(P))
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where t; and ¢, denote the restriction of Prk(Id ®¢) to fr(A(P1)) and fg(A(FP2)) respec-
tively. By (2), we can assume that P, P, € O3,
Now we remind that the projective modules in O3, are well known. If X is singular
then O, contains the unique indecomposable projective module, which is simple and
has trivial endomorphism ring. It this case the statement follows from the fact that A
preserves the identity map. If A is regular, we have (up to isomorphism) two projective
modules: P(A) = M(A), which is the projective Verma module in this block, and the big
projective module P(s, - A), which is the projective cover of the simple socle of M (A) (see
also more detailed description in example at the end of this subsection). Let us check all
the homomorphisms between them in more details.

Every endomorphism of P()) is scalar and hence in this case (P; & P, = P())) the
statement follows from the fact that A preserves the identity map.

The module P(s, - A) has two-dimensional endomorphism ring. This module can be
realized as the projection onto @Y . of the module F ® P()\), where E is a simple g(a)-
module of dimension 2A(H,) + 3. Under this translation the identity map on P(\) goes to
the identity map on P(s,-A) and the necessary statement for the identity map on P(s,-A)
follows easily. P(s, - A) has also non-invertible and non-zero endomorphisms, but they
all factor through P()). Hence, checking the statement for homomorphisms from P()) to
P(s4 - A) and back we complete the proof.

To compute the homomorphisms between P(A) to P(s,-A) we need some more notation.
It is well known that the homomorphism spaces Homg(P(A), P(so - A)) and Homg(P(sq -
A), P())) are one-dimensional. Let #_ and 6, denote translations to the a-wall and out of
the a-wall and § = 6, o #_ denotes the translation through the a-wall. As 6_ and 6, are

left and right adjoint to each other, we have two natural adjunctions

Fy - Hom(0_(P())),0_(P()))) — Hom(P()), 0(P(\))),
Fy : Hom(6_(P())), 0_(P()\))) — Hom(0(P())), P(\)).

Observe that (P()\)) & P(sq - A) and we get the non-zero morphisms Fi(Id) : P(\) —
P(sq - A) and Fy(Id) : P(sq - A) — P()\), which we choose as the basis elements in
Homgy(P(A), P(sq - A)) and Homg(P(s4 - A), P(X)). So, to complete the proof it is enough
to check the statement for Fi(Id) : P(\) — P(sq - A) and Fy(Id) : P(s4 - A) — P(X). We
start with F(Id). Let now E be a simple g(a)-module of dimension A(H,) + 2. Using
induction in A we can assume that the necessary statement is already proved for all smaller
A (starting with the singular block). Hence, we can substitute P(s, - A) = §(P()\)) with
E°® E® P()\). Then the adjunction morphism F;(Id) : P(\) - E°® E ® P()) is exactly
the morphism ev ® Id, which appeared in the second statement of Lemma 2. We have the
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following diagram:

AE°® E® P()\))

A(ev®1d fEooE
A(P())) E°® E® A(P(N)
K ev®Id
9 C® A(P(N) Id® 1d ®g
P()\) cvald E°® E® P()\)

The upper part of the diagram commutes by Lemma 2. As f¢ = Id ® Id we get (ev®1d)og =
(Id ® Id ®g) o (ev @ Id) for the lower part, which shows that this part commutes as well.
Hence, the whole diagram commutes, giving us the necessary statement for the map F; (Id).

The statement for F»(Id) is proved by analogous arguments using Corollary 1. This
completes the construction of t.

If F is finite dimensional and the top of M has only X_,-torsion-free simples, then it
is clear that the top of E'® M also has only X_,-torsion-free simples. Obviously, F®_
maps X_,-finite modules to X_,-finite modules. Hence, from the exactness of F®_ and
definition of g we get that M/t(M) is the maximal X_,-finite quotient of M. Using the
right exactness of A one now easily extends this to all M.

As the map ¢gg is injective by construction and every indecomposable projective from
O . is a direct summand of £ ® M(0), we get that v is injective on projective modules.
This completes the proof. O

Let us consider as an example the action of A on the regular block of the category O
for the Lie algebra sl(2,C). Let A be dominant and integral. Then O3, contains (up to
isomorphism) only 5 indecomposable modules: the simple finite-dimensional module L(}),
the simple Verma module M (s,-A) = L(s4-A), the projective Verma module M () = P(}),
the injective envelope I(\) of L()), and the projective-injective module P(s4-A) = I(s4- ).
All modules are rigid and uniserial and the radical filtrations of these modules (which at
the same time are unique Loewy filtrations) can be depicted as follows:

[ Module N TLO)[L(sa- N ] M) | I(N) [P(sa-N) ]
N/Rad(N) L) [ L(sa-A) | L) [ L(sa-A) | L(sa- A
Rad(N)/Rad*(N) L(sa-A) | L()) L(\)
Rad’(N)/Rad’(N) L(sq - A

The action of A on these modules is then described by the following statement.
Lemma 4. 1. A(L()\)) =0;
2. A(M(sq-A)=1(N);
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3. A(M(X) = M(sa - A);
4. A(I(N)) = I(N);
5. A(P(5a - \)) = P(5a - \).

Proof. We prove this statement by direct elementary calculation and start with L(\). The
module L()) is locally X_,-finite and hence is annihilated by induction to U,. Thus
A(L(X)) = 0.

The element X_, acts injectively on M (s, - A). Hence, inducing M (s, - A) to Uy, we
get a dense completely pointed sl(2, C)-module, N say, of length 3 (see for example [FKM,
Section 2], where these modules are denoted by V(),v)). Factoring out the canonical
image of the simple module M (s, - A) in N gives an infinite-dimensional sl(2, C)-module
of length 2, which has finite-dimensional socle. Twisting this module with respect to ©,
we do not change the socle. But the only indecomposable module of length 2 with simple
finite-dimensional socle in our list is (). Therefore A(M (sq - A)) = I()).

The element X_, acts injectively on M (). Hence, inducing M () up to U,, we again
get a dense completely pointed s[(2, C)-module of length 3, namely the same module N as
before. Factoring out the canonical image of M(\) in N (which now has length 2) gives
a simple infinite-dimensional s[(2, C)-module, which then obviously becomes the simple
infinite-dimensional module in O after the twist with respect to ©,. But there is exactly
one simple infinite-dimensional modules in the block, namely M (s, - A).

The element X_, acts locally nilpotent on the socle of I(\) and hence A(I())) =
A(I(A)/ Soc(I(A))) = A(M(sa - X)) = I(}).

