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Abstract

We construct and investigate a new large family of simple modules over Uy(gly).

1 Introduction and setup

The Gelfand-Zetlin formal construction of simple finite-dimensional modules over the
groups of unimodular and orthogonal matrices was developed in the celebrated papers
[GZ1, GZ2| in 1950 (see [BR| for more details). Later on this construction was studied
from different points of view, for example, the main result was reobtained using lowering
operators method ([Z]). In the last fifteen years this construction has been generalized
on different quantum analogues for Lie algebras, see for example [J1, J2, UTS1, UTS2,
C, NT1, NT2, GI, GK]. On the other hand, this method was used to obtain the clas-
sification of unitarizable modules for several algebras (see [O1, 02, GK]), to construct
and investigate the structure of a large family of simple modules over classical algebras
(see [DFO1, DFO2, M1, M3, MOJ) or to define and study new classes of algebras (see
[M2]). Recently some deep results in this theory were obtained in [O], and an analogue of
Gelfan-Zetlin construction for symplectic algebras was obtained in [Mo].

The aim of this paper is to analyze the Gelfand-Zetlin construction of simple finite-di-
mensional modules over the quantum algebra U,(gl,,), where ¢ is a non-zero complex non
root of unity in order to construct and investigate a new large family of simple U,(gl,)-
modules.

We will work over the complex field and fix ¢ to be a non-zero complex non root of
unity. For any complex z we set [z], = (¢ — ¢ %)/(¢ — ¢7') = (e — e7®)/(e" — "),
where ¢ = exp h. All the notions that will be used without preliminary definition can be
found in [KS].

In Section 2 we recall the Gelfand-Zetlin construction of simple modules over U,(gl,,).
In Section 3 we present a new large family of simple U, (gl,)-modules. In Section 4 we give
an abstract definition of Gelfand-Zetlin modules over U,(gl,) and present some examples.
Finally, in Section 5 we construct an extension of U,(gl,) inspired by modules constructed
in Section 3.



2 U,(gl,) and Gelfand-Zetlin basis for finite-dimensio-
nal modules

We define U, (gl,,) as a unital associative complex algebra generated by E;, F;, i =1, 2,...,
n—1, Kj, Kj_l, 7 =1,2,..., nsubject to the relations

Kin = KJ'KZ" KzK;1 = K;lKi =1,
KzE]KZ_I = q(sij/Qq_‘Si,j+1/2Ej,
KZF]KZ_1 = _‘5ij/2 5i,j+1/2F_

KZK_ K 2K?
[Eia P}] = (51] it Z—H,
q—q
[Ei, Ej] = [F;, Fy] = 0, |i—j\ > 2
EZ-ZEij:l - (q + qil)EZ’EiilEi + Ei:l:lEZ? = 0’
FiZFi:tl —(¢+q ")FFuF + Fi;uFiZ =0

(see, for example [KS, UTS1, UTS2]).

The following Theorem describes the Gelfand-Zetlin approach for simple finite-dimen-
sional U,(gl,) modules with a given highest weight. It was obtained in [J1, J2|, then reob-
tained by lowering operators method in [UTS1, UTS2]. We present it in the most general
situation (for ¢ which is any non-zero non root of unity), as stated in [KS, Section 7.3.3].

Theorem 1. Let V(m) be a simple U,(gl,)-module with a highest weight m = (my,
Mp2,- -5 Mpgp), Mpi = Mpgr1. Then V(m) possesses a basis consisting of all tableaus
[s] = (s”)f 1122 ' such that Smj = My, J = 1,2,...,n and siy1; = Sij = Sit1j+1,
1 =1,2,...,n, j = 1,2,...,17 and the action of generators of U,(gl,) are given by the
following formulae:

Kk[s]_qak/2[$ Zskz Zsk 1,4y k_]-aza"': n,

Ek[S]=Zan([SD([S]+[5’”, Fyfs] = z% [s])([s] = [6"7]),

where 6% is the Kronecker tableau and for l,; = s, — t we have

H[llc:tl,i — ljlq
F- :
[Tk = bl

i

ai;([s]) =

Remark 1. It is worth to note, that the highest weight over the corresponding U,(sl,)
algebra can be expressed as (My1 — My 2, M2 — Mp3, ..., Mpp_1 — Mpp).



