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Abstract

We define a generalization of the Shapovalov form for contragradient Lie algebras
and compute its determinant for Generalized Verma modules induced from a well-
embedded sl(2, C) subalgebra. As a corollary we obtain a generalization of the BGG-
theorem for Generalized Verma modules.

1 Introduction

The structure theory of Verma modules is classical part in representation theory of Lie al-
gebras. First deep result in this direction was obtained in the original paper by I.Bernstein,
[.Gelfand and S.Gelfand ([BGG]). This theorem (which we will call the BGG-theorem) pro-
vides some criterion for the existence of a non-trivial homomorphism between two Verma
modules over a complex semisimple finite-dimensional Lie algebra. The original proof by
BGG uses some deep results on the structure of the Weyl group of the Lie algebra and
refers to Harish-Chandra theorem on central characters of Verma module. In eight years
V.Kac and D.Kazhdan ([KK]) managed to generalize this result on Verma modules over ar-
bitrary contragradient complex Lie algebra with symmetrizable Cartan matrix. The most
amazing thing is that their proof was quite elementary. The main tool in that proof was
special bilinear form defined on a Verma module by N.Shapovalov ([S]).

There are a lot of different generalizations of Verma modules. One of them, called a-
stratified Generalized Verma modules (GVM), was studied intensively during last years (see
for example [CF, FM, KM] and references therein). For example, an analogue of the BGG-
theorem for a-stratified GVM over a simple complex finite-dimensional Lie algebra was
obtained in [FM, KM]. The technique used to prove this generalization is analogous to that
of BGG. Certainly, it seems to be impossible to generalize this result using BGG-method for
infinite-dimensional algebras. Nevertheless, some information about the structure of GVMs



) was obtained in [F] by introducing a generalization of

over affine Lie algebra of type Agl
Shapovalov form.

In the present paper we define certain analogue of the Shapovalov form on the en-
veloping algebra of a contragradient Lie algebra and use this form to study the structure of
GVMs induced from a well-embedded si(2, C) subalgebra. The family of GVMs considered
in this paper is a bit bigger than one of a-stratified GVMs considered for example in [CF].
Nevertheless, the irreducibility criterion remains valid in this general case, but it seems to
be a very easy generalization of the classical a-stratified case. Results, obtained in this
paper, cover and generalize all known facts about structure of GVMs ([FM, KM, F]).

The structure of the paper is the following: In Section 2 we collect all necessary no-
tations and preliminary results on GVMs. In Section 3 we define a generalization of the
Shapovalov form, investigate its basic properties and present a generalization of the deter-
minant formula. In Section 4 we prove the determinant formula presented in Section 3.

Finally, in Section 5 we obtain a criterion of irreducibility for a GVM and a generalization
of BGG theorem.

2 Preliminaries

Let C denote the complex field, Z denote the set of integers and N denote the set of all
positive integers. All the notations that will be used in this paper without preliminary
definition can be found in [MP]. For a Lie algebra 2 we will denote by U(%() its universal
enveloping algebra.

Let & be a complex contragradient Lie algebra (or Chevalley algebra) associated with a
complex (nxn)-matrix A = (a;;) (see [KK]). We fix the standard triangular decomposition
(6,,9,09.,0) of &, where § is Cartan subalgebra, Q, is the set of roots of &, and o is
an antiinvolution on & (see [MP, KK] for details).

Let Q be the set of roots of the algebra & ie. @ = Q, U—-9, ([MP]). For a root
B let &° denote the corresponding root space. For the rest of the paper we fix a base
m of @, and an element o € 7 satisfying the following conditions: the subalgebra &,
of & generated by &** should be isomorphic to sli(2,C) and & should be an integrable
(i.e. direct sum of finite-dimensional modules) &,-module under the adjoint action. Let
NE =2 pco,\{a} &8 9 ={h € H|a(h) =0}, 7, = 7\ {a}. Then we have the following
decomposition: & = &,EN*BH*ONS. For H, = &,NH one obtains &, = G*DH, DG,
Fix some Weyl-Chevalley basis H,, X1, in &,. We also fix the dual elements Hg € §,
Be Q.