Finally, X_, acts injectively on P(s,-A). Hence, inducing P(s, - A) up to U,, we get a
dense sl(2, C)-module with 2-dimensional weight spaces and of length 6. It is easy to see
that the last module has simple top. Factoring P(s, - A) out and twisting the module, we
obviously get an indecomposable module with the same character. This one must coincide
with P(sq4 - ). O

2.2 Deodhar-Mathieu’s version of Enright’s functors

In this subsection we follow [KM, Sections 2 and 3]. For a € 7 we define the functor
Cu = C$ : Ot — Oy, which we call elementary Enright’s completion (in Deodhar-
Mathieu’s version), in the following way:

M — Loc, (Resg‘gg) (Ua Qu(g) M)) ,
where Loc, denotes the functor of taking the locally X,-finite part. It is obvious that Cy,
is covariant and that Cyp; oCys = Cpr. Therefore the modules N € O satisfying Cp(N) & N
are called complete.
It follows from the definition that C,s is left exact. The essential part of Cp; is the
tensor induction to U,, which is also the first part in the definition of the functor A. It
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therefore follows from the corresponding property of A that Cj; commutes with EQ_ (with
some efforts this can also be derived from Deodhar’s paper [De]).

We would like now to illustrate the action of Cy; on the same sl(2, C)-example as in the
previous subsection.

Lemma 5. In the notation of Lemma 4 we have:
1. Cu(L(N) =
Cru(M(sa - A)) = M(X);
3. Cu(M(N) = M(N);
Cu(I(A) = M(N);
5. Crr(P(sa - N) = P34 N).

Proof. Case by case analysis analogous to that used in Lemma 4. O

2.3 Joseph’s version of Enright’s functors

In this subsection we follow [Jol1, Section 2]. For two U(g)-modules M and N we denote
by L£(M, N) the space of all locally ad(g)-finite linear maps from M to N (the so-called
mazimal Harish-Chandra submodule of Endc(M, N)). For a dominant regular A we define
the elementary Enright’s completion C; = C% : O}, — 2, (in Joseph’s form) as the

int int
functor:

C% = L(M(s0 - N),~) ®uig M(N).

It is the composition of the left exact functor £L(M (s, - A), _) (see [Ja, 6.8]) and the exact
functor _— gy M(A). Thus Cy : O}, — Op,, is left exact. The functor C; commutes with
E®_ (see [Jol, 2.3]). The relation of C; to Cys is given by the following well-known fact,
[Jol, 2.12]: if the action of X_, on a module, N € O3, is injective, then Cp;(N) & CJ(N).
In particular, the module N is C;j-complete (1 e. C;(N) 2 N) if and only if N is complete.

The embedding M (s, A) C M(A) gives a natural U(g)-homomorphism £(M(X), N) —
L(M(sq-A), N) and hence a natural homomorphism N — C;(N). By [Jol, 2.4], the kernel
of this map is the largest submodule of N, the action of X_, on which is locally finite. In
particular, if the action of X_, on N is injective, the natural homomorphism N — C;(N)
is also injective.

Dualizing the arguments from [Ja, 6.9] one gets that the functor £(_, N) is exact in
case if N is injective. Applying this functor to the exact sequence

0= M(34-A) > MA) = K—0
we get

0= L(K,N)— LM(\),N) — L(M(sq-A),N) = 0.

13



Applying _ ®4 M (A) shows that in this case (when N is injective) the natural map N —
C;(N) is surjective.

Using the properties of C; obtained by Joseph, one can calculate the action of C; for
our sl(2, C)-example.

Lemma 6. In the notation of Lemma 4 we have:

5. Cy(P(sa- ) = Psa- V).

Proof. The first statement follows from [Jo1, 3.5]. The fourth statement is [Jo1, Example 1]
and everything else follows from Lemma 5 and [Jol, 2.12]. O

2.4 Approximation with respect to an injective module

In this section we follow [Au] and [KM, Section 2]. Let A be a finite dimensional associative
algebra and A the set of isomorphism classes of simple A-modules. The simple A-module
L(A), A € A, has the projective cover P(\) and the injective envelope I(\).

Let T be a subset of A. An A-module M is T -injectively cogenerated if it is a submodule
of a sum of indecomposable injective modules indexed by YT (the latter will be called Y-
injectives). Further, M is called Y-injectively copresented if it has a copresentation by
T-injectives.

Denote by P(Y) (resp. I(Y)) a direct sum of indecomposable projective (resp. in-
jective) objects corresponding to the elements in T and by Ay the endomorphism ring
of P(Y). Then Y-injectively copresented modules are exactly those A-modules M, for
which the canonical morphism M — Homy., (Hom,4(P(Y), A), Homu(P(Y), M)) is an iso-
morphism or, equivalently, for which there exists an Ay-module, N say, such that M is
isomorphic to the coinduced module Hom 4, (Hom(P(Y), A), N). The full subcategory
C(Y) of Y-injectively copresented modules is equivalent to the category of Ay-modules,
via coinduction and restriction. This gives C(T) an abelian structure. With respect to this
abelian structure, the inclusion C(Y) C A-mod is left exact. (see [Au, 5.1, 5.4 and 5.6] for
details).

Given an A-module M we can first map it to the category Ay-mod using the exact
functor Hom (P(Y), —) and then coinduce it to an injectively copresented module using
Hom 4, (Homy4 (P(Y), A), -). By [Au, Section 3] the functor Hom 4., (Homy4 (P(Y), A), _) is
right adjoint to the functor Hom,4(P(Y), _).

For Subsection 2.5 we will need to know more explicitly the action of the above functors
on the level of A-mod. This can be realized using the following two-step procedure.

14



On the first step we define the functor by : A-mod — A-mod as follows: for an A-
module M the module by (M) is the quotient of M modulo the maximal submodule, which
does not contains simple subquotients of type Y. From the definition of by it follows that
the module by (M) is YT-cogenerated for any M, that is Iy, (ar) € add(1,).

On the second step we proceed with by(M). We define the module ¢y (M) as the
intersection of the kernels of all maps Iy, (ary — Io for all choices of I, € add(Iy), which
send by(M) to zero. It is easy to see that, sending M to ¢y(M), is idempotent and
functorial. The resulting functor c¢y(-) is called the approzimation functor with respect
to Y. The object cy(M) together with the natural map ¢%* : M — ¢y (M), defined as
the composition of the natural projection M — by (M), followed by 3 : by (M) — Ty ()
(whose image obviously lies inside ¢y(M)), is the right approximation of M (see [AR])
in the category of YT-copresented modules. If a module M is already T-cogenerated, say
M C I, then ¢y (M) is the largest submodule of I which contains M and such that all
the composition factors of the quotient ¢y (M)/M are not of type Y. That is, cy(M)
is obtained from M by maximal coextension with non-Y composition factors. By [Au,
Section 3| the functor ¢y is isomorphic to the composition of Hom4(P(Y), ) followed by
Hom 4., (Homy (P(Y), A), -).

