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Abstract

We construct a new family of simple modules over orthogonal complex Lie algebra
associated with Gelfand-Zetlin formulae for simple finite dimensional modules and
study the corresponding Gelfand-Zetlin subalgebra.

1 Introduction

Explicit formulae which effectively define all simple finite dimensional modules over the
groups of unimodular and orthogonal matrices were obtained by Gelfand and Zetlin in their
famous papers [GZ1, GZ2]. Using these formulae it is possible to define and investigate big
families of modules over the corresponding Lie algebras, as was done (for special real forms
on the Lie algebras) in [O1, O2]. The analogous formulae are also known for quantum
groups and Yangians (see [J, NT, GK] and references therein). In the same way, using
the formulae for the unimodular group, Drozd, Futorny and Ovsienko constructed a large
family of simple modules over the reductive Lie algebra & = gl(n,C) in [DFO1, DFO2].
Roughly speaking this is an n(n + 1)/2-parameter family of simple &-modules and each
module is presented in a very convenient basis and hence is quite simple for computations.
It seems that this is the biggest known family of simple weight modules for &.
Gelfand-Zetlin modules are defined as U(®)-modules which can be decomposed into
a direct sum of finite-dimensional modules with respect to the so-called Gelfand-Zetlin
subalgebra, which is a big commutative subalgebra in U(®). In fact, in [O]' it was shown
that Gelfand-Zetlin subalgebra is a maximal commutative subalgebra in U(®). Roughly
speaking, Gelfand and Zeltlin show that Gelfand-Zetlin subalgebra has a simple spectrum
on all finite-dimensional modules. Simple modules constructed in [DFO1, DFO2] inherit

1 As far as I know, the paper [O] still exists only as a paper in a preliminary version, which was kindly
given me by the author. Nothing in the present paper depends on the results from [O], however we will
sometimes use some ideas from [O], in particular, the proof of the Corollary 3 is a slight variation of the
proof of the corresponding statement (Corollary 2) in [O]
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this property and have a natural basis parametrized by the so-called (Gelfand-Zetlin)
tableaux (or patterns), associated with the points of the spectrum, making them especially
easy to handle.

Further properties of Gelfand-Zetlin modules were obtained in [M1, M2, MO, O]. For
example, a huge family of Verma and generalized Verma modules were realized as Gelfand-
Zetlin modules, which allows one to describe the structure of these modules. It was also
proved that any simple module over the Gelfand-Zetlin algebra possesses a non-trivial
extension to an U(®)-module. Regretfully, all the above results were obtained only for the
Lie algebra gl(n, C).

The aim of this paper is to construct the Gelfand-Zetlin modules for orthogonal complex
Lie algebras and to investigate their properties. Our technique is based on the Gelfand-
Zetlin formulae for orthogonal group, see also [GZ1, BR]. In particular, we construct a new
family of simple modules over orthogonal complex Lie algebras, investigate the structure of
some modules having a tableaux realization and construct the orthogonal operator algebras
associated with Gelfand-Zetlin formulae.

The paper is organized as follows: in Section 2 we collect all necessary preliminaries
and notation. In Section 3 we recall the Gelfand-Zetlin formulae for the orthogonal group.
In Sections 4,5 we introduce Gelfand-Zetlin subalgebra in an orthogonal Lie algebra and
construct a family of simple Gelfand-Zetlin modules. In Section 6 we propose a simpli-
fication for the Gelfand-Zetlin formulae. In Section 7 using the simplified Gelfand-Zetlin
formulae we construct two families of modules having a tableaux realization (in the sense
of [M1]). Finally, in Section 8 we construct the corresponding orthogonal algebras.

2 Notation and preliminaries

Throughout the paper we fix a base field C of complex numbers. As usual, we will denote
by Z and N the sets of integers and positive integers respectively. For a Lie algebra 2 we
will denote by U(2() its universal enveloping algebra and by Z(2A) the center of U(2). By
module we will mean left module.

Suppose that A is an associative algebra and B is its commutative subalgebra. An
A-module, V, is said to be a B-weight (root) module (or simply a weight or root module,
if B is fixed) provided it can be decomposed into a direct sum of one dimensional (finite
dimensional) B-modules or, equivalently,

V=W (V:@VA),

AEB* AeB*

where V3, (V) is a weight (root) subspace corresponding to the weight (root) A € B*. The
set of all non-zero weights of a given B-weight (root) module, V', is usually called the
B-support of V.

