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Abstract

We define a class of associative algebras which are similar to the enveloping al-
gebra of gl(n,C). We construct a family of simple Verma and generalized Verma
modules over such algebras. We also investigate the two simplest classes of such
algebras in detail. For the first class we construct all finite-dimensional modules and
investigate an O-category and for the second, we classify all simple weight modules.

1 Introduction

Several examples of algebras which are similar to the enveloping algebras of simple finite-
dimensional complex Lie algebras appeared during recent years (see for example [B, JO, S]).
So far most examples were obtained by generalization of si(2,C) algebra as in [B, S].
Careful study of such algebras made it possible to obtain deep results even for more difficult
algebras ([BB]) which are tensor products of some copies of algebras similar to si(2, C).
Recently, some attempts to define a reasonable generalization for higher rank algebras
([MT]) also appeared.

In the present paper we define a new family of associative algebras that arose from the
outstanding paper [GZ]. Using the formulae describing an action of generating elements
of gl(n,C) on finite-dimensional modules we define new associative algebras that we call
Orthogonal Gelfand-Zetlin algebras (OGZ-algebras). It seems that the representation the-
ory of such algebras possess several features in common with the representation theory of
gl(n,C).

We show that the family of OGZ-algebras contains U(gl(n, C)), polynomial algebras and
extended Heisenberg algebra. We define OGZ-algebra as an operator algebra generated
by special operators in infinite-dimensional space. Regretfully, this definition of OGZ-
algebras is not quite handy. It is not too easy to work with it since there is no analogue of
PBW-theorem.

Positive feature of such definition is that any OGZ-algebra appears both with a huge
family of modules obtained by a specialization of defining formulae. This allows us to
investigate weight modules over OGZ-algebras in the two simplest cases: the first one is an
analogue to the case of sl(2,C) and the second one is the case of algebras, when defining
formulae contain only polynomial coefficients (see formulae 1,2).



In the subsequent papers we will discuss some questions concerning submodule structure
of Verma and generalized Verma modules over arbitrary OGZ-algebras and describe all
finite-dimensional simple modules in terms of highest weight.

Let us briefly describe the structure of the paper. In section 2 we collect all basic
preliminaries. In section 3 we define OGZ-algebras and describe their basic properties.
In section 4 we prove that U(gl(n,C)) is an OGZ-algebra (theorem 1). In section 5 we
obtain some identities in ¢/ and describe the canonical Harish-Chandra subalgebra in
(corollary 1). In section 6 we give some examples of OGZ-algebras. In sections 7-8 we
construct two families of simple &/-modules which are analogues of Verma and generalized
Verma modules over Lie algebras. In sections 9-11 we investigate first special class of OGZ-
algebras which are similar to s/(2,C). We describe all simple finite-dimensional modules
(theorem 4) and prove the BGG-duality in the corresponding category O (theorem 5) in
this case. In the last section 12 we classify simple weight modules for another special class
of OGZ-algebras (theorem 6).

2 Preliminaries

Let C denote the field of complex numbers; Z, the ring of integers; N, the set of all positive
integers and Z., the set of all non-negative integers. Throughout this paper we fix a field
F of zero characteristic. Associative algebra will mean associative algebra with identity.

Fix n € Nand r = (ry,72,...,7,) € N* and set k = |r| = ZTZ" Consider a vector
i=1
space L = L(F,r) of dimension k. We will call the elements of £ tableauz and will consider
them as double indexed families

[={lli=1...,n;5=1,...,1}.

For [I] € £ and i € {1,2,...,n} we will denote by [I], = {l;;|j = 1,...,7;} the i-th
row of [1]. The element r will be called the signature of [1]. By the rank of [1] we will
mean rank([!]) =n — 1. -

We will denote by 6 = [0% ], 1 <4 < n, 1 < j <y, the Kronecker tableau, i.e. §; =1
and 0,7, = 0 for p # 4 or ¢ # j.

Denote by Ly the subset of £ that consists of all [[] satisfying the following conditions:

1L ly;=0,7=1,...,7;

2. l;€Z,1<i<n—1,1<j<r,.

3 Orthogonal Gelfand-Zetlin algebras

Fix some n € N and r = (r,...,7,) € N*. Set k = |r|. Consider a field A of rational
functions in k variables \;j;, 1 <i<n,1<j <r;. Let [[] € L(A,r) be the tableau defined
by lij=Xij; 1 <i<n, 1<j<m



Consider a vector space M over A with the base vi), [i] € [[] + Lo (here [i] means
formal index and thus M is infinite-dimensional over A). For [i] € [[]4+ Ly, 1 <i<n—1

and 1 < 7 < r; denote
[[Gizim — i)

m

o ([i]) =F

I Gim — 1)
m#]
Define A-linear operators X;": M — M,1<i<n—1by
XFoa =Y a5 ([11)opas (1)
j=1

where [i] € [[]+ Ly.