Since the functor c¢y is idempotent, the modules M satisfying M = ¢y (M) are called
T-complete.

Dually, considering presentations with respect to P(Y), one defines the coapprozimation
functor ¢y and gets for every M the natural map ¢4 : ¢x(M) — M, making ¢y (M) the
left approximation of M (with the properties, dual to those of right approximation). If A
has a duality, D say, then it is easy to see that ¢x = Do ¢y o D.

By [Au, Section 3] the functors ¢y is isomorphic to the composition of the functor
Hom4(P(Y), —) followed by the functor P(Y)® 4., which is left adjoint to Hom4(P(Y), ).

Lemma 7. The functor ¢y : A-mod — A-mod is left adjoint to the functor ¢y : A-mod —
A-mod.

Proof. By adjointness, we have the following natural isomorphisms for all M, N € A-mod:
HOIIIA (P(T) ®AT HOIIIA (P(T), M),N) =

I‘IOHIA.r (HOHIA (P(T),M),HOIHA (P(T),N)) =
Homy (M,Homy, (Hom, (P(Y),A),Homu (P(T),N))).

O

Let us illustrate the action of ¢y and ¢y on the same s[(2, C)-example as before, choosing
T = {s4-A}.

Lemma 8. In the notation of Subsection 2.1 we have:
1. ¢ (L(A)) = 0 and ¢y, (L(A)) = 0;
2. Cisar}(M(8a - A)) = M(X) and ¢g, 0 (M (54 - A)) = I(N);
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3. st (M(A)) = M(X) and €,y (M(N) =1(N);
4. csani((A) = M(X) and ¢y, 0 (I(N)) = I(N);
5. ¢san}(P(8a-A)) = P(5a - A) and ¢ge,.)(P(5a - A)) = P(Sa- A).

Proof. We will give a proof for ¢, .y, for ¢, .\ the statement follows using the duality
x on O. Since A ¢ T we have by, .5} (L(A)) = 0 and hence ¢, .\ (L(A)) = 0. Since
P(s4 - A) = I(sq - A), the last statement is obvious.

The module P(s4-\) = I(84- ) is uniserial and has two subquotients of type T, namely
in the socle and in the top (see Subsection 2.1). The maximal image of either M (s, - A) or
M(X) or I(X) in P(sqa - A) covers exactly the socle of P(s, - A) (which is of type T). Since
the composition subquotient in the middle is not of type T, we get ¢, .0} (M(Sq - A)) =
(e (M) = €0, (I(V)) = Rad(P(sq - X)) = M(Y). .

Remark 1. Using Lemma 5 and Lemma 8 one gets by direct computation that the functors
Cyr and cy,,.x} on the regular block of the category O for sl(2,C) are isomorphic.

2.5 Partial approximation with respect to an injective module

In what follows we will also need a modified version of the approximation functor defined
in the previous subsection, which we keep all the notation from. We denote by 0y (_)
the functor, which is the composition of the maximal coextension with non-Y composition
factors followed by by. To get the image of the first map on a module, M say, we realize
M as a submodule of its injective envelope, I, say, that is we start from 3 : M — I;. Now
we can compute the maximal coextension M of M with non-T composition subquotients
as described in Subsection 2.4 (the intersection of the kernels of all possible maps from
Iys to Y-injectives, which annihilate M). This map is well-defined on modules, but not
on morphisms. Indeed, if f : M — N is a homomorphism, then one can lift f to a map,
f: M' = N'in a non-unique way but up to the choice of a map from M'/M to N'.
In fact, since all composition subquotients of M!'/M are not of type Y, the image of any
map from M'/M to N' is contained in the maximal submodule of N!, which does not
have any composition subquotients of type Y. The latter one is then killed by by. This
observation implies that the map 0v(_) is indeed functorial. Somehow, the functor 0y is
obtained by “switching” the order of the two procedures, which contribute to the functor
¢y as described in Subsection 2.4. We will call 9y (_) the functor of a partial approzimation
with respect to Y.

It is clear that 9% # 0y in general. However, it follows immediately from the definition
that 03 = 02 = cy. It is also clear that the functor 9y comes together with a natural map
49t M — 0y (M). This map is a composition of 3 : M — I, whose image lies inside
M?*, followed by the natural projection of M*' onto by(M'). Moreover, it is easy to see
that the kernel of the natural map M — 0y (M) coincides with the maximal submodule of
M, which does not have composition subquotients of type Y. If the module M is injective,
its coextension coincides with M and thus the map M — 0y (M) is surjective.

16



Using the dual construction one defines the functor 0y of a partial coapprozimation
with respect to Y. For every module M one gets a natural morphism 05 : 0y (M) — M
dualizing the above construction. The properties of this map are dual to those of 0y. In
particular, for all M the cokernel of this morphism is the maximal quotient of M, which
does not have composition subquotients of type 1. Further, 5’{‘“ is injective for projective
M. If A has a duality, D say, then 9y = D o dy o D.

Lemma 9. The functor 9y : A-mod — A-mod is left adjoint to the functor oy : A-mod —
A-mod.

Proof. Let M, N € A-mod and f : 0y(M) — N be a homomorphism. We construct the

diagram
91

oy (M)C

I A
[EEaN AN

in the following way: the module N' (resp. M) is the maximal coextension (resp. exten-
sion) of N (resp. M) with subquotients, which are not of type Y. From the definition of
N' and M! we have the maps hy : N — N', i: N* — Iy such that i o h; = 35, and the
maps go : M* — M, j : Pyy — M?" such that g5 0 j = yy;. From the definition of 9y and
9y we also have injection g; : 0y(M) — M"' and surjection hy : N' — 0y(N) such that
g2 0 g1 = 0% and hy o hy = 0% respectively.