Under the above choice of o a simple reflection s, on $H* is correctly defined and
satisfies all the standard properties of a simple reflection. Let P denotes the standard
Kostant partition function with respect to = and P denotes the standard Kostant partition
function with respect to s, (7). By a quasiroot we will mean any element go € $*, where
a € Q. and q is a positive rational number.

A &-module V is said to be weight module provided the action of §) is diagonalizable
on V. Any weight &-module V' admits a weight-space decomposition V' = @V,, where A



runs through $* and V), is the weight subspace corresponding to A (see [D]). For a weight
module V' by ch V' we will denote its character ([D, Section 7.5]). A weight -module V is
called a-stratified ([CF]) if the actions of X4, are injective on V. An element v # 0 of a
weight &-module V' will be called a-highest weight vector provided v € V), for some A € C
and NGv = 0.

Consider the standard quadratic Casimir operator ¢ = (Hy +1)2 +4X_, X, in U(&,).
For any pair a,b € C one can consider a &*-module N(a,b) uniquely defined by the
following conditions:

e b is the eigenvalue of ¢ on N(a,b);

e all weight spaces N(a,b),—ok, k € Z are one dimensional;

e all non-zero weight spaces of N(a,b) are exhaust by those listed above;
e N(a,b) is generated by N(a,b),.

Since ) = H, D H™ we can rewrite arbitrary A € H* as A = A\, + A\?, where A\, € 9,
and \* € H°. Let a,b € C and XA € H* such that A(H,) = A\o(Ha) = a. We can define
a structure of an $)-module on N(a,b) by setting hv = A*(h)v for all h € $H* and all
v € N(a,b). Further, we can consider N(a,b) as a D = § + &, & N¢-module by setting
NG N(a,b) = 0. The &-module

&) X) N(a,b)
U(D)

is called Generalized Verma module (GVM). One can easily prove that M, (A, b) is a-
stratified if and only if b # (a + 1 + 21)? for all [ € Z (see also [CF, Theorem 2.1]). An
equivalent condition is that N(a, b) is irreducible. For M, (), b) we will denote by L (A, b)
its unique irreducible quotient. Since « is fixed we will omit it as an index in the subsequent
notations of M, (A, b) and L, (A, b).

For a contragradient Lie algebra with a symmetrisable Cartan matrix let (-, -) denote the
bilinear form on & ([K, MP]). The corresponding bilinear form on $* will be also denoted
by (-,+). For a restricted weight &-module V' we introduce the action of the Kac-Casimir
operator 2 ([KK]) on V as follows: for v € V,,, p € $* let

Qu = (u+2p, u)v+2 Z Ze(z)ﬁeﬂ
BeEQ+ 1t

where p is an element in $* such that (p,v) =1 for all v € , e(ﬂi) form a basis of &* and
eg?g form the dual basis of & #. One can easily check that the form (-,-) on $* is invariant
under s,.



3 «a-Shapovalov form and the determinant formula
Set H(a) = U($H) @ Clc|]. Consider the following decomposition of U (&) ([F, page 88]):
U(8) = (M2U(&) + U(8)N2) & H()C[X, ] Xa @ H()C[X_a] X0 @ H(a).

Let p be the projection of U(®) on $(«) with respect to the above decomposition. We
define a-Shapovalov form (or generalized Shapovalov form) F, on U(®) as a symmetric
bilinear form with values in $)(«) as follows (see also [F, KK, MP, §]):

Fu(z,y) =plo(x)y), =z,y€ U(®).

It is straightforward that the graded components U(&)¢, £ € ZQ are orthogonal with
respect to F,. Moreover, F, is contravariant, i.e. Fy(zz,y) = F,(z,0(2)y) for all z,y,z €
U(®).