For 1 < 7,5 < n we will denote by e;; the corresponding matrix unit, i.e. the matrix in
Mat,«n,(C) whose i, j-component is one and all others are zero.



3 Gelfand-Zetlin formulae for orthogonal Lie algebras

Recall the Gelfand-Zetlin formal construction of simple finite dimensional modules for
the Lie algebra & = O(n,C) ([GZ2] or [BR, Section 10.1.B]). Let X; 1; = €;11; — €i441,
1 <7 < n—1 denote the standard generators of &. Let n = 2k or n = 2k + 1. Fix a
vector, m = (my, ma, ..., my), with integer or half-integer entries satisfying the following
conditions:

1. Forn =2k: my > mo > ... 2 my_1 = |myl.
2. Forn=2k+1. mi>mg>... 2 mg_1 =my; = 0.

To proceed we have to introduce the notion of tableaux. For a fixed positive integer d
by tableau of size d we will mean a vector, [/], with complex (but often with integer or
half-integer) entries, considered as a double indexed family [/;;], where 1 < ¢ < d and
1 <j<kfori=2k—1ori=2k By [§7] we will denote the Kronecker tableau, i.e.
the one with &, = 0 if k # i or [ # j and 6;7 = 1. Under the above definition, tableaux of
the same size form a vectorspace over C. NOW with our fixed vector m one can associate a
set M(m) consisting of all tableaux of size n — 1 with all integer or all half integer entries
satisfying the following conditions:

ln—1i =my,

l2p+1i 212pi P l2p+1i+1a 1= 1a2a"'ap_]—,
l2p+1p 2 l2p;0 2 ‘52p+1p+1|7

l2pz>£2p lz>l2pz+17 i:1a27--'7p_17
l2pp 2 l2p 1p 2 l2pp

Consider M(m) as a basis for our module and define an action of the generators X; ; on
this basis as follows:

Algp—r; — 1)([1] = [67717]),

M=

Xopy12p[1] =D Allgp-1,)([1] + [67717]) —

X2p+2zp+1[l]=ZB(l2pj)([l]+[52”] ZBZ2PJ D([1] = [0%7]) +iCo[].

Here the functions A, B and C are defined in the following way: first we substitute ly,_; ;
by sop—1; =lop—1; +p— 7 and ly,; by s9p; = lyp; +p — j + 1 for all possible p, then using



this notation we define

- 1/2
A(lgp—1,j) = g (H(Szp—zr — Sop—1j — 1)(Sop—2r + $2p—1j)> X

r=1

» 1/2
X (H(Szpr — sop-15 — 1)(s2pr + 82p—1j)) X

r=1

~1/2
X (H(Sgplr - Sgpflj)(sgpflr - (S2P*1]’ + 1)2)> )

r#i

P p+1 1/2
B(l2p,j) = (H(Sgp—lr - Sgpj) H(Sgp—i—l'r - S%pg)) X

r=1 r=1

—1/2
X (Sgpj(4$§pj - 1) H(Sgpr - Sgpj)((SZPT - 1)2 - 8%})]’)) ’

T#j

P p+1 p -1
C2p = H Sop—1r H Sop+1r 52pr(32p,r - 1) .
r=1 r=1 r=1

The classical result by Gelfand and Zetlin ([GZ2]) states that in such a way we indeed
obtain a simple finite dimensional -module, that all simple finite-dimensional &-modules
can be obtained using this construction and, finally, that the basis elements [/] form an
orthonormal basis for operators X;; = e;; — e;; with respect to the standard involution
(Xi)* = —X;j. In what follows we will call the above formulae Gelfand-Zetlin (or simply
GZ) formulae. Originally they are obtained considering the restriction of the given simple
®-module on the smaller orthogonal algebra (embedded with respect to the left upper cor-
ner) and continuing this procedure. Thus each basis element [/] belongs to the intersection
of the modules over the components of the descending chain of algebras

O(n,C) DO —-1,C) D---DDO(2,C),

where O(j,C) C O(j + 1,C) is the standard embedding with respect to the left upper
corner. Now, using the Schur and the Quillen’s lemmas, one obtains that [/] is an eigen-
vector for the commutative algebra, generated by all Z(O(j, C)) for 2 < j < n. This is our
motivation for introducing the notion of Gelfand-Zetlin subalgebra.