Now we proceed to the construction of the maps f;, + = 1,2,...,5, and f Set f; =
3~ o f. Since g, is an injective map and Iy is an injective module, there exists fo : M —
Iy, making the corresponding triangle commutative. We remark that f, is not unique
in general, but is defined only up to the maps from Coker(g;) to Iy. Since all simple
subquotients of Coker(g;) are not of type Y and N' is the maximal coextension of N with
such subquotients, the image of f, belongs to N!, giving us the map f3 : M' — N
The map f3 depends on the choice of f; and thus is not uniquely defined by f. However,
since the socle of 9y (V) consists only of simples, which are not of type T, the composition
hoo f5 is in fact independent of the choice of f; and hence is uniquely determined by f. We
define f; = fsoj and f5 = hy o fy. We have Ker(j) C Ker(f5) by construction. Further,
Ker(ge) contains only simple subquotients of type Y, and the socle of 0y (/N) does not
contain such subquotients. This implies Ker(y,,) C Ker(f5) and thus there exists unique
f, which finally makes the whole diagram commutative. The commutativity of the diagram
and the fact that hy o f3 does not depend on the choice of fo, implies that f is uniquely
determined by f. Now one easily checks that the dual construction sends f back to f, thus
providing the necessary isomorphism Homu(0y (M), N) = Hom4(M,d¢(N)). Naturality
of this isomorphism follows easily from the construction. O
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Corollary 2. The functor 0y : A-mod — A-mod is right exact and the functor O :
A-mod — A-mod is left exact.

And again we would like to illustrate the action of 9y and 9y on the same sl(2, C)-
example as before, choosing T = {s, - A\}.

Lemma 10. In the notation of Subsection 2.1 we have:

1. D{SQ.A}(L()\)) =0 and 6{sa.)‘}(L(}\)) =0,

2. Vsunp(M(sa - A) = M(N) and 35, x (M (50 - X)) = I1(N);

3. 0sunp(M(A) = M(X) and 04,0y (M (X)) = M(sa - A);

4o sy (I(N) = M(sa - A) and Dy, 23 (I(N) = I(N);

5. 0suap(P(sa - A)) = P(sa - A) and 05,0y (P(sa+ A)) = P(sa - A).

Proof. We again give the arguments for d(,,.,} and the arguments for 6{30. A} are dual.

It is clear that L()\) can not be coextended with non-T composition factors, so again
we have by, .A1(L(A)) = 0 and hence .53 (L())) = 0.

Since Soc(P(sq-A)) = Soc(M(s4-A)) = Soc(M(A)) = L(sq-A), we have 0g,,.x (M (54 -
i;; = an} (M (5a-A)), 050y (M(A)) = 5003 (M (X)) and 04,031 (P(5a-A)) = €(s0r} (P (50

Finally, the module I()) is injective and thus cannot be coextended. The maximal
image of it in (s, - A) coincides with M (s, - A), which completes the proof. O

Remark 2. Using Lemma 6 and Lemma 10 one shows by direct computation that on the
regular block of the category O for sl(2,C) we have the following:

1. The functors C; and 0y, .y} are isomorphic.
2. The functors A and 5{8a. A} are isomorphic.

3. The functor C; is right adjoint to the functor A.

3 A realization for Cy,

A realization of the functor Cy; in terms of the approximation functor with respect to a
suitably chosen injective module can be deduced from [KM]. However, it is not stated
there, so we include the arguments. We fix a block, O2,,.

Theorem 5. Let Y be the set of all p € W - X satisfying (u, @) < 0. Then the functors cy
and C$; are isomorphic.
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Proof. Denote by €(\) the full subcategory of O, whose objects are T-injectively cop-
resented modules. By [Au, Section 5], the category €()\) is equivalent to Ay -mod and
has an abelian structure, given by this equivalence. By [KM, Theorem 1] we have that
C% (M) € €()) for any M € Op,,. Moreover, from a straightforward sl(2, C)-computation

nt”
(Remark 1) it follows that cx(M) € €()\) for any M € O),. Let i : €\) — O,
be the inclusion functor. To complete the proof it is sufficient to show that both C%;
and cy are left adjoint to i (we note that for ¢y this follows from [Au, Section 3]). Let
M € O}, and N € €(\). Then X_, acts injectively on N and hence Homy(M,i(N)) =
Homy(M/K,i(N)), where K is the maximal submodule of A on which X_, acts locally
nilpotent. In particular, C§;(M) = C$;(M/K). But then all simple subquotients of K do
not have type T and hence ¢y (M) = ¢y(M/K). Further, one has the following canonical

maps:
Homy (C; (M/K),C3;(i(N)))) = Homg(M/K,i(N)) — Homg(ex (M/K), ex(i(V)))

Both these maps are injective because the module M/K is T-cogenerated, and, by con-
struction, both C$; and ¢y do not annihilate morphisms from 7Y-cogenerated modules.
Moreover, the maps are also surjective because the canonical maps M/K — C3(M/K)
and M/K — ¢y (M/K) are injective on Y-cogenerated modules. Since N € €(\) we have
N =C§;(i(N)) = ex(i(N)), so one gets natural isomorphisms

Homy(C3; (M), N) = Homg(M,i(N)) = Homg(cy (M), N)
which completes the proof. 0

Remark 3. From the proof of Theorem 5 it follows that the functor cy : O3, — €()) is

int
right exact. At the same time, considered as a functor ¢y : O}, — O3, it is left exact by
Lemma 7.

It is very well-known that functors C§;, @ € m, do not satisfy braid relations on the
whole O}, (see [Jol, 3.15] or [KM, Section 6]). However, they satisfy braid relations on
an appropriate subcategory of O (this was first shown in [Bo, De]). Using Theorem 5, we

reduce the check of braid relations to the functors ¢y. Namely, we have:

Theorem 6. Let @ # m C 7 and Q)T be the full subcategory in O, which consists of
all modules without torsion with respect to all Xy, 3 € . Let Wi be the subgroup of W
generated by Sg, B € 1, and let Y1 denote the set of all p = w - A, where w is the longest
coset representative of W/W,. Take any reduced decomposition | : wy = Sq, - - Sa, Of the
longest element wy of Wy, and for i =1,...,k set Y ={p € W-X: (u,05) <0}. Then
the functor ¢ = Yy O 00T, is tsomorphic to the functor ¢y,. In particular, the functors

A1

cr,, (and hence the functors Ciy, o € m1) satisfy braid relations on Opp" .