Let 75, 1 <1 < n, 1 <j <r; denote the j-th elementary symmetrical polynomial in

Ait, -« -5 Aip;. Define A-linear operators d;; : M — M,1<¢<n,1<j<r; by
dijvriy = Yig (s - - -5 bir VL] (2)

Consider an associative operator algebra U (over F), generated by elements Xz-i, 1=
1,...,n—1land d;;, 1 <i<n,1<j<r;. Wewill call it the Orthogonal Gelfand-Zetlin
algebra (OGZ-algebra) of signature r. Equivalently, ¢ is the minimal F-subalgebra in the
algebra of all A-linear transformations of M, containing XZ-jE and d;; for all 1 <7 < n,
1 < 7 < r;. The reason of this name will be explained in section 4.

The subalgebra I' C U generated by elements d;;, 1 <i <n, 1 < j <r; will be called
basic Gelfand-Zetlin subalgebra (basic GZ-subalgebra) of U. Clearly, T' is a commutative
polynomial algebra in k£ variables.

We will denote by I';, © = 1,...,n the subalgebra of I' generated by d;;, j = 1,...,7;.
Clearly, T'; is a polynomial algebra in r; variables.

Consider a polynomial algebra €2 in k£ variables x;;, 1 <¢ <n, 1 < j <r;. Identify Q
with the algebra of polynomial functions on L(A, r) putting x;;([1]) = i;; for all possible ¢
and j. Define a homomorphism ¢ : I' = Q by d;; — 74;(Xa1, - - -, Xij) for all possible ¢ and
j.

The symmetrical group S, acts on {2 in natural way permuting x;; with fixed 7. Thus,

n

the direct product S = HS” acts on (). Clearly, ¢ is a monomorphism and its image

i=1
coincides with the algebra of S-invariants in 2. We identify I' with ¢(T').
We denote by U* the subalgebras of U generated by Xii, 1<i<n—-1.

4 U(gl(n,C)) is an OGZ-algebra

In this section we will prove that the class of OGZ-algebras is big enough to contain
all enveloping algebras U(gl(n,C)). To prove this we need some auxiliary notations and
lemmas.



Let U be the OGZ-algebra of signature r = (1,2,...,n), & = gl(n,C) be reductive
finite-dimensional complex Lie algebra of n x n matrices, U(®) be the universal enveloping
algebra of & and I'(®) be the Gelfand-Zetlin subalgebra of & ([DOF]). We will also denote
by e;j, t,7 € {1,...,n} the standard matrix units.

Lemma 1. The map ey — X7, e X, i =1,...,n—1; e;y — di1 + 1 defines a
structure of -module (= U(®)-module) on M.
Proof. Follows from [DOF, Theorem 30]. O

Denote by A’ the C-subalgebra of A, generated by A;;, 1 < i <n,1 < j <r; and
Nij—Aim—1)",1<i<n-1,1<j<m<r,te€Z For[l] € L(C,r) with l;, — l;; ¢ Z
for1 <i<mn-1,1<j<m <r;consider a homomorphism @ : A’ — C defined as follows:
D(Nij) = lij, 1 <i<n, 1< j<r. Clearly, ¢ induces a homomorphism from a free
A'-module M" with the base vyi), [i] € [[] + Lo in £(C, ), moreover, ¢([[]) = [I]. Since
®|11142, is a monomorphism it follows that it induces a homomorphism from the algebra
of all A’-linear operators on M’ into the algebra of C-linear operators on the C-space M
with the base vy, [t] € [1]+ Lo. We will call M[; the specialization of M with respect to
[1]. Clearly, @ defines on M[;] a structure of {-module.

Lemma 2. & defines a structure of &-module on M.
Proof. Follows immediately from lemma 1. O

The following statement is the key observation of this section. One can consider it as
an analogue of the well-known Harish-Chandra theorem [D, Theorem 2.5.7].

Lemma 3. For any 0 # u € U(®) there exists [1] € L(C,r), lij —lim € Z, 1 <i<n—1,
1 < g <m <r; such that u acts non-trivially on M.

Proof. Consider 0 # u € U(®). Let & = 9_ & H & N, be the standard triangular
decomposition of & and A = A_ U A, be the corresponding decomposition of the root
system. Denote by X,, a € A the elements from the fixed Weyl-Chevalle basis.