4 Gelfand-Zetlin subalgebra

Consider the chain of orthogonal Lie algebras

9(2,C) € O(3,C) € --- € O(n,C) = B,
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embedded in the left upper corner. Then we have the same embeddings for the universal en-
veloping algebras and thus we can work inside U = U(®). Fix the standard set of generators
Xii(p) = eij—eji, 1 < 0,7 < pin O(p, C) and let X (p) be a pxp matrix, whose ij-component
equals ij(p) Set, ng(p) =Tr XQZ(p) and 03(28) = Siljl’i2j2""’i5jin1j1Xi2j2 . Xisjs’ where
ghitiziz-—tsls g the totally anti-symmetric Levi-Civita tensor ([BR, Section 9.4.B]). Let T'
denote the subalgebra of U generated by the following elements: X1, Cos(p) for 3 <p <n
and 1 <i < kifp=2korp=2k+1, Cy(2s) for 2 < s < kif n = 2k or n = 2k+1. Clearly,
I'is a commutatlve subalgebra in U and, moreover, any basis element [/] in the Gelfand-
Zetlin model of a simple finite-dimensional &-module is an eigenvector with respect to I'.
We will call T' the Gelfand-Zetlin (GZ) subalgebra of U.

A ®B-module V will be called Gelfand-Zetlin (GZ) module provided V is a I'-root module.
If a GZ-module V is in fact a [-weight module and we want to emphasize this fact, we
will call V' a GZ-weight module. For example, as was noted in the previos section, any
finite dimensional & module is a GZ-weight module. In the next section we will construct
a large family of simple GZ-weight modules. This also allows us to obtain some interesting
results about the structure of GZ subalgebra itself.

5 Generic modules

There is a clear naive way to construct a large family of simple GZ-modules. This can be
done without any preliminary preparation and, in some sence, the modules obtained will
be opposite to finite dimensional ones.

Fix a tableau, [/], with complex entries /;;, 1 <i<n—land 1 <j<kifi=2k—-1
or ¢ = 2k satisfying the following defining conditions:

e all /;; are not integers or half-integers for ¢ <n — 1;

e [;; £ 1; is not an integer for all 1 <7 < n —2 and all j #&.
Consider a set B([!]) consisting of all tableaux [#] such that

® iy 1 =1, 1; forall j;

e t;; —l;; is an integer for all 1 <¢ < n —2 and all j.

Let V([1]) be a vector space with a basis B([[]). For [t] € B([l]) set

Xopraop[t] =Y Altay17)([¢]+[6% 7)) — ZA(tz,,,lj —1)([t] - [6%719]),

X2p+22p+1[t] = ZB(t2pj)([ + [52;;9] Z t2p1 ] - [52pj]) + iCZp[t]a

where the functions A, B and C are taken from GZ formulae (see Section 3). This action
can be easily extended to V([!]) by linearity.
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Theorem 1. The formulae above define on V ([1]) the structure of a completely reducible
&-module of finite length.

Proof. Any relation in U(®) applied to an element [t] € B([!]) can be expresed in terms
of rational functions in ?;;. Since GZ formulae really define the structure of a &-module in
a finite dimensional case one can find sufficiently many zeros for these functions to deduce
that they are identically zero. Thus V/([1]) is indeed a &-module.