For completeness we give the corresponding argument.
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Proof. Assuming ¢;(M) = ¢y, (M) for all M € O, one just follows the arguments in the
proof of Theorem 5 and shows that both functors are left adjoint to the inclusion functor
of ¢(03,) into O3,. Hence it is sufficient to show that ¢;(M) is isomorphic to cy, (M)
for any M € O. We have natural maps f : M — ¢(M) and g : M — cx,(M). Denote
by K; and K, the corresponding kernels. We know that K5 is the maximal submodule of
M, which does not contain simple subquotients of type T, and that K; is the maximal
submodule of M, which does not contain subquotients of type M;T ;. Clearly T; = N;Y;
and hence K; = K,. Denote by M; the module M/K; and we have f(M) = g(M) = M.
In particular, the injective envelopes of ¢((M) and cy, (M) coincide. Denote this envelope
by I and assume that both ¢/(M) and ¢y, (M) are realized as submodules of I such that
f(M) = g(M). By the definition of approximation map we get that ¢/(M)/f(M) does not
have simple subquotients of type T;. By definition, ¢y, (M) is the maximal submodule of
I, which contains g(M) and such that all other simple subquotients of this module are not
of type T1. Hence ¢(M) C ¢y, (M) and to prove that these modules are isomorphic it is
enough to show, say, that their characters coincide.

Let g, denote the semi-simple Lie subalgebra of g, generated by X.,, a € m;. To prove
that the characters of modules ¢(M) and ¢y, (M) coincide it is sufficient to show that the
restriction of both modules to the reductive algebra t = g; + h are isomorphic. Denote by
Res} the restriction map.

By [KM, Lemma 4], the module I(Y;), restricted to g, is a direct sum of projective-
injective gi;-modules from the corresponding category (0. Using the arguments, analogous
to those in [KM, Lemma 4], one gets that the module I(Y;)), restricted to gy, is a direct
sum of injective g; modules, which correspond to the highest weights, defined by the longest
coset representatives of of Weyl group for g; modulo the subgroup, generated by s,,. Let

us denote this set by T’(i).

Lemma 11. The functors Res] ocy, and S Res{ are isomorphic as functors from the
category O to t-mod.

Proof. Both functors Res{ ocy ,, and crr oRes} are left exact. Moreover, from the definition
of the approximation functor we also have for every module M € O natural maps from
Res{(M) to both Res{ ocy, (M) and Cyr, © Resf(M). Hence one verifies that all conditions
of the Comparison Lemma (Lemma 1) with F' = Res{ ocy ;,, G = crr oRes{ and H = Res}
are satisfied and thus the application of the Comparison Lemma completes the proof. [

Obviously, Lemma 11 (and induction in the rank of the algebra) reduces the check of
the necessary statement to the rank two case for g = g;, which we now assume until the
end of the proof. In particular, we assume that m; = {a, 3}. To proceed we will need one
more technical notion.

For a g-module, N, which does not have simple subquotients of type T = N; T =
{wo - A}, we will call the [-height of N the length m of a shortest filtration 0 = Ny C N; C
-++ C N, = N such that there is an increasing function f: {1,...,m} — {1,...,k} such
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that for every ¢ € {1,...,m} the quotient N;/N;_; does not have simple subquotients of
type T(y))- Such filtrations will be called [-admissible.

For example, it is easy to see that the [-height of the module M(X)/M (wq - A) equals
l(wp). From the definition of Y, it follows that the category of all modules in O, which
do not have simple subquotients of type T(;), is stable under translation functors. Since
all projectives can be obtained via translations of M (A) and the top of any translation of
the simple Verma module M (wy - A) is a direct sum of simple Verma modules, we get that
the [-height of all maximal quotients without simple subquotients of type {wq - A} of all
projective modules in O is not greater than that of the projective Verma module. This
implies that [-height of any module without subquotients of type Y is at most I(wy).

As we are now in the rank two case, we have only two translations through the walls,
namely 0, and 0. It is easy to see that the first subquotient in an admissible filtration for
M ()) is annihilated by one of the translations and the last subquotient is annihilated by
another one. This implies that for all indecomposable projective modules, which are not
isomorphic to M (A) the [-height is in fact at most I(wg) — 1.

Now we take the simple root v € =, which is different from «. Remark that we
obviously have ¢y, o (M) = ¢(M). If ¢y o e(M) = ¢(M), then the module ¢(M) is
T;-complete and we are done. Otherwise we get a filtration

0C M Cey, (M) C--Ca(M) Ccyoa(M),

where all the inclusion except the first one (M C ¢y, (M)) must be proper (in the case of
a non-proper inclusion we already get a Yi-complete module). Hence the [-height of the
module N = ¢, 0 ¢(M)/M must be either [(wy) + 1 (in the case of all proper inclusions) or
I(wg) (if the first inclusion is not proper). The first case is impossible as we know that the
[-height is at most I(wy). From the above arguments it follows that the only quotient of a
maximal [-height of an indecomposable projective in O is M(A)/M (wy - A). Hence, N must
have a submodule, which is isomorphic to M (\)/M (wq - A). And this must extend some
submodule of M. Since M () is projective, this submodule can only be a direct summand,
isomorphic to M (wo - A). However, since we know that ¢, o ¢(M (wg - \)) = ¢ (M (wq - N)),
for this submodule the process should have terminated already after ¢;. A contradiction.
This completes the proof. O

Let T be as above, €()) be the full subcategory of O , whose objects are T-projectively
presented modules, and i : €(A\) — O}, be the inclusion functor. Dualizing arguments in
the proof of Theorem 5 one gets that (cy(_)*))* is right adjoint to i. On the other hand
the category éﬁ()\) is equivalent to subcategory ?j’H}V of the category of Harish-Chandra
bimodules, where I, = Annyg) M () for 4 € h* and v € h* is an integral weight satisfying
sq-v=vand (v,3) > 0forall 3 € AT\ {a} (see e.g. [Ja]). The equivalence is given by the
functor _ ®y ) M(v), whose right adjoint functor is £L(M(v),— ). Now, using Theorem 5,
one gets another description of Cy,.

Theorem 7. Let v € b* be an integral weight satisfying sq-v = v and (v,3) > 0 for all
B € AT\ {a}. Then the functors Cp and (L(M(v),(-)*) Qu(y) M(l/))* are isomorphic as
endofunctors of O,
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4 A realization for C;

As we have already mentioned, it is not difficult to deduce the results of the previous
section from [KM]. In the present section we are going to discuss some results, which seem
to be new. They are mainly inspired by Remark 2. As in the previous section, we fix a

block, O3, but now assume that ) is regular.

Theorem 8. Let Y be the set of all p € W - X satisfying (u, &) < 0. Then the functors 0y
and C§ are isomorphic.

Proof. To prove the theorem we will use the Comparison Lemma, and hence we would now
like to check all the necessary assumptions. We start with the remark that both functors
are left exact. Now let us check that for any injective module I we have C;(I) = o ().