Remark 2. Originally the Gelfand-Zetlin formulae were obtained for a positive real g # 1
and had the following form:

Ki[s] = ¢*/?[s], ZS’” Zsk i, k=1,2,...,n,

ZAka [sD([s] +[6*7]),  Fils] = ZAkJ [s] = [0"])([s] — [0"7])

with

H[lk-i-ll lkZ]QH[lk 1 — 7'_1]q 1/2
H[lkz l,w]qH[l,”_ T

i#j i#]
One can obtain these formulae from those above multiplying the basis elements by appro-
priate factors.

Ag;([s]) =

3 Generic Gelfand-Zetlin modules

Let 1(g) be the set of all complex z such that ¢* = 1. Fix a tableau [m] with complex
entries m; j, 1 <i<nand1<j <4 satisfying the following defining condition:

® 2(m;; —miy) €1(g) +2Z forall 1 <i<n—1andall j#k.

We will call such [m] admissible. Consider the set B([mn]) consisting of all tableaux [I]
such that

e [, ; =my; for all j;

e [;; —m,;; is an integer for all 1 < ¢ < n —1 and all j.

Let V([m]) be the vector space with a basis B([m]). For [l] € B([m]) set

k -1
Kk[l] :qak/Q[l]a A = Zlk,i_zlk—l,i+ka k= 1a27"'1na

Ek[l]:Zal—:j([Z])(H +[0%7]), Fk[l]_zak] ([ = [6™7),

where

| |[lkil,i — lkilq
akij l))==F :

Uk — lkjlq
i#]
We will call the formulae above the Gelfand-Zetlin (GZ) formulae.
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Theorem 2. GZ formulae define on V(|m]) the structure of a Uy(gl,)-module of finite
length.

Proof. First we show that GZ formulae define on V([ m]) the structure of a U,(gl,,)-module.
Let v = 0 be a relation in U,(gl,). It is enough to show that this relation holds in V([m]).
For this it is enough to show that u[l] = 0 for any [/] € B([m]). Clearly, using GZ formulae
we can write u[l] = >, ) f([L])[t], where the set I(u, [I]) —[I] depends only on u and for
any fixed u each f([t]) is a rational function in ¢%7. Thus, it is enough to show that each
f([t]) is identically zero. Hence, we have only to show that some polynomials in ¢! are zero.
Let p be such a polynomial, k be its degree and s be the degree of u. Clearly, there exists
a tableau [I] such that all [;; are positive integers and for any integer —k —s < 4;; < k+s
the tableau [l + %] occurs as a basis element in a finite-dimensional U,(gl,)-module (this
means that the entries of it satisfy the conditions presented in Section 2). Taking into
account that ¢® # ¢®, if a # b are positive integers, we conclude that p is identically zero,
since GZ formulae really define finite-dimensional U,(gl,,)-modules as in Theorem 1 (thus
for tableaux from them p = 0 holds). This completes the proof of the first part of our
theorem.

Let A([m]) be a subalgebra of U,(gl,,) consisting of elements, which are diagonalizable
in the basis B([m]). It is non-empty, because it contains at least the quantized Cartan
subalgebra, generated by K;. Let U,(glx), 1 < k < n be a subalgebra of U,(gl,) generated
by Ki, 1 <i<k, E;, F;, 1 <i<k—1. Denote by Z the center of this U,(gl;). Since Zj
is diagonalizable in the GZ basis of any finite-dimensional U, (gl,)-module, it follows that
it is diagonalizable in the basis B([m]). Thus Zj is a subalgebra in A(|m]). Let ' be a
subalgebra of A([m]) generated by all Z;. To complete our proof it is enough to show that
for any [I(1)] # [I(2)] € B([m]) there exists an element v € I' such that the eigenvalues
of uw on [I(1)] and [I(2)] are different (see also [M3, Theorem 1]). Indeed, having this we
easily obtain that any subquotient of V' ([m]) is determined by the corresponding subset of
basis elements from B([m]). Form a non-oriented graph with a vertex set B([m]) in the
following way: we say [a] and [b] to be connected by an edge if [a] occurs with a non-zero
multiplicity in E;[b] and [b] occurs with a non-zero multiplicity in F;[a] for some i. Now the
subquotients of B([m]) are determined by the connected components of this graph, and it
is trivial, that there are only finitely many of them.