Consider a vectorsubspace
M=UN"DBY)+UN* D& )

in U(®). For £ € ZQ we set M, = M NU(&)e. Clearly, each M is finite-dimensional.
To calculate the dimension of M, we have to introduce the notion of Kostant a-function
P, (see [MO]).
For v = Zagﬁ € Q set Yu(y) = Z agf. Define the Kostant a-function P, :
per Be(r\{a})
H* — N U {0} as follows: for A € $H* set P,(A\) to be the maximum number of the
decompositions

A+na = Z ng¥a(5)
BeQ+\{a}

with non-negative integer coefficients, where n runs through all integers. It follows easily
from the definition of P, that dim M_; = P,(&).

For n € ZQ we denote by F! the restriction of F;, on M_,.

Let A € §* and b € C. Clearly, from the construction of N(a,b) it follows that GVM
M(A,b) is generated by M(A,b), as a &-module. Let 0 # v(n) € M(A,b)x be a canonical
generator of M (A, b). It is well-known (see for example [CF]) that Mu, ) = M (A, b) since
M (A, b) is generated by v ). We can naturally identify $)(«) with the ring of polynomials
on the C-space {(A,b) | A € $H*,b € C} by setting ¢* = (0,1). Thus we can define the value
F7((A, b)) of F"in the point (A, b).

Now we can define a bilinear C-valued form F, on M(),b) by setting

~

Fa(ulv()\,b): ’U;Q’U()\’b)) = Fa(ula u2)((A: b))7 Uy, Uz € M

One can easily obtain the following standard properties of E,:



Lemma 1. 1. The kernel of F, coincides with the unique mazximal submodule in the
module M (), b).

2. F, is non-degenerate on M(\,b) if and only if M(\,b) is irreducible.
3. All weight subspaces of M(\,b) are orthogonal with respect to E,.
Proof. Proof is analogues to that for classical Shapovalov form (see for example [MP]). O

The main result of this paper is the following theorem which computes the determinant
of F:

Theorem 1. Let & be a contragradient Lie algebra with a symmetrisable Cartan matriz.
Then for any n € H*

det F = [T (XoaXa + k(Ha + p(Ha) = k)" x
k=1
x [T (XeaXa + (1= k)(Ha + p(Ha) — (1 = )70 x
k=1

o0 Po(n—kB)
X H H (Hﬂ+p Hpg) k(ﬂéﬂ)> ' X
ﬂ € Q+ \ {a}’ k=t

sa(8
x (1 sty 1252
{8,54(8)]  *
B e Qy\{a},
sa(8) # B}

(8,5)
2

P (n—kB)
: (HSa(ﬂ) + p(Hs,(5)) — k ) + a(Hﬁ)a(Hsaw))XaXa) :

up to a non-zero constant factor, where all the roots 3 are taken with their multiplicities.

We note that the product in the last factor of the above formula runs through all
non-orderd pairs {3, so(3)} such that 5 # s.(3).

4 Proof of the determinant formula

Proof of Theorem 1 follows general line of the original proof in [KK]. Although, there are
several differences and technical difficulties. To proceed we need the following lemmas.

Lemma 2. Up to a non-zero constant factor, det F! is a product of factors having one of
the following forms:



1. (X oXo+k(Hy + p(Hy) — k));
2. (X_oXa+ (1= k)(Ho + p(Ho) — (1 — k)));

3. (Hp+ p(Hp) — k ﬂﬁ)), where [ is a quasiroot such that so(B) = f.

4- ((Hﬁ + p(Hp) — k@) ' (Hsa(ﬂ) + p(Hso(8)) — k@) + a(Hp)o(Hs,(8) X -a Xa):
where [ is a quasiroot such that s, (B) # 5.

Proof. Consider a GVM M (A, b) generated by a non-zero element v(xp) € M (A, b)y. First
we note that the module M (A, b) is restricted ([KK]) and thus the action of 2 on it is well-
defined. Applying Q2 to v(yp) one obtains Quiyp = (A4 2p,A) + (b— (A, @) +1)%)/2) v p)
and thus Q acts as (A +2p, ) + (b — (A + p, @)?)/2)id on M (), b).