We start with C;(M(A)*) = 0y (M (N)*). To see this we first remark that C;(M(\)*) =
M (sq - A)* ([Jo2, Lemma 2.5]) and that the module N = M())/M (s, - A) is the maximal
X _4-locally finite quotient of M()). Hence the dual N* of N is a maximal X ,-locally
finite submodule in the injective module M (A)*. Since M(\)* is injective, we get that
Oy (M(A)*) = M(N)*/N* and thus 0y (M (A)*) = M (s - A)* = Cy(M(N)*).

We know that C; commutes (on the whole category O;,;) with the functor E®_ for any
finite-dimensional g-module E. Let us now show that 9y also commutes with E®_ (on
Oint).- We can formulate this as the following lemma, where we abuse notation and denote
by 0y the endofunctor on O;,;, which is a direct sum of corresponding endofunctors on all
blocks:

Lemma 12. Let E be a finite dimensional g-module. The functors 9y (E®_) and E®@dy(-)
from Oy to Oy are tsomorphic.

Proof. Both functors 0y (EF®_) and E®0~(_) are left exact as compositions of left exact 0y
with exact EQ_. We also have natural transformations (E®Id )od%" : EQ_ — E®0y ()
and 0% o (E®1d) : E®_ — 0y (E®_).

Let M be an injective module and N be the maximal submodule of M, which contains
only subquotients not of type Y, or, equivalently, the maximal X _,-locally finite submodule
of M. As M is injective, there is a short exact sequence

nat

0> N—o>M™S (M) — 0.

Applying to this sequence the exact functor F®_ gives the short exact sequence

nat
0 EQN s EoM S BEgor(M) -0,

and the module £ ® N is the maximal X ,-locally finite submodule of £ @ M.
On the other hand £ ® M is injective and we have the following short exact sequence:

nat
05K 2EQM™S or(E® M) — 0,
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where K is the maximal X_,-locally finite submodule of EQ M. Hence K = EQ N and we
get that £ ® 0y (M) = oy (E ® M) and Ker(Id ®0%*(M)) = Ker(03*(Id®@M)) = E® N.

Now the statement follows from the Comparison Lemma for F = dy(EQ_), G =
E®@oy(_), H=EQ_. O

Now we know that C;(M(A)*) = 0¢(M(A)*) and that both C; and 9y commute with
E®_ for any finite-dimensional g-module E. Translating M (\)* we can get (as a direct
summand) any indecomposable projective in O3, and hence, using standard induction with
respect to the natural order on h*, we get that C;(I(u)) = 0y (I(1)) for any indecomposable
injective module I(p) € O),. From this we derive that C;(I) 2 oy (I).

From the definition of 0y it follows that the natural morphism 9§" : I — 0y (1) is
surjective on injective modules (see Subsection 2.5). In Subsection 2.3 we also saw that
the same statement holds for C; as well. Moreover, in Subsection 2.5 and Subsection 2.3 we
also mentioned that the kernels of the these natural morphisms for any module M always
coincide with the maximal X _,-locally finite submodule of M. Hence all conditions of the
Comparison Lemma are satisfied for F' =C;, G = 0y, H = Id, and the application of this
lemma completes the proof. O

Following Theorem 6, this result possess the following straightforward modification:

Theorem 9. Let @ # my C m, Wi be the subgroup of W generated by Sg, 3 € 71, and let
Y, denote the set of all p = w - \, where w is the longest coset representative of W/Wi.
Take any reduced decomposition Wy = Sa, - - - Sa, 0f the longest element w§ of Wi, and for
i=1,....k set Yoy ={p €W X\:(u,c;) <0} Then the functor 0y =0y, 000y s
isomorphic to the functor 0y, (as endofunctors on O2,). In particular, the functors Y
(and hence the functors C§;, a € my) satisfy braid relations.

Proof. Both functors are left exact and one computes that they have isomorphic values
on M(A)*. From Lemma 12 we get that both functors 9; and 0y, commute with F®_
and hence one derives that d((/) = 0, (/) for all injective I. Moreover, it is easy to see
that the corresponding natural morphisms 9(I) — I and 9y, (/) — I are surjective. One
checks that the kernels of these morphisms coincide and the statement follows from the
Comparison Lemma applied to F' =9, G = 0y, and H = Id. O

As another corollary we get the following functorial generalization of [Jol, 2.12]:

Corollary 3. The functors C;, o € m, and C§, considered as endofunctors on the full

A, L. g . .
subcategory 0% of O, consisting of X_, torsion-free modules, are isomorphic.

Proof. Follows directly from Theorems 5, 8 and observation that the functors ¢y, and 0y

. . . A,
are obviously isomorphic on O.}. O

This gives us an alternative proof of Theorem 6 and it is quite interesting to compare
its complexity with our original proof by direct arguments:

Corollary 4. The functors C$;, o € 7, satisfy braid relations on maEWOi)\r;?'
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Proof. Follows from Theorem 9 and Corollary 3. O

One more interesting result, which we get immediately from Theorem 8 and Lemma 9
is the following.

Corollary 5. The endofunctor C$, a € m, on O}, is right adjoint to the functor xoCyox =

(Cs ()™

Remark 4. Originally Enright constructed the completion functors for s(2, C) and defined
the completion functor for g-modules by restricting to sl(2, C)-subalgebra (generated by
X1a), applying completion on the sl(2, C) level and reconstructing the g-module structure
in unique way (see [En, Proposition 3.6]). Obviously, the functor 9y can also be given such
a description. Hence, using Theorem 8 one gets that Joseph’s version of the completion
functor can also be defined restricting the module to the sl(2,C) subalgebra, completing
it there and then canonically reconstructing the resulting g-module.

Remark 5. If )\ is integral but singular and s, - A = A, the functor C; on O}, becomes the
identity. However, Theorem 8 allows one to extend the definition of C; in an alternative
way (using 0y instead) to all singular blocks of Oy, keeping the properties, analogous to

those of C; for the regular block.

5 A realization for A

In this section we present a realization for Arkhipov’s functor A®. It happens that here
the answer reduces to the partial (co)approximations as in the previous section. As in
Section 3, we fix a block, O

int*

Theorem 10. Let T denote the set of all p € W - A satisfying (u,) < 0. Then the
functors A% and 0y on O}, are isomorphic.

Proof. The functors A® and 0 are right exact and we are going to use the statement, dual
to the Comparison Lemma. From Subsections 2.1 we know that if P is projective in O;,;,
then the natural map v : A%(P) — P is injective. In Subsections 2.5 we also saw that the
map 0% : 0y(P) — P is injective as well. Moreover, the cokernels of both maps coincide
with the maximal X_,-locally finite quotient of P. In particular, 0y(P) = A%(P). The
statement now follows from the dual of the Comparison Lemma. O

Corollary 6. Let )\ be regular.
1. The functor A% is left adjoint to the functor C§.
The functor A% is left adjoint to the functor xo A% o*x = (A((_)*))*.