Therefore, we have only to check that I' separates the elements of B([m]). It is easy
to see that for z € Zj the eigenvalue of z on [l] can be expressed as a rational function
on ¢'*i, where only j varies. Hence, we need only to show that two tableaux in B(|m])
having different k-th rows can be separated by an element from Z;. Without loss of
generality we can assume k£ = n. Now the last statement is equivalent to the following
fact: the central characters of V([m(1)]) and V([m(2)]), m(i)n; — m(i)ns ¢ Z for all
i =12 j,s = 1,2,...,n, where the difference between the upper rows of [m(1)] and
[m(2)] is a non-zero vector with integer entries, do not coincide. To prove this we have
to compute the central character of V([m]). Let z € Z, and [t] be a tableau determining
the highest weight of a finite-dimensional simple U, (gl,)-module. Denote by 7 the Harish-
Chandra homomorphism from Z, to the subalgebra U° generated by Kiil, 1=1,...,n
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([J, Section 6.2]). According to [J, Lemma 6.3] the eigenvalue of z on [t] equals A(7(2)),
where A is the highest weight of [t]. Since we work with U,(gl,), its center is generated by
a (unique up to inverse) monomial in U°) whose eigenvalue can be computed directly, and
the center Z! of U,(sl,). Since g is not a root of unity, we can apply [J, Theorem 6.25]
and [J, Section 6.26] to obtain the eigenvalues of the elements from Z). According to these
results, the eigenvalues are invariant (Laurent) polynomials in g'»i~*+1 under the natural
action of the Weyl group (here t,; — ,,41 appears as components of the highest weight
with respect to U,(sly)).

Now we see, that the central character of V([m|) depends only on entries in the upper
row of [m]. Moreover, it coincides with the central character of a Verma module with
the highest weight (my,1 + 1,mp2 + 2,..., My, + n) (with respect to Uy(gl,)). By [J,
Claim 6.26] two Verma modules over Uy(sl,) have the same central character if and only
if their highest weights (shifted by a half-sum of all positive roots) lie on the same orbit of
the Weyl group. A shift by a half-sum of all positive roots corresponds to the substitution
of (mp1+1,mpo+2,...,Mpyn+n) with (mp 1, mn2,...,Myy). The Weyl group acts on
U,(gl,)-space of weights by permutation of the vector entries. Clearly, the restriction of
this action on U,(sl,,)-space of weights coincides with the standard action of the Weyl group
on it. We remark, that the stable complement of U, (sl,)-space of weights in U,(gl,,)-space
of weights determines the eigenvalue of the additional central element of U,(gl,). Hence
[J, Claim 6.26] can be extended to U,(gl,)-case. To complete the proof now we have only
to note that under our choice of [m(i)], i = 1,2 their upper rows can not be conjugated by
a permutation. [

Remark 3. From the discussion above it follows that A([m]) does not coincide with T.
Since Z, is diagonalizable in B([m]) it follows that V([m]) has a central character and
thus A([m]) contains the two-sided ideal of U,(gl,) generated by the kernel of this central
character. We conjecture that T coincides with the intersection of all A([m]), where [m)]
varies. This is equivalent to the fact that I' is a mazimal commutative subalgebra in U,(gl,).
The last is the case for a non-quantum situation ([O, M3]).

Corollary 1. V([m]) is simple if and only if 2(my1; — mig) € 1(q) + 2Z for all i, 7, k.

Proof. Clearly this is a necessary and sufficient condition for the graph described in the
proof of Theorem 2 to have a unique connected component, which completes the proof. [J

Remark 4. Since [x], = =, when ¢ — 1, we obtain that V ([m]) is a quantum deformation
of the generic Gelfan-Zetlin modules constructed in [DFO0Z2, Section 2.3]

4 Gelfand-Zetlin subalgebra and abstract Gelfand -
Zetlin modules

The central arguments used in the proof of Theorem 2 motivate to give the following
abstract definition. A U,(gl,)-module V' will be called Gelfand-Zetlin module (GZ-module)



if it decomposes into a direct sum of finite-dimensional I'-modules. Since I' is comutative,
this means that V' = @,cr-V,, where V, is a root subspace of V' corresponding to the
character x (see [MO, Section 3]).