We can assume that there exists p € $* such that [h, u] = p(h)u for all h € §. Clearly,

there exists a sequence X,,, ..., X,, such that y+a;+-- -+ = Z ng3, where ng € Z.
peA L

By Harish-Chandra theorem [D, Theorem 2.5.7] an element v = uX,, ...X,, acts
non-trivially on some finite-dimensional simple -module F. By [GZ] each simple finite-
dimensional module possess a base indexed by the special set of tableaux of signature r.
Moreover, the action of generating elements in this base is defined by formulae (1),(2).
One can choose ay, ..., a; such that there exists v € F', uv # 0 and the action of v on v is
defined only by GZ-formulae (|GZ]).

Thus, there are non-trivial rational functions in coefficients of the tableau corresponding
to v defining this action. It follows that any of these functions should have a non-trivial
value in some specialization M}, since the set [I] € L(C,7), ljj = lim € Z,1 <i<n—1,
1 < j < m < r; can not be zero set of a non-trivial rational function. This completes the
proof. O



Theorem 1. U ~ U(®).

Proof. By lemma 1 we have U ~ U(®)/I, where I is an annihilator of M. By lemma 3 we
obtain I = 0 and the statement follows. O

Remark 1. According to lemma 3 it is clear why we call our algebras OGZ-algebras.
The reason is in GZ-formulae ([GZ]), which define an action of generating elements of
U(gl(n,C)) on simple finite-dimensional module in some orthogonal base.

5 Some identities in U4

It follows from the definition of ¢/ that the generating elements satisfy several canonical
identities. We describe some of them in this section.

Lemma 4. Forany1<i<n-1, [X;", X[ ] €T.

Proof. Fix some i € {1,...,n — 1}. Consider an element [X;", X; Juy;; for [i] € [[] + L,.
By the definition

(X5, X o) = (XZ*XE - Xfor)U[ )=

= Zzazm [6U])a';j([i])v[i]—[dijH—[&"m] -

m=1 j=1
=) a1+ [ Dag ([ )ops) (s s ) =
7j=1 m=1
_Z afi([1] = [67 ag;([1]) — az;([1] + [87 Daf ([1])vray.
Set
f(ii—lla . ,ii_l,,-i_l,iﬂ, .. .,iz'ri,iz'+11, . 7ii+17'z'+1) =
_ fl(iifll,'"ai’iflmfniila"'aiimai’i—klla"'aii+lri+1) _

fo(lins oy iny)

Ti

= (a([i] = [8YDaz([1]) — a5 ([i] + [67Da([i]).

j=1

Clearly, f2 = H (1zlc —_ 1”)
1<j<k<r;
By the direct calculations we obtain that

fl(lifl Tyee-sb—1ri_qybily---s 1ijfla Yim, 1ij+1: <oy Yim—1,Yims - - -5 Yirgs Lit11y---s 1i+lri+1) =0



and thus f is a polynomial function ini;_11,...,i41,,,. One can easily see that f does not
change after elementary transpositions of variables i; 1; <+ ;_1,, 1ij < lim, lit15 € lit1m-

The statement of the lemma now follows from the main theorem on symmetrical poly-
nomials. U

Lemma 5. For1<:<n-—1,
2. [dij, Xi] = ff; (Yit, - - -, Yij 1) X~ for some polynomial fzj;
Proof. For 1 <i<mn—1and [i] € [[]+ Ly we have

ri

[diz, XiTopy = ) (G + - iy £ D ([3]) = (i + - + i) a5 (1)) vpigan) =

7j=1
= ZI:Z(L,LJ 1] 51] Zi:X,L:tU[l}

and the first statement follows.
The second follows analogously from the fact that for any non-trivial polynomial f €

Clz] and for any a € C holds deg(f(z — a) — f(z)) < deg f(z). O

The following identities are obtained at the same way as in [DOF Lemma 25]. Any

x € M can be written in the form z = Z T[ivi], where z;3) € A. For u € U
[i]€[V]+Lo

and [i] € [[] 4+ Lo denote by L(u,[i]) the set of all tableaux [7] € [[] 4+ Lo such that
(uvgi))i-) # 0
Lemma 6. The set L(u,[i]) —[i] does not depend on [i].

Proof. By definition of ¢ all (uvij)[,] are non-trivial elements in A. Then the statement
of the lemma follows from the fact that a shift of variables maps a non-trivial rational
function to a non-trivial rational function. O

We will denote the set L(u,[i]) — [i] by £,. Clearly, £, is finite and £, C Ly. Thus,

we have
Z 0(u,[i], [T [7]s

[T]€ELY

where 0(u, [i],[7]) = (wv}i))[i)4+[(] # 0.
Any [7] € L(A,r) defines an automorphism y — x[7] of Q, where Xij = Xij + Tij for
all possible ¢ and j. For any z € I and u € U set

Fo.(T,x)= [] -7

Clearly, F,, , € I'(T).