Consider the &,-module N(a,b) from the definition of M (A, b). Note that M (A, b) can
be reducible in two cases: if N (a,b) is reducible or if there exists an «-highest weight vector
in some M (A,b), with u— A & Za.

Suppose that N(a,b) is reducible. This is possible if and only if for some m € N
XPX™ voae = 0 or X X v = 0 holds. By the direct calculations with U(&,) we
obtain

[[ (X-aXa+ k(Hqa + p(Ha) — k) vrp) = 0
k=1

or

m

H (XfaXa + (1 o k)(Ha + p(Ha) - (1 - k))) V(b)) = 0.

Further, suppose that there exists an a-highest weight vector w in M (A, b), for some
p € $* such that u — XA € Za. Then the eigenvalues of 2 on v, and w coincide and we
obtain

(A+20,0) + (b= (L @)+ 12)/2= (u+20,10) + (0 — ((1,0) +1)D)/2 (1)

for some b’ € C. Clearly, the difference & —b polynomialy depends on /b after fixing \* and
pu—A (see [FM]). Thus the formula above can be applied to the case (a+1+2n)? = b, n € Z.
For such N(a,b) we get M(A,b) to be an extension of two Verma modules (with respect to
different bases in Q). Now, using the fact that the action of © on a Verma module can be
calculated at the highest weight vector, we obtain that o' = b+ 2vb(u— ), o) + (u— \, a)?
(here v/b is complex square root function which has two different values as soon as b # 0).

If (u— A, &) = 0 the equality (1) reduces to (A + 2p, A) = (u + 2p, u) and we can use
the same arguments as in proof of [KK, Lemma 3.2] obtaining the factors (Hz — p(Hg) —
(8,3)/2) (here (3 is not necessary quasiroot).



If (1 — A a) # 0 we can take two equalities of the form (1) corresponding to different
values b; and by of v/b, transfer everything in the left-hand side and multiply them. We
obtain the following (here 8 = A — p):

2\ +p,8) = (8,8) = (A + p,a) (8, @))* = b(B, )” = 0.

The last equality can be rewritten in the form

2\ +p,8) = (B,8) — (A + p, @) (B, @) — (B, )% (A + p, @) — (B, )% (b — (A + p,a)?) = 0.
We note that

2(6, @)
(@, @)

()‘+paﬂ) - ()‘+p’a)(6,a) = ()‘+p,ﬂ_ (ﬂaa)a) = ()‘+pa/8_ a) = ()‘—*—pasa(ﬂ))‘

From this it follows that

@0+ 9, B) — (B, 8)) QA+ pr 5a(5)) — (5a(8), 5a(8))) +
£ (0~ 4 p,0) (0 6) (e, 50(5) = 0.

1
Taking into account that Z(b — (A + p,)?) is an eigenvalue of the operator X_,X,, we

obtain the factor of the form

((Hg + p(Hg) — (8,5)/2) (Hso(s) + p(Hsoip)) — (8, 8)/2) + a(Hg)o(Hy,(5) X—aXa)

with the same arguments as in [KK, Lemma 3.2].

Now we only need to show that all § appeared above are quasiroots. Suppose not.
Thus we will have some factor of the determinant of F,, corresponding to a non-quasiroot 5.
Calculating F,, on a Verma submodule for some reducible N (a, b) we obtain a contradiction
with [KK, Theorem 1]|. Lemma is proved. O

By PBW theorem we can define a new a-gradation on U(®) by setting the grade of
X4, and the grade of H, to be 0 and all the grades of other base elements in & to be 1.

Lemma 3. Up to a factor of grade zero the leading term of det F)! with respect to the
a-gradation is equal to

1T ﬁ HPA0 ),

BeQ+\{a} k=1

Proof. From the classical Shapovalov determinant formula ([KK]) it follows that the above
formula is correct for det F7'* where | € N is big enough. To complete the proof it is
sufficient to show that the leading term of det F7 in the a-gradation does not depend on
the shift on a.