Clearly, any weight U,(gl,)-module with finite-dimensional weight spaces is a GZ-
module. Thus finite-dimensional modules, Verma modules, highest weight modules are
GZ-modules. It follows also from the proof of Theorem 2, that V([m]) is a GZ-module.
Following [DFO2], one can easily prove the following standard results:

Proposition 1. I' is a Harish-Chandra subalgebra in Uy(gl,,).
Proof. Analogous to that of [DFO2, Corollary 26]. a

Proposition 2. Let x € I'*, and [m] be such that V([m]), # 0. Set S([m]) to be a
submodule of V ([m]), generated by V ([m]),. Then there exists a unique mazimal submodule
K([m]) in S([m]) and the quotient S([m])/K ([m]) is the unique simple GZ-module having
a non-trivial x-root subspace. In fact the last is a x-weight subspace of dimension one.

Proof. Analogous to that of [DFO2, Theorem 30]. O]

Theorem 3. Suppose that V([m]) is simple. Then the category of all GZ-modules decom-
poses into a direct sum of two full subcategories A @ B such that A contains the unique
simple object, namely V ([m]).

Proof. Analogous to that of [DFO2, Corollary 33]. O

5 Extending U,(gl,)

Consider a field F of rational functions with complex coefficients in n(n + 1)/2 variables
¢%i,1<i<n,1<j<i Let[T]be a tableau (i.e. n(n + 1)-dimensional doubly-indexed
vector) with entries T; ; = [; ;. Consider a set B consisting of all [¢] satisfying the following
conditions:

o t,; =1T,, for all 7,
® Tk,i _tkz € 7Z for all k' 1.

Let V(B) be an F-vectorspace with the basis B. Define F-linear operators X,C i H,f,j,
1<i<n—1,1<j < as follows: for [t] € B set

H[tk:tl,i — tr,jlq
ilt] = ([ £ [6"]), Hy,lt] = ¢t tDDg]

H[kz_ ,J

i#]

and extend this action on V(B) by F-linearity. Consider a complex associative algebra
A = A(q, n), generated by all X,*; and H, .
The following property of 2 follows immediately from the definition.
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Proposition 3. Let [I] be an admissible tableau. Then the specialization |; ; = l; j in the
above formulae defines on V(B)y a structure of an A-module.

Theorem 4. The subalgebra A of U, generated by

k k k k-1
e =D Xij fe=2_Xip 1<k<n-1 m=][H;][HC ., 1<k<n
7j=1 j=1 s=1

7j=1
is canonically isomorphic to Uy(gly).

Proof. 1t follows from the proof of Theorem 2, that the natural map ¢ : Uy(gl,) — A,
defined by ¢(E;) = e;, ¥(F;) = f; and ¥(K;) = h; can be extended to an algebra ho-
momorphism, which should be an epimorphism since the image contains all generators of
A. To prove the injectivity of ¢ compose it with the specialization sy, for an admissible
tableau [[]. From the construction of V([I]) we deduce that under the map sy o 1) the
space V(B)[; becomes an Ug(gl,)-module, isomorphic to V([I]). Thus the kernel of spj o 9
coincides with the annihilator of V([/]). To complete the proof we have only to show that
the intersection of annihilators of all V' ([{]) is trivial. Suppose not and u # 0 annihilates all
V ([1]) with admissible [/]. Since the set of admissible [/] is large enough, Gelfand-Zetlin for-
mulae defining V'([I]) are rational and also valid for finite-dimensional modules, we deduce,
that u annihilates all finite-dimensional modules, which contradicts [J, Proposition 5.11].
Theorem is proved. U

We outline, that a part of the proof of Theorem 4 can be formulated in the following
statement.

Corollary 2. The restriction of V/(B)y on A canonically isomorphic to V([1]).
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