Lemma 7. Letz €1 and F,, , = ZTigi, gi € I'. Then Zziugi = 0.
iel il

Proof. For [i] € [I] + Lo we have

> iy = 3 2ugi([ 1) = 3 2'ai([) Z O(u, [1], [TD)vpiein =

D Ou TN z(i]+ [T]) 'gi([i)vpigerr) =
[T]€Ly iel
2 O I (Dot =0
Thus Z Z'ug; = 0. O

Corllary 1. T' is a Harish-Chandra subalgebra in U in the sense of [DOF] (i.e. Tul' is
finitely generated both as right and left I'-module for any v € U ).

s—1
Proof. Let s = degF,,,. By lemma 7 we have 2° € Zziuf‘ and thus T'ul" is a finitely
i=1
generated right I' module since I' is finitely generated.
The map X;° — X can be continued to the canonical involution on I/ which maps T
to I'. Thus T'ul is also finitely generated as left I'-module. O

6 Examples
In this section we give some familiar examples of OGZ-algebras.

6.1 U(gl(n,C))
As shown in section 4 an algebra U(gl(n, C)) is OGZ-algebra of signature r = (1,2,...,n).

6.2 Polynomial algebra

A polynomial algebra is an OGZ-algebra of rank 0. By the main theorem on symmetrical
polynomials an OGZ-algebra U of signature r = (r;) is a polynomial algebra in r; variables.
Clearly, any simple irreducible module over U is defined (up to the action of S,,) by a vector
(lj)glzl € C" which defines the eigenvalues of the generating elements d;;, 1 < j < ry.



6.3 Extended Heisenberg algebra

One can show that in the case » = (1,1) an algebra U is a trivial central extension of
an algebra U’ generated by X, Y, H with relations [X,Y] = —1, [H, X]| = X, [H,Y] =
Y which is an extended Heisenberg algebra. Clearly, this algebra has no simple finite-
dimensional modules. This fact is generalized in section 12 to OGZ-algebras of signature
(1,1,...,1).

7 Verma modules in general position

OGZ-algebras appear together with a huge family of modules. In this section we construct
some analogue of Verma modules over an OGZ-algebra. These modules could be obtained
directly from the definition of an algebra.

At the same way as in section 4 to each [l] € L(C,7), lij = lim, € Z,1 < i < n —1,
1 <j<m < (such [I] will be called quasi-generic) corresponds some U-module Mj;
with a C-base vy}, [t] € [I] 4+ Lo and the action of generated elements given by (1),(2).
In the mentioned formulae it is necessary to replace [;; with /;; for all < and j.

Lemma 8. Suppose that [1] € L(C,r) is quasi-generic. Let K C [t]+ Ly be such that for
any [t] € K and any 1 <i<n-—1,

+
X v = Z afs)V[s]-
[s]eK

Then the space N spanned by v(,, [s] € K is an U-submodule in M.
Proof. Follows from the definition of . O

A non-zero element v from an U-module V will be called primitive provided X; v = 0
forall 1 <47 < n — 1. In this section we construct a family of simple /-modules generated
by primitive elements, as submodules in M, for special [/]. From now on we assume that
the signature vector r satisfies the condition r; > r;, for all possible j > k.

Consider a map ® : C» — L(C,r) defined as follows: ®((a1,...,a,,)) = [t], where
tij =a;, 1 <i<mn,1<j<r; This map is well-defined since r; > r; for 7 > k.

Let [I] = ®((a1,...,ar,)), aj—am & Zfor 1 < j < m < r,. Consider the corresponding
specialization M;;. Let K = K([l]) be a subset in [/] + Ly consisting of all elements [?]
which satisfy the following conditions:

Llyy—tij€Zy, 1<i<n—1,1<7<r;
2.ty <tip15,1<1<n=-1,1<75<r.
Lemma 9. Suppose that [t] € K and a;;([t]) # 0 for some i and j. Then [t]+[67] € K.

Proof. Since a;;([t]) # 0 it follows that ¢;; # ti 41, for all possible m and thus ¢;; < t;41;.
This implies that [¢]+[07 ] € K. O



Theorem 2. M([1]) = (vj¢)|[t] € K) is a simple U-submodule of M, generated by the
primitive element v

Proof. M([!]) is an U-submodule by lemma 9 and lemma 8. It follows from direct calcu-
lation using formula (1), that A ([[]) is generated by vy;;. Clearly, vy;) is primitive.