Choose some PBW monomial base v, ..., v; in M_, and suppose that as soon as
some v; contains X_, this monomial should start with this X_,. Consider the elements
Xov1, ..., Xoup and let W be a linear span of these elements. For 1 < i <t set 0; = X v;
if v; does not contain X_, and ¥; = w; if v; = X_,w;. Clearly, elements v, ..., 0; form a
basis of M_,,. Moreover, it follows from the definition of ¥; that up to a factor of zero
degree the leading term of det F7~* coincides with the leading term of the determinant of
the form F, restricted to W (we will denote it by F,(1/)). Since the base change from vy,

, U t0 Xqui, ..., Xov; is defined by the elements of zero grade it follows that det F7
differs from det F,,(W) by a factor of grade zero. This implies that the leading term of
det F7 in the a-gradation does not depend on the shift on o. O

To proceed we have to define a Jantzen filtration on M (X, b). Choose z € $* such that
(z,8) # 0 for all 8 € ZQ, \ 0. Let t be be an indeterminate. By standard technique we

can extend M (A, b) to the module M()\ b) over the algebra U((’j) U(®) ® C[t], where
()\, b) = (\,b) +t(z,1) € .S’J( )* = H(a)* @ C[t]. Further we can trivially extend o on [7(\(’—5/)
and construct a bilinear form F,. Using F, one can define a bilinear Clt]-valued form
272 on M(j\:/b) Setting M’ to be equal to the set of all elements v in M(/\/\,_b/) such that
Ft (v, w) is divisible by ¢ for all w € M (\,b) we define a Jantzen filtration

e~

M\ b)=M'> M >

—~ —~— ~——

on M(A,b). The canonical epimorphism ¢ : M (A, b) — M (X, b) (t — 0) induces a filtration
M(\b)=M"D> M' D
of M (), b) which will be also called Jantzen filtration.

Proof of theorem 1. We have only to calculate the degrees in det F)7 of the factors described
in Lemma 2. For a quasiroot 3, which is not proportional to «, the proof of this fact is
exactly the same as in [KK, Proof of Theorem 1] because of Lemma 3 and the remark that
the functions P,(z —y) y € ot are linearly independent (here o" is taken with respect to
(--))-

Thus we have only to calculate the degrees of the factors of the form
o (X_oXo+k(Ho+p(Hy) —k));
i (X—aXa + (1 - k)(Ha + p(Ha) - (1 - k)))

We will do it for the first kind of factors. One can apply analogous arguments for the
second case. Consider a factor (X_,X, + k(H, + p(H,) — k)) for some fixed £ € N. Let
N(a,b) be such that it has the unique submodule starting at the highest weight a — ka.
We note that in this case a ¢ Z. One can easily choose A € $* (A(H,) = a) such that
GVM M (A, b) has the unique non-trivial submodule N. Clearly, in the described case N is
isomorphic to the Verma module M (A — k«). From the definition of Jantzen filtration we

8



have M® = M (A, b) and M! = N. Our goal is to prove that M? = 0. Since N is irreducible

—_—

it follows that either M2 = N or M2 = 0. Consider U(®)-modules M(),b) and N and let

w be a canonical generator of N. Use the definition of F, to calculate F!(w,w). By the
direct application of s/(2)-theory we obtain that

k

Fi(w,w) =[] fu().

i=1

where fi(t) € C[t] such that f;(0) # 0 satisfy the following condition: the differences
between constant terms in fr,; and fi is equal to a — 2k. Since a is not integer it follows
that the product in the formula above is divisible at most by ¢. But it is divisible by ¢
since N is a submodule. Thus the canonical generator of N belongs to M and does not
belong to M?2. Hence M? = 0. Now we can claim that from the construction of Jantzen
filtration it follows immediately, that det F? is divisible exactly by P(n — ka)-th power
of (X_yXo +k(Ha+ p(Hy) —k)) (see [KK, Proof of Theorem 1] and [MP, Section 6.6]).
This completes our proof. O

5 Structure of GVMs

As in the classical case, the determinant formula for F,, enables one to prove a generalization
of the BGG-criterion for the embeddings of Verma modules (see [KK, Theorem 2] and [MP,
Section 6.7]). In this section we will formulate and prove an analogous result for GVMs
induced from &,,.