Clearly, it follows directly from the definition and disscusion in the previous section
that V([{]) is a GZ weight module. Now we want to show that, under the definition of
B([!]), the algebra I' separates the elements in B([!]), i.e. for [t] # [s] € B([l]) there
is an element u € I' such that the eigenvalues of u on [¢] and on [s] do not coincide.
To do this, we first recall that the rows of the tableau indexing a basis element in a
finite-dimensional module can be interpreted as a linear combination of the components
of the highest weight corresponding to the simple module containing this basis element.
By the Harish-Chandra theorem ([D, Theorem 7.4.4]) the central character of a highest
weight module can be computed in terms of its highest weight via the Harish-Chandra
isomorphism using invariant polynomials with respect to the natural action of the Weyl
group on a Cartan subalgebra. But it is easy to find the corresponding symmetry in GZ
formulae. From the definition of the action it follows immediately that the eigenvalues of
Z(O(i+2,C)) can be computed as polynomials in ¢;; (here only j varies). Indeed, these
eigenvalues depend only on t;; with k£ < ¢, but they should not change after application
of the generators Xy.1x, 1 < k < ¢+ 1. Since these generators change the values of all
tr; with & < 7 it follows that the desired polynomials depend only on ¢;;. It is easy to see
that for odd 7, the GZ formulae for Xy 1%, 1 < k£ < ¢+ 1 are invariant with respect to
permutations of ¢;; and substitutions ¢;; — —%;; + 1 and, for even ¢, the GZ formulae are
invariant with respect to permutations of ¢;; and the sign change on an even number of
places. This defines an action of the corresponding Weyl group on the corresponding row of
a tableau and we can state that the character of I' can be computed using the polynomials
in ¢;; wich are invariant with respect to the action of the product of Weyl groups (we will
denote this algebra of invariants by f) Since for the finite-dimensional case, the elements
of each row can be interpreted as linear combinations of the components of the highest
weight and by virtue of the mentioned Harish-Chandra theorem we conclude that, in fact,
this provides a canonical isomorphism between I' and [. Now we note that, under our
choice of [ (], two different elements [s] and [¢] in B([1]) can not be contained in one orbit
of the action of the described product of Weyl groups on the set of all tableaux. The last
two facts together imply that I' separates the basis elements of B([[]).

The discussion above shows, in fact, that V([{]) is a GZ weight module with one-
dimensional weight spaces. Consider a graph, whose verticies are the elements in B([1])
and where two verticies [¢] and | s ] are connected by an edge coming from [¢] to [ s] if there
exist 1 <4 < n — 2 such that X;1,[¢] contains a nonzero coefficient in [s]. It is a simple
consequence of the GZ formulae (which follows from their compatibility with the standard
involution on the Lie algebra, see [BR, Section 10.1.B]), that any edge from [¢] to [s]
appears together with the reverse edge from [s] to [¢], so we can view our graph as a non-



oriented graph. The last observation together with the fact that I' separates the elements
in B([1]) implies that V' ([1]) is completely reducible and its submodules correspond to the
connected components of our graph. Further it follows from the GZ formulae that the zero
value of A or B function on a tableau, [¢], implies that ¢;;+¢;, 1, =0ort;;£t,_1,—1=0
for some 1, j, k. Since there are only finitely many of these conditions it follows that our
graph has finitely many connected components and hence V' ([1]) is of finite length. This
completes the proof. O

For [t] € B([1]) let ¢[4) denote the corresponding character of T, i.e. u[t] = ¢ps(u)[?]
forallu €T

Corollary 1. For any [t] € B([l]) there is a unique simple GZ-module, Vi), such that
(V[t])ﬁﬂ[t] # 0. In fact, dim(v[t])(p[t] =1.

Proof. The existence and the property that dim(V[;)),,, = 1 follow directly from Theo-
rem 1. The proof of uniqueness is analogous to that of [DFO2, Theorem 30]. O

Remark 1. We have to note that, in order to prove the uniqueness, as it was done in
[DFO2, Theorem 30], one has to prove that T' is a Harish-Chandra subalgebra in U(®) in
the sense of [DFO2, Section 1.3] first. The proof of this fact repeats word by word one in
[DFO2, Corollary 26].

Corollary 2. Any simple subquotient of V([1]) occures with multiplicity one.
Proof. Follows immediately from Corollary 1 and the construction of V([1]). O

The following corollary is “well-known”; we include a proof having never seen one in
the literature. For the case of gl(n,C) the proof (which was also “well-known”) is in [O,
Corollary 2]; our proof is a slight variation.

Corollary 3. I' is a mazimal commutative subalgebra in U(®).