Since UT v is finite-dimensional for any v € M([1]), it follows that each submodule of
M([1]) contains a primitive element. From formula (1) and definition of K we deduce that
the only primitive elements in M([!]) are const - v;). Thus, M([t]) is simple. O

It is rather natural to call M([1]) a Verma module over U since when U ~ U(gl(n,C))
it follows that M ([l]) is a Verma module over gl(n,C). Note, that we do not construct
the complete family of Verma modules but only a class of simple ones arising directly from
the definition of .

8 Generalized Verma modules in general position

In this section we construct a family of simple modules over &/ which are similar to general-
ized Verma modules induced from a parabolic subalgebra of a Lie algebra (see [CF, MO]).
Our arguments are analogues to those in section 7.

Fix m < n and let U’ be a subalgebra in U generated by Xii, 1 <i<m—1and dy,
1<1<m,1<j<r;. We will construct a family of /-modules which can be viewed as
modules induced from U’-modules. Analogously to the previous section, we have to assume
that r; > i for 7 > k > m.

Set 7' = (r1,...,7m_1). Consider a map ® : C'» @ L(C,r') — L(C,r) defined as follows:
®((a1,-..,ar,),[t]) =[], where [t] € L(C,7") and l;; = t;;, 1 <i<m—1,1<j <
lij:aj,mgign,lgjgn-.

Let [I] = ®(a,[t]) for some a € C", [t] € L(C,r'). For the rest of the section we
suppose that [/ ] satisfies the following conditions:

Llj—lim€Z,1<i<n-—1,1<j<m<r;
2. L —liyim €2,1<i<m—-1,1<j<r; 1 <m<ry;.
Consider a subset K = K([l]) C [I] 4+ Lo consisting of all elements [¢] such that
Llj—t;€Z,1<i1<m-1,1<75<ry;
2. Lt €y, m<i<n-—11<j<r;
3.ty <tipi;,m<i1<n-—1,1<7<r,.
Lemma 10. Suppose that [t] € K andaj;([t]) # 0 for somei and j. Then[t]+[67] € K.

Proof. For 1 <4 < m — 1 the statement is obvious. For 7 > m — 1 the proof is analogous
to that of lemma 9. O



Theorem 3. The C-subspace M([1]) C My with the base vy, [t] € K is a simple U-
submodule in M. Moreover, M([1]) is generated by vy;).

Proof. Analogous to that of theorem 2. O

It is natural to call the modules constructed in this section generalized Verma modules.
In the case U ~ U(gl(n,C)) the module M([!]) is a generalized Verma module induced
from a generic Gelfand-Zetlin module ([MO]). Note, that the family of modules constructed
in this section is not a complete family of generalized Verma modules over Y.

9 Orthogonal Gelfand-Zetlin algebras of signature
(1,m), basic properties

For the next three sections we assume that n = 2 and r» = (1, m). In this case it is possible
to construct a theory of A/-modules almost in the same way as for the Lie algebra si(2, C).
The most interesting feature is that for m > 2 there appear some non-trivial effects just
as in the case of other algebras considered in [JO, S].

It is shown that an OGZ-algebras of signature (1,m) is a non-trivial extension of al-
gebras similar to enveloping algebras [JO, S]. But it happened that most problems on
finite-dimensional modules over OGZ-algebras could be solved in a very simple way us-
ing our terminology of tableaux and omitting difficult calculations (as in [S]). Note, that
Smith algebras ([S]) as good as OGZ-algebras of signature (1, m) are the so-called gener-
alized Weyl algebras (in the sense of [B]). For Smith algebras the corresponding ground
ring is C[H| and for OGZ-algebras the corresponding ground ring is C[dy1,das, - - ., dom]-
Complete classification of simple modules over generalized Weyl algebras is known ([B]).
Nevertheless, we obtain the classification of simple finite-dimensional modules over OGZ-
algebras in easier terms than in [B, S].

Let A;, i =1,...,m+ 3 be the generating elements Xli, di1, doj, j = 1,...,m ordered
in arbitrary way. For the non-negative integers i1, ..., im13 set F(i1,...,Imy3) = At
A;me . To simplify the notations we write X = X{" and ¥ = X .

Proposition 1. The elements F (i1, ..., imy3) span U as a vector space.
Proof. Follows from lemma 4 and lemma 5 by standard arguments. O
Lemma 11. The center Z of U coincides with I'y.

Proof. Since [X,Y] € T by lemma 4, it follows that Z C . Clearly, I'y C Z, any polynomial
in di; does not commute with X and the lemma follows. O

Lemma 12. U is almost commutative, i.e. there is a standard filtration on U such that
the assoctated graded algebra is commutative.