The functor A% is isomorphic to the functor x o C3 o* = (Cs((-)*))*.

e e

The functor C§ is isomorphic to the functor x o A% ox = (A((-)*))*.
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Proof. Follows from Theorem 10, Theorem 8 and Lemma, 9. O

We remark that the second statement of Corollary 6 appears in [AS, Theorem 4.1] in a
much more general setup. From the last corollary and Theorem 9 we immediately obtain
the following (we will give an independent proof of this fact in the next section):

A
int*

Corollary 7. Let A be regular. The functors A%, a € m, satisfy braid relations on O

As one more corollary we can in some sense describe the value of A® on simple and
injective modules:

Corollary 8. Let Y be as in Theorem 10. Then the following holds:
1. If N ¢ Y then A*(L()\)) = 0.
2. If \ € Y then A“(L()\)) = (Ca(L(N)))* .

Proof. The first statement is clear as L(\) for A ¢ T is locally X _,-finite. For the second
statement we apply the third statement of Corollary 6 to get A*(L(\)) = (C;((L(N))*))*.
The module L()) is self-dual. Moreover, for A € T the module L(\) is X_, torsion-free and
hence C;((L(A))*) = C;(L(A)) = Cp(L(A)) by Corollary 3. This completes the proof. [

Corollary 9. If I is an injective module, then the module A*(I) is also injective. Moreover,
the restriction of A% to the subcategory of all injective modules is isomorphic to the identity
functor.

Proof. The third statement of Corollary 6 and Theorem 8 reduce the statement to analo-
gous statement for projective modules and the functor dy. Let us show that all projective
modules in O;,,; are complete. If A is dominant, then M (A\) C I(wp-A) and the cokernel of
this inclusion is filtered by Verma modules. This implies that M () is complete and the
general statement for all projectives is obtained by applying F®  to the inclusion above.
Thus all projective modules in O;,; are complete and the statement follows. O

Corollary 10. Let )\ be reqular. The functor A* on O3, is isomorphic to the functor
,C(M()\), —) ®U(g) M(Sa : )‘)

Proof. It is enough to show that L(M()), -) ®ug) M (54 - A) is left adjoint to CF, the last
being defined as L(M (s4-)), -) ®u(g) M(A). From [Ja, Kapitel 6] it follows that the functor
— ®u(g) M(X) is an equivalence of categories with inverse £(M()), _), and _ ®yg) M (54 A)
is left adjoint to L(M (s, - A),—). This completes the proof. O

6 Braid relations

Let o and 3 be two simple roots and n(c, ) be the Lie subalgebra in g, generated by g,
and gg. Let o, j = 1,..., k, be alist of all roots of g such that g,, C n(c, 3). In particular,
both « and  occur in this list and n(q, ) = @legaj- Since every Xo;, j = 1,...,n, is
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locally ad-nilpotent on U(g), we get that the multiplicative subset T, generated by these
elements, is an Ore subset in U(g), see [Ma, Lemma 4.2]. Denote by Ur the localization
of U(g) with respect to T. For j = 1,...,k we denote by S, the U(g) — U(g)-bimodule
Ua;/U(g), where Uy, is the localization of U(g) with respect to the powers of X, see
Subsection 2.1. Finally, let B denote the U(g) — U(g)-subbimodule of Ur, generated by
all monomials in Ur, which do not contain at least one of the elements X !, j =1,...,k
(alternatively, iffor7 = 1, ..., k we denote by 7; the multiplicative subset of U(g), generated
by Xo,, j # i, then B = Zle Ur, C Ur). Denote by S(«, ) the U(g) — U(g)-bimodule
Ur/B. We start with a PBW-type theorem for S(a, ).

Lemma 13. Let Z1,. .., Zgim(g)—dim(n(a,3) D€ the elements from the Weyl-Chevalley basis in
g, which are not contained in n(a, 3). Then monomials

207 ZPXM X, (3)
where i1,i9, ..., € Ly, a1,...,a, €N, form a basis of S(a, 3) over C.
Proof. First we show that these monomials are linearly independent. For j = 0,...,k let

Tj denote the multiplicative subset of U(g), generated by X,,;, i < j. Let B; denote the
U(g) —U(g)-subbimodule of Uy, generated by all monomials, which do not contain at least

one of the elements X (;il, 1=1,...,7. We show by induction in j that the monomials
VAVASAD, GR .X;j“j,
where i1, 92,...,%4 € Zy, a1,...,a; €N, are linearly independent in Uy /B;.

Indeed, for j = 0 the statement follows from the classical PBW Theorem. Now let us
prove the induction step. Assume that the statement is not true and we have a non-trivial
linear combination of our monomials:

11 r7i2 1] Y —a1 —aj __
> Cirvivarnay Z0 23 ZPX XY =0 (4)

Let [ be the maximal positive integer such that ¢;,,._.a1,...q;_14 7 0- Multiplying (4) with
X é:l from the right we get that, as element in UTj ,

F=Y " Civaray 20 28 P X0 XX € By (5)
Further, since B;_1X,, ' C B;, we have the following isomorphisms of left U(g)-modules:

4 ©
(Us, X!+ B)/B; = Uy, X [BaX! = Uy /By,

where the isomorphism ¢ is given by the right multiplication with X, and it’s inverse is
the right multiplication with X, '. Now f € Uz, X, and (5) imply

(p(w(‘f + BJ)) = Z cil;“')il;aly-"aaj—l1lZ:7i1ZEZ Tt Z;lX;Ial st Xaijajlil = 0 in Uj}_l/B]_l’

26



which contradicts the inductive assumption. This shows that the monomials (3) are linearly
independent.

Now let us prove that the monomials (3) span S(«, ). Since T is an Ore subset, every
element from Ur and hence from S(a, §) can be written as us™', where u € U(g) and
s € T. Further, in every monomial from U(g) we can collect the elements from 7" to the
right. Let us first show that these elements from T can always be canceled.

We choose a filtration, 0 = Fy C Fy C ... of n(a, ) such that each F; is an ideal of
codimension 1 in Fiy and F; = Fi_1 ® {a,,, Where o is a permutation of 1,2,... k.