Proof. Let u € U(®) be an element commuting with all elements in I'.  Our aim is to
prove that v € T'. Consider a tableau [/] whose entries /;;, 1 <i<n—1land1<j<k
if i = 2k — 1 or ¢ = 2k are independent variables. Let B([[]) be the same as above, i.e.
consisting of all tableaux [¢] such that

® ty 1 =1, 1; forall j;
® {;; —l;;is an integer forall 1 <t <n—2and all j

and let V([1]) be a vector space over the field of rational functions in all /;; with a basis
B([1]). We can define, on the elements of B([!]), the action of the generators of & via
GZ formulae, viewing A, B and C as rational functions in /;;. Clearly, in this way V' ([{])
becomes a &-module. Then the action of any element u € U(®) on the module V([1]) now
can be expresed as a set of rational functions. By virtue of the Harish-Chandra theorem
([D, Theorem 2.5.7]), which states that any non-zero v € U(®) acts non-trivially on some
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finite-dimensional module, and by virtue of GZ fomulae for finite dimensional modules, we
conclude that any non-zero v € U(®) acts non-trivially on V' ([1]). Thus u acts non-trivially
on V([1]). Moreover, since u commutes with I" and I' trivially separates the elements of
B([1]), we conclude that u is diagonalizable in the basis B([/]). Thus u[t] = f(t;;)[t] for
some rational function f.

Now we have to analyse the GZ formulae once more. For a fixed p it is easy to see that
the numerators of a functions of type A are invariant under the actions of the Weyl groups
corresponding to the 2p-th and the 2p — 2-th rows and the set of functions A(mep_1;),
A(mgp_1; — 1) where 1 < j < p is invariant under the action of the Weyl group corre-
sponding to the 2p — 1-th row. Analogously, the numerators of B functions are invariant
under the actions of the Weyl groups corresponding to 2p + 1-th and 2p — 1-th rows and
the set of functions B(mgy;), B(msg,; — 1) where 1 < j < p is invariant under the action
of the Weyl group corresponding to 2p-th row. From this it follows immediately that f is
invariant under the action of the product of the Weyl groups and thus can be expressed as
a polynomial in polynomials corresponding to the generators of I'. Since the annihilator of
V([1]) is zero we conclude that u itself is a polynomial in generators of I and thus belongs
to I'. This completes the proof. U

6 Simplifying GZ formulae

The construction described above is a straightforward way to construct a family of sim-
ple modules using GZ formulae. But we have to note that in [DFO2] the authors use
a simplified version of GZ formulae, which have been found for the gl(n,C) case in [Z,
Chapter 10]. The simplification was obtained by a diagonal change of the basis in finite
dimensional simple modules. Of course any simplification leads to the loss of some proper-
ties. The simplification used in [Z] leeds to the loss of the unitary condition on generating
elements, which, in particular, made it possible to construct in a naive way some indecom-
posable but not simple modules. Regretfully, only the gl(n,C) case was considered in [Z].
Now we are going to simplify the original GZ formulae for orthogonal Lie algebras. This is
a straightforward technical procedure which we will present omitting rigorous calculations.

Lemma 1. Fiz a positive integer k and let N (k) denote the set of all vectors (i1, s, . . ., i)
with integer (or half-integer) entries satisfying the condition iy > iy > -+ > g1 > |ig|.
Set 6; = (0i1,040, - .., 0ix), where &;; is the Kronecker symbol. Let f be the function from
N(k) into positive integers defined as follows:

iz, yik) = [ [ Ga + o).

a<b

Then for | = (i1,1s,...,ix) € N(k) holds

I o o ! 4
% = (H(zt + i+ 1)) and % =] [Ge+3).

Jj#t j#£t



Proof. Direct verification. O

Lemma 2. Fiz positive integers, k and m, such that k = m or k =m+1 and let N(k, m)
denote the set of double indexed vectors (iss), t = 1,2, 1 < s < k (m) if t = 2 (1) with
integer or half-integer entries satisfying the following conditions: io; > 414 = 9441 for all
possible t, iom > t1m = |liomyt| fFk =m+1, dom > G1m = —lom if K = m. Let f be the
function from N(k,m) to the positive integers defined as follows:

k m

flivyig, ..o i) = HH(Zéa + 1)

a=1b=1

Then for 1 € N(k,m) holds

z o - z L
% = (H(lst T35+ 1)) and % - H(Z” iz s).

jz1
Proof. Direct verification. O

Theorem 2. Let V be a finite-dimensional &-module and M(m) be the corresponding GZ
basis. There exists a diagonal change of the basis such that in the new basis M(m) the
following holds:

Xopragp[l] =Y AT (lap 1) ([ 1]+ [67 1)) — ZA’(ZQP,U)([Z] — [6% 1)),

Jj= 1
p

Xopraopt1[!] Z (bap ) ([1] + [52p] Z (baps) ([1] — [62m ]) +1Cg[ 1],

: ]—1

where
p

H(SZpr — Sop—15 — 1) (S2pr + S2p—1;)

At(lyp-15) = == :
T 2 H(Sgpflr - S%pflj)

r#j

p—1
H(SprQT — S9p15)(S2p 27 +82p 15— 1)

A (lgp—15) = . ;
Y 2 H(Sgpflr - sgpflj)

r
p p+1
H Sop—1r 1 S2pj H(32p+1r - 32pj)
B-}-(lij) — r=1 - r=1
E /2 )
(32pj(452pj - 1)) H(52pr - 52pj)(52p7" + Sopj — 1)
r#j

9



p+1 p

[ [ (sopsir + 525 = 1) [ [(52p-17 — 529 + 1)

Bi(l2pj) = = 1 27':1 :
(5205 = 1)(A(s2pj = 12 = 1)) * T [(520r = 5205 (5251 + 5255 — 1)
ri

Proof. The factors of the coefficients in the GZ formulae can be naturally divided into
“plus” and “minus” classes. Clearly, using the superposition of the diagonal changes of
the basis, one has to prove the statement for these two parts separately. For the “minus”
part by [Z, Theorem X.7| the result can be obtained via the change from [Z, Theorem X.6].
Thus we have to consider the “plus” factors only. Using Lemma 1 and Lemma 2 one easily
checks that, multiplying any element [[] € M(m) by the scalar

—-1/2 1/2
H (H(Smu + 82a1j)!> : (H(SQali + 89415+ 1)!> X

a>1 i<j 1<j

—-1/2 1/2
X H (H(SZai + 52aj - 1)') . (H(52ai + 82aj)!) X

a>1 i<j 1<j

a+l a 1/2 e a —-1/2
X H (H H(SQa—Hz’ + 8245 — 1)!) . (H H(Sgai + S20-15 — 1)!)

a>1 i=1 j=1 i=1 j=1
one obtains the statement of the theorem. O

Corollary 4. The formulae from Theorem 2 define on V ([1]) (see Section 5) the structure
of a &-module of finite length.

Proof. Analogous to that of Theorem 1. O

Remark 2. It is easy to see that the module V([1]) constructed in Corollary 4 is not
completely reducible is general.

7 Modules with tableaux realization

Let V be a GZ module over & and A € [ be its nontrivial root subspace. Then there is
a canonical way to associate with A an orbit of the product of the Weyl groups acting on
tableaux. Really, the eigenvalues of the generators of I' can be expressed in terms of the
invariant polynomials under the above mentioned action on the entries of a tableau. This
defines the desired correspondence. We will call a tableau, [[], of size n — 1 good provided
lij # lLip for all j < k and all 1 < ¢ < n — 2. Following [M1] a &-module V is said to
have a tableaux realization if V is a GZ weight module, all GZ weight spaces of V' are one
dimensional and the tableaux corresponding to all its weights are good. For example, it
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follows immediately from the GZ formulae that all simple finite dimensional modules have
a tableaux realization.

We note that the polynomials expressing the eigenvalues of the generators of I' do
not depend on the choice of original or simplyfied GZ formulae, since their values on the
tableaux basis for all finite dimensional simple modules coincide. Hence we can construct
modules having a tableaux realization using the simplified GZ formulae. In particular, this
allows us to construct non simple indecomposable modules. Now we are going to construct
two families of -modules having a tableaux realization. Using the similarity with the
corresponding construction from [M1], we call modules from the first family quasi Verma
modules.

Let n = 2k or n = 2k + 1. Fix a vector, a € C*, satisfying the folowing conditions:

e all entries of a are not integers or half-integers;
ea,ta;¢Zforall<i<j<kifnisodd;

e a;ta;¢Zforalll <i<j<kifniseven;
®a; ¢ %N for all 7 if n is odd;

e a; ¢ INU{0} U{-1/2} for all i if n is even.