Proof. One can prove this using the following Z-grading on U: X“Yéd? . dim+ e U, _,.
U

10



10 Orthogonal Gelfand-Zetlin algebras of signature
(1,m), finite-dimensional modules

In this section we establish the complete theory of Verma modules and describe all finite-
dimensional Y-modules in the case 7 = (1,m). We obtain an answer in terms of some group
action as in the classical case of Verma modules over complex simple finite-dimensional Lie
algebras.

For an /-module V' and x € I'* we set

Vi={veV]|zv=x(2)vforall zeT}.

If V}, # 0 we will call it a weight space of V' corresponding to the weight x. A module V
will be called a weight module if

V=@VX.

X €™

Each non-zero element from V, will be called a weight element. Since we identify I" with
©(T) (see section 3) it is possible to parametrize x € I'* by [¢] € L(C,r) in a natural way.
Thus if x is parametrized by [¢] we will write V), = V};] and say that an element v € Vj;
has tableau [¢]. For a weight module V' we will denote by Tsupp V' the set of all tableaux
which parametrize weights of V. Note, that by definition Tsupp V' is invariant under the
action of S. We recall that an element v € V), is called primitive if Xv = 0.

For [I] € L(C,r) we will denote M(([{])) the Verma module ([D]) generated by a
primitive element which has tableau [1].

Lemma 13. Let F' be a simple finite-dimensional U-module. Then F' is a weight module
generated by a primitive element.

Proof. Since [X, [d11, X]] = [X, X] = 0 it follows from Klienike-Shirokov theorem that X
is nilpotent on F' and thus there exists a non-trivial primitive element v in F'. Since F'is
simple it follows that v generates F. Clearly, Y?v, 7 > 0 span an 4-submodule in F' which
coincides with F since F is simple. One can show by induction in 4 that Y is a weight
element for each ¢ > 0 and the lemma follows.

0

Corllary 2. 1. FEach simple finite-dimensional U-module F' is a quotient of some Verma
module.

2. The unique irreducible quotient of a Verma module is finite-dimensional if and only
if the Verma module is not simple.

Proof. The first statement follows from proposition 1 which can be reformulated in the
following standard universal property of Verma modules: The module generated by a
primitive element is a quotient of a Verma module. The second statement is obvious. [

11



By corollary 2 to classify all finite-dimensional modules we have to classify all maximal
submodules in non-simple Verma modules.

Recall the construction of Verma modules from section 7. Let @ : C™ — L(C,r) be a
map defined as follows: ®((a1, ..., a,)) =[{] wherel;; = a;,1 <i<2,1<j <r;. Agroup
Sm acts on C™ in a natural way o(ai,...,am) = (@sq),---,0em)) for (a:...,a,) € C"
and o € S,. Clearly, this induces an action of S,, on P = #(C™).

For [1],[t] € P we set [t] < [l] if there exists 0 € Sy, such that [[], = o([t],) and
lll — t11 c N

Let W ~ S,,_1 be a subgroup in 5, fixing the first element.

For a given [I] € P set K = K([l]) = {[l] — j[é'']|7 > 0}. Then the subspace
M([1]) C My, spanned by vy, [t] € K is an Y-submodule in M, and is isomorphic to
the Verma module generated by a primitive element which has tableau [[].

Lemma 14. For [l] € P, M([1]) ~ M(([!])).
Proof. Follows from proposition 1. O

Lemma 15. Fach U™ -free module generated by a primitive element is of the form M ([l])
for some [1] € P.

Proof. Follows from the formulae (1),(2). O
Lemma 16. Let [I] € P and o € W then M([l]) ~ M(o([1]))-
Proof. Follows from the definition of dy;, 1 < 7 < m. O

Lemma 17. Let [I] € P. A module M([1]) is simple if and only if losy — loj & N for all
2 < j < m or, equivalently, M([1]) is simple if and only if o[l] £ [1] for any o € S,,.

Proof. Follows from the formula (1) and construction of the module M ([{]). O

Let P* be the subset of P consisting from all [1] such that there exists j € {2,...,m}
with l21 - lgj €N.

Theorem 4. 1. Suppose that [1] € P*. Then there exists a unique finite-dimensional
module L([1]) which is generated by a primitive vector that has tableau [1].

2. Each finite-dimensional module F is isomorphic to L([1]) for some [l] € PT.
3. L([1]) =~ L([t]), [L],[t] € P" if and only if there exists o € W such that [I] = o([t]).