Obviously, the elements Z:' 73 . ..Zf’Xgi...Xg:t, where 41,%9,...,9,01,...,05 € Z
and t € T, span S(«, ). Let us show by induction in 7 that the element X, . can be

o (i)
canceled. For 7 = 1 the element X, commutes with n(«, ) and hence with all monomials

Qg (1
in X; ! as well. Recall that non-zer(o) monomials in S(e, #) must contain all X_ ! at least
once by definition. Hence we can commute X, to X (;01(1 and cancel them. Now let us
prove the induction step. By induction and classical PBW theorem we can assume that we
have already canceled all KXoy 0 <7, and that Xa,(;) DOW stays at the rightmost place.

As for all s we have that [X%(j), X%(s)] =cX for some ¢ < j and ¢t < s, we get

Qg (t)
-1 71 _ —1 -1
[X%(j)’X%(s)] - CXaa(s)X%(t)X%(s)' (6)

Using this we commute X, to the corresponding X (;Ul(j) and cancel them. The additional
terms, which appear during this process, are dealt with by inductive assumption as ¢ < j.
Therefore we have shown that the elements Z{’IZ;2 ce Zli’t, t €T, span S(a, ).

Finally, let us now show that we can always rearrange the elements X Ojjl in the necessary
order. We use induction, analogous to the one above. As Xa, ) commutes with n(a, f),
the element X! commutes with all X-! and hence can be placed at any position. Now,

Qg (1) Qo (j)
the equality [Xa, ), Xa, )] = ¢Xa,, implies
-1 -1 -1 -1 -1 -1
=cX ;
[ Qg (j)’ %(s)] QAo (j)" Qo(s)” ()" Qo(s)™ Qo(j)

Hence, the elements either commute (if ¢ = 0) or after commutation we necessarily get
an additional term of higher degree, but which contains X, , with ¢ < jand ¢t <s. By
induction and (6), this element can be commuted and canceled with X ,;01“), decreasing the

total degree with respect to X;:(t) with ¢ < j. But as soon as one of X(;:(t) disappears

from the monomial, the result will be zero in S(a, 3). Hence, by induction in this degree,
the process of commutation will successfully terminate in a finite number of steps in all
additional terms. This completes the proof. O

Theorem 11. The U(g) — U(g)-bimodules S(a, 3) = Ur/B and
Sar BU(g) Sar BU) "+ OUlg) Say

are canonically isomorphic. In particular, the second bimodule does not depend on the
order of {c;}.
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Proof. Multiplication induces a natural homomorphism of U(g) — U(g)-bimodules from
Sa: Bu(g) Saz Pu(g) * ** Qu(g) Sap t0 S(av, B) = Ur/B, which is bijective by Lemma 13. [0

Corollary 11. The functors A%, a € 7, satisfy braid relations.

Proof. Let ...5350,58 = ...S4535« = w be a braid relation in the Weyl group. By [Ar2,
Section 2.3|, the functor A% is exactly the functor ©, o S,. If we denote by O,, the twist
with respect to the automorphism of g, which corresponds to w (this one certainly does
not depend on the expression for w), we get that the left hand side of the braid relation
for Arkhipov’s functor reads

©p0---0 (SSﬂSa(,B) Qu(g) —)o (Ssﬂ(a) Qu(g) —)o(Ss Qu(g) -).

So, up to the twist by ©,, we get a composition of tensor products with elementary
Arkhipov’s bimodules, which can be written as the tensor product with the U(g) — U(g)-
bimodule
Sleft = -+ Sszsa(8) OU(g) Oss(a) @u(g) S5-

The latter one, in fact, corresponds to some ordering of the basis of n(«, ), consisting of
Weyl-Chevalley generators. By Theorem 11, the U(g) — U(g)-bimodule S, is isomorphic
to S(«, ). Certainly the same arguments apply to the right hand side of the braid relation
as well and we get that, up to the ©,, twist, both sides correspond to the functor of tensor
product with the same bimodule. This completes the proof. O

Corollary 11 gives an alternative proof for Theorem 9 and Theorem 6.

Corollary 12. Let A be dominant and integral. The functors C§, o € 7, satisfy braid
relations on O),.

Proof. Follows from Lemma 6 and Corollary 11. O

Corollary 13. Let A be dominant and integral. The functors C3;, o € w, satisfy braid

. Ao
relations on O .

Proof. Follows from Corollary 12 and Corollary 3. O

Remark 6. One also gets that the functors 0y, (notation as in Theorem 9) satisfy braid
relations on O;y;.

7 Appendix: O, is the identity if one “glues” O and
0,(0)

The arguments, used in the proof of Theorem 4, generalize in a natural way to the following
situation: Denote by p the parabolic subalgebra g(a) + b + n,. of g. Take ¢ € C such that

c # (n+1/2)% and ¢ # n? for all n € Z. Denote by V¥ (c), i = 1,2, the simple weight
dense g(a)-module, which is uniquely defined by the following two conditions:
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1. All weights of V() (c) are integral and all weights of V®(c) are integral plus 1/2
(these are usually called half-integral).

2. cis the eigenvalue on V®(c) of the “small” Casimir element (H, + 1)? + 4X_,X,.

The restriction on V@ (c) to be dense is equivalent to the fact that V) (c) does not have
neither highest nor lowest weight, which is, in turn, equivalent to the fact that X_, (and
X,) acts bijectively on V@ (c), see for example [FKM, Section 2] for more details. Let
A = A(V®(c)) be the full subcategory in the category of all g(c)-modules, which consists
of all subquotients of all modules having the form E®V ) (c), E finite-dimensional. Finally
we denote by O(p, A) the full subcategory in the category of all g-modules, which consists
of all modules M, which are finitely generated, h-diagonalizable, locally finite over the
nilpotent radical of p, and which are direct sums (usually infinite) of modules from A,
when viewed as g(«)-modules (see for example again [FKM, Section 2]). This O(p, A) can
be viewed as a result of “gluing together” some subcategories of O and ©,(0O).

It is clear that O,((Hy + 1)> + 4X_,X,) = (Hy + 1) + 4X_,X,. Since the H,-
eigenvalues on all modules in O(p, A) are either integers or half-integers, one gets that ©,
preserves O(p, A), thus defining a natural covariant involutive equivalence on O(p, A). But
one can even get a stronger result using the following observation.

It is quite obvious that the functor ©, on O(p, A) satisfies ©,(P) = P for all projective
modules P. Moreover, it is easy to see that the arguments, analogous to those, used in
the proof of Theorem 4, also work for the category O(p,A), and one gets the following
statement:

Theorem 12. There is a natural morphism, m : ©, — Id, considered as functors on
O(p,A). Moreover, for all modules M from O(p,A) one has that the natural map m :
Ou(M) — M is an isomorphism. In particular, the functors O, and Id are isomorphic.
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