Consider a tableau, [{] = [l](a), of size n — 1 defined as follows: [,_1; = a; for all j,
l2ij = l2i+1j for all 7 and j, lZi—lj = lgij — 1 for all 7 and _] Clearly, under the above
conditions [/] is uniquely defined. Let P([!]) denote the set of all tableaux [¢] satisfying
the following conditions:

1. ty_1j =y  for all j;
2. ljj—t;; €Z; for all i <n —1 and all j;
3. tij —ti_1; = 0 for all j and odd 7;
4. t;; —t;1; > 0 for all j and even 1.
Set a;([s]) = A*(l;;) and bj;([s]) = B*(l;;) in the notation of Section 6.
Lemma 3. Let [t] € P([l]) and a”([t]) #0 (b ([t]) #0). Then [t]£[67] e P([1])-

Proof. Let a;; # 0 (the other cases are similar). Then s = t;1; —t;; — 1 # 0 and thus
s > 0 by the definition of P([1]). The last implies [¢] + [6°7] € P([1]). O

Corollary 5. Let V([1]) be a vector space with P([l]) as a basis. Then the simplified GZ
formulae define on V([1]) the structure of a &-module.

Proof. Lemma 3 guarantees that the action of the generators on the basis is well-defined.
Now the proof is analogous to that of Theorem 1. O
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Theorem 3. 1. Ifn is odd then V([1]) is simple. If n is even then V([1]) is simple if
and only if a; = ar s not a positive integer for all 1 <1 < k — 1.

2. If n is even and a; — a = x € N then V([1]) has as a unique non trivial submod-
ule which is isomorphic to V([s]), where [s] = [s](b), b = a'™® (here (ik) is a
transposition in the symmetric group acting on C* in a natural way).

8. If n is even and a; + ax, = x € N then V([1]) has a unique non trivial submodule M
such that V([1])/M is isomorphic to V([ s]), where [s] =[s](b), b; = ag-Zk) fori#j
and b; = —a; — 1.

Remark 3. The connection between a and b can be easily expressed in terms of the Weyl
group acting on C* as in the proof of Theorem 1.

Proof. To prove the first statement we need only note that, under our conditions for
[t],[t]£[67] € P([1]), one has a;; # 0 if i is odd and b;; # 0 if 7 is even.

The proofs of the second and the third statements are similar, so we will prove only the
second one. Under the conditions of the second statement one has P([s]) C P([[]) up to
permutations of elements in the rows of tableaux. From this we easily obtain that V' ([1])
has a submodule isomorphic to V([s]). By the same argument as for the first statement
it is easy to see that both this copy of V([ s]) and the corresponding quotient are simple.
This completes the proof. O

The next family of modules having a tableaux realization can be viewed as an analogue
of generalized Verma modules ([M1, MOJ).
Fix a tableau [1] of size n — 1 satisfying the following conditions:

e all entries of [¢] are not integers or half-integers;
e [;1 =1;_11 for all odd 7;

e [;; =1;_11+ 1 for all even 1;

o [, tl,; ¢ Zforalli,jandall s <n—1;

o ;i tl; 1;¢Zforalli all j>1and all s;
e [;; is not integer or half-integer.
Let P([1]) denote the set of all tableaux [¢] satisfying the following conditions:
1. ty_1j = lp_1; for all j;
2. lijj—tijeZforalli<n—1andall j >1;
3. ljy—t;1 €Z, forallt <n—1;

4. tz’l —_ ti—ll 2 0 fOI‘ all Odd ’L,

12



5. ti1 —ti_11 >0 for all even 7.

Lemma 4. Let V([1]) be a vector space with P([l]) as a basis. Then the simplified GZ
formulae define on V([1]) the structure of a -module.

Proof. Analogous to that of Corollary 5. O

Theorem 4. 1. The module V([l]) is simple if and only if l,_11 — lp—1; ¢ N and
ln—ll +ln—1j -1 € N fO’f' a”j > 1.

2. If lu_11 — ly—1; € N for some j then V([s]) C V([l]) for [s] defined as follows:
Sit = lig, fort > 1 and i < n—1; si1 = (i1 — lp—11) + lo1j; Sne1j = lno11;
Sn1t=ln 14, t# 1,7

3. If nis odd and lp_11 + ln—1; — 1 = z € N for some j then V([s]) C V([1]) for [s]
defined as follows: s;y = l;y, fort > 1 andi <n—1; s, 11 =1l 1;; $i1 = li1 — 2, for
i<n—1; 8, 15=Ilp11; S 1¢=ln 1, t # 1,7

4. If nis even and l,_11 + 1,1 —1 = 2z € N for some j then V([1]) has a submodule
N such that V([1])/N ~ V([s]) for [s] defined as follows: s;y = l;y, fort > 1 and
1<n—1; 8,11 = lnflj; Si1 = lj1 — 2, fO?"?; <n-1; Sn—-1j = lnfll;' Sp—1t = lnflt;
t#1, 3.

5. Any simple subquotient of V([1]) occures with multiplicity one.

Proof. The last statement follows from an analogue of Corollary 2 for our situation. The
rest follows from simplified GZ formulae. O

Remark 4. We have to note again that the connection between parameters of submodules
(quotients) of V([l]) and [l] can be easily expressed in terms of the natural Weyl group
action.

8 Corresponding orthogonal algebras

Fixn € Nand r = (ry,79,...,7,) € N* and set k = |r| = Zn. For a field, F, consider a
i=1

vector space, L = L(F,r), of dimension k. We will call the elements of £ tableaur and will

consider them as doubly indexed families

[ ={lli=1...,n;5=1,...,7}.

The element r will be called the signature of [1]. By the rank of [ 1] we will mean rank([/]) =
n — 1. We will denote by 67 = [§7], 1 < i < n, 1 < j < ry, the Kronecker tableau, i.e.
6:3 =1 and (5;{1 =0 for p # i or ¢ # j. Denote by Ly the subset of L consisting of all [/]
satisfying the following conditions:
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1.1 =0,7=1,...,7p;
2. l;€Z,1<i<n—-11<j<r.

Consider the field A of rational functions in k variables A;;, 1 <¢<n, 1 < j <. Let
[[] € L(A,r) be the tableau defined by l;; = X, 1 <i<n, 1 <j <y

Consider a vector space, M, over A with the base vji}, [1] € [[] 4+ Lo (here [i] is a
formal index and thus M is infinite-dimensional over A). For [i]e[l]+Ly,1<i<n—1
and 1 < j < r; define A-linear transformations X;, 1 < ¢ < n as follows:

X2p+1[i]=Za§p71j([i])([i]+[52”_” Zagp (D[] = [677H]),

Xopia[i] = Zbgpj D[]+ [677]) me (D3] = [0°7]) + deap ([ 1],

where
D

H(iQpr - i210*1]' - 1)(12pr + i211711')
+ . r=1
a?pflj([l]) = - - )
2 H(lgpflr - 1%;mflj)
T#j

p—1
H(iQp—Qr —igp_15)(lgp—2r +1i2p—1; — 1)

Qgp 1j([i]) = 5 5 ;
2 H(i2p—1r - in—lj)
T#]
P p+1
[ Gap—1r + i2p5) [ [ Gizps1r — i2p5)
2p1([1]) . .;:1 1/2 . = . . . ’
(ip;(43,; — 1)) 7 [ [ GGopr — i2ps) (izpr + i2p; — 1)
T#j
p+1 P
H(inHr + i2101' - 1) H(i2p71r - i210]' + 1)
byp;([1]) = . TZI. 9 1/2T:1 . . . . :
((12113' —1)(4(ip; — 1)" = 1)) H(lZpT —iopj) (izpr +i2p; — 1)

r#j

p+1 -1
C2p 1] H 12p 1r H 12;10—1—17‘ H 1Zp'r' 12p, -

For a fixed 1 <7 < nlet v, 1 <j < r; beaset of independent generators of the algebra
of invariant (with respect to the action defined in the proof of Theorem 1) polynomials in
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Ait, -« -5 Aip;. Define A-linear diagonal transformations d;; : M — M, 1<i<n,1<j<n
by

dijviy = Yig (s - - -5 bir UL (1)

Consider an associative operator algebra U (over F), generated by elements X;, i =

1,...,n—=1and d;;, 1 <1< n, 1 <j <. We will call it the Orthogonal Gelfand-Zetlin

algebra (OGZ algebra) of signature v associated with orthogonal Lie algebras (to differ it

from the orthogonal GZ algebra associated with the unimodular Lie algebra in [M2]).
Let n =2k — 1 or n = 2k.

Theorem 5. The OGZ algebra of signature (1,1,2,2,3,3,...,k) (n entries) is isomorphic
toU(O,n+1).

Proof. Using Theorem 1 