Proof. The first statement follows from the uniqueness of the simple quotient in a Verma
module. The second follows from lemma 15. The last one follows from lemma 16. O

The following theorem which is an analogue of the BGG-criterion for the existence of
a submodule in Verma a module follows immediately from the discussion above:

Corllary 3. The following statements are equivalent:
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1. M([t]) c M([1]).
2. L([t]) is a subquotient in a composition series of M([1]).
3. There ezists o € Sy, such that [t] =o([l]) <[l].
Proof. Follows from lemma 17, theorem 4 and definition of the S,,-action. O

The last theorem describes the set of all simple finite-dimensional modules over U. We
emphasize three different cases:

m = 1. In this case there are no finite-dimensional modules over U/.

m = 2. In this case U ~ U(gl(2,C)). By the Weyl theorem each finite-dimensional
module is completely reducible.

m > 2. In this case an analogue of the Weyl theorem does not hold. For the rest of
this section we will investigate this case more carefully and thus assume that m > 2.

Denote by (zy), 1 <z <y < m the elementary transposition in S,,.

Proposition 2. Let [I] € P, T = {l5;]|2 < j < m,lyy —ly; € N}. Set t = |T| and
T ={p1,--.,pt}, pr >p2 > >p,. Assume that pj = lpj11, 1 < j <t. Then the length
of M([1]) equals t + 1. Moreover, a composition series of M ([1]) has the form

0 M((1e+1)([1]) € M(A)([1])) < --- < M((12)([1])) < M([1]).

Proof. Follows from the construction of M ([!]) and formula (1). O

Lemma 18. Let L([!]), L([t]), [l],[t] € Pt be two non-isomorphic simple modules.
Suppose that

0— L([t]) = X — L([I]) =0
is a non-split extension. Then there exists o € Sy, such that [1], = o([t],).

Proof. Follows from lemma 11 and the Fitting lemma. O

Lemma 19. Let L([1]), L([t]) be distinct finite-dimensional modules, l1; —t11 € N. Then
the following statements are equivalent:

1. Exty (L([1]), L([£])) # 0.

2. M([t]) is the mazimal submodule in M([1]).
3. dim Ext;,(L([1]), L([t])) = 1.

4. dim Ext,, (L([t]), L([1])) = 1.

Proof. Let 0 — L([t]) = X — L([l]) — 0 be a non-split sequence. Then by lemma 18
there exists an epimorphism ¢ : M([1]) — X. Conversely, one can obtain a non-split exten-
sion of L([t]) and L([!]) under the lemma conditions as a quotient of M ([[]). This proves
that the first and second statements are equivalent. The rest follows from formula (1). O

13



Proposition 3. Let L([!]), [I] € Pt be a simple finite-dimensional U-module. Assume
that lyy — loe € N and lyy — ly; € N, 3 < 5 <m implies ly; < lys. Then the following holds:

1. dim Ext},(L([1]), L([1])) < 1
2. dim Ext},(L([1]), L([1])) = 1 if and only if

[ = t21) = = [ [ (12 — 122)-
j=3 j=3

Proof. Let I be an ideal in U generated by da; — v2;(la1, ..., 1l2;), 1 < j < m. Consider an
algebra Uy = U/I. Clearly, L([!]) is an U;-module. By lemma 11 it is sufficient to prove

the statements for U;-modules.
m

Consider a polynomial g(z) = H(lgj —x+1). One can see that [X,Y] = (g(dy; +1) —
j=1

g(di1)) mod I. Thus U is a quotient of some algebra similar to the enveloping algebra of

sl(2) by a central character ([S]). Now all statements follows from [JO, Theorem 3.1] by

direct calculation. O

From the last two statements it follows that the representation theory of our algebras
is rather similar to that of algebras which are close to U(sl(2)). We conclude that the
category of finite-dimensional modules is not semi-simple for m > 3, moreover, some of
finite-dimensional simple modules can have non-trivial self-extensions.

11 Orthogonal Gelfand-Zetlin algebras of signature
(1,m), an analogue of the O category

In this section we construct an analogue of the well-known category O for OGZ-algebra of
signature (1,m) (see [BGG] for the classical case).
We define O to be a full subcategory of U/-modules V' satisfying the following conditions:

1. V is dy;-diagonalizable;
2. V is finitely generated;
3. U v is finite-dimensional for any v € V.

Set L to be a subset of Ly consisting of all [t] € L, such that ¢;; € Z,. Basic
properties of O are described in the following lemma:

Lemma 20. Suppose that V € O. Then

N
1. TsuppV C U([lj]—ﬁ+) for some [1;], j=1,...,N.
7j=1
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2. All weight spaces of V' (with respect to di1) are finite-dimensional.
3. V has a finite length.
4. dimhom(V, N) < oo for any N € O.
Proof. Follows from the previous section. O

Lemma 21. 1. O is closed under the operations of taking submodules, quotients and
finite direct sums.