For A\, u € $* and by, by € C we set (A, b1) — (i, be) in one of the following cases:

1. by = by and A = pu — ka for some k € Z;

2. by = by = 2v/be(kB, ) + (kB3,)* for k € Nand 8 € Q. \ {a} such that A = p — k03
and

201+ p)(Hg) = k(8. B8) = (A + p) (Ha) (8, 0) = £v/ba (B, ).
(here an analytic branch of y/z function is fixed).

Denote by < the transitive closure of the relation — on $H* x C.
For each pair § # s,(8) of roots in Q, we fix some bijective map

sign : {3, sa(8)} = {£1}.

We also set sign(3) = 0 if (o, 3) = 0 and fix some analytic branch of /z function. For
Be Q. \{a}, ke Nandbe Cset f5;(b) =b+ 2sign(B)vba(kB, @) + (kB, a)?.

First of all it worth nothing to formulate the following criterion of irreducibility of the
module M (), b) which follows immediately from Theorem 1 and Lemma 1.



Theorem 2. M(\,b) is irreducible if and only if two following conditions are satisfied:
1. (M +p, ) +2k)2#b for all k € Z.

2. (2(A+p,B8) = k(B3,8)) (A + p, 5a(B)) — k(3a(8), 5a(B))) + (o, B) (e, 5a(B)) -
(b= (A +p,)?) #0 for all 3 € Q; \ {a} and for all k € N.

Remark 1. The first condition of the above theorem is equivalent to the condition that
the module N(a,b) (see definition of M (A, b)) and thus the module M (X, b) is a-stratified.
Hence for a-stratified modules one needs to check only the second condition.

The following theorem is a generalization of BGG structure theorem for Verma modules
(see [BGG, Theorem 2| and [KK, Theorem 2]).

Theorem 3. The following statements are equivalent:
1. L(\, by) is a subquotient of M (ju,bs).

2. M(M\b1) € M(u,bs);
3. (AN by) < (1 bo).

Proof. One can easily see that it is enough to prove that the first condition implies the

third one. Other implications are easy. Using Theorem 1 all necessary steps can be done

at the same way as in [KK, Theorem 2]. We will only outline the basic statements.
Consider the Jantzen filtration

M(u,by) =M’ > M > ...
defined in the previous section. Clearly

ord FY' (s, b) = Y dim M!_,,

i1

where ord denotes the maximal power of ¢ dividing ﬁzn(u, by). Further, it follows by direct
calculation that

d chM =) ch M(p—ka)+ Y ch M*(u+ka)+ Y ch M(u— kB, fo,(b2)),
k k

i>1 (B,k)

where the first sum is taken over positive integers k such that ((A + p, ) — 2k)? = b and
M (€) denotes the Verma module with respect to = with the highest weight & € $*, the
second sum is taken over positive integers k such that (A + p, ) + 2k)? = b and M“(¢)
denotes the Verma module with respect to s,(7) with the highest weight £ € $* and the
last sum is taken over all pairs (3, k) € Q4 xN, 8 # a such that (u—kpB, fsr(b2)) < (1, b2).
Now proof of the theorem follows by standard arguments using induction in 7 (see [KK,
Proof of Theorem 2]). O

Remark 2. One can easily obtain that the equivalence 1) < 3) in theorem 8 remains valid
even for GVMs M (X, b) that is not generated by M (A, b)y (this means that N(a,b) is not
generated by N(a,b), and we can forget about this condition on N(a,b)). This case can be
reduced easily to that where N(a,b) is generated by N(a,b),.
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