2. {L([L])|[l] € P} is the complete list of simple objects in O.
Proof. Follows from lemma 15. U

For an #/-module V' and x € I'; set
VX={veV|(z—x(z)°v=0for all z € 'y, s >> 0}.

For any M € O, M = &, MX and therefore O = ®,0,, where O, consists of those
M € O such that (z — x(2))°M = 0 for some s > 0 and for all z € I".

Lemma 22. FEach object in O is a quotient of a projective object in O.

Proof. Clearly it is enough to prove this for each O,. Fix [t] € L(C,r).

One can see that there exists s > 0 such that X°Vj;) = 0 for any V € O,. Set I
to be a left ideal of U generated by di; — ¢1; and X*. Then Q([t]) = U/I € O. One
can see that the map homy(Q([t]),V) — Vj¢] is an isomorphism and thus the functor
V +— homy (Q([t])X,V) is exact. We conclude that Q([t]) is projective which completes
the proof since V' is finitely generated. O

Corllary 4. There is a 1-1 correspondence between simple objects in O and indecomposable
projective objects in O.

For [1] € P we will denote by Pr([/]) the projective cover of L([]]).
Lemma 23. Fach Pr([l]), [l] € P has a Verma flag (in a sense of [BGG]).
Proof. Follows from the fact that Pr([1]) is U -free.

O

For an U-module V' we turn V* into #-module by setting (X)(v) = ¥(Yv), (Y)(v
Y(Xv), (20)(v) = Y(2v), v € V¥, v €V, z €. Let 6V = {¢p € V*| dim(T'y) < oo}.

Then 9 is left exact contravariant functor on O. The following lemma is clear:

Lemma 24. 1. 82V =V,V €O0.
2. SL([t]) ~ L[t], [t] € P.

Proof. The first statement is obvious and the second one follows from the uniqueness of a
simple highest weight module with fixed highest weight. 0J
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For a fixed x € I's let M([¢;]), 1 < j < s be the complete list of Verma modules in
Oy Set Pr = @;_,Pr([t;]). Then A = homy(Pr, Pr) is a finite-dimensional algebra and
O, is equivalent to the category of left A-modules of finite length.

For [1],[t] € P let [Pr([l]) : M([t])] denotes the number of subquotients in Verma
flag of Pr([!]) isomorphic to M([t]). Also set (M([t]) : L([l])) to be the number of
subquotients in a composition series of M ([t]) isomorphic to L([1]).

Theorem 5. A is BGG-algebra in the sense of [I]. In particular,

[Pr([t]) - M([t])] = (M([t]) - L([1]))
for all [t],[l] € P.

Proof. We only need to prove that any V' € O, with RadV ~ L([!]) and any subquotients
of the form L([t]), [t] € [l] — LT is a quotient of a Verma module. This follows from the
universal property of Verma modules. The rest follows from [I]. O

12 Weight modules over OGZ-algebras of signature
(1,1,...,1)

In this section we investigate another family of OGZ-algebras and describes all their simple
weight modules. We assume that » = (1,1,...,1) and will use the notation of the weight
module from section 10.

Set X7 = X", 1 <i<n—1and define X;; = [X;, X} ;] for1 <i<j<n—1by
induction.

Lemma 25. The following identities are valid:
1 [X5X5]=0,1<i<j<n-1,1<m<n—1,m#i-1,m#j+1
2. X5, X5 =0,1<i<j<n-1,1<m<n—-1,m#i+1,m#j—1
3. [X;,Xg]:o, 1<i<j<n—-1;
4. [ X7, X =1
Proof. Follows by direct calculations. O

Consider the set T' consisting of all elements Xf;, 1<i<j<n—-1,d;,1<1i<n.

Rename the elements from T at the following way: T = {t,ts,...,t,}. Foridy,...,i, € Z,
the monomial

Fliy, ... ip) =t e tir

will be called standard monomial.
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Corllary 5. The standard monomials span U as a vector space.

Proof. Follows from lemma 25 by the standard arguments (see for example [D, Chapter 2]).
0

For [l] € L(C,r) consider a specialization M[;;. Clearly dim(M;j);;) = 1. Let M([1])
be a submodule of M;;; generated by (M[;1)[:]-

Lemma 26. 1. M([l]) has the unique mazimal submodule and thus the unique simple
quotient L([1]).

2. dim L([1])jy = 1.
Proof. Proof is analogues to that of [DOF, Theorem 30]. O]
Theorem 6. 1. L([!]), [I] € L(C,r) is the complete list of simple weight U-modules.
2. (1) = L([¢]) if and only if (L([1]);s) # 0.

Proof. Using lemma 7 and [DOF, Proposition 31] one can prove this statement in the same
way as [DOF, Theorem 30]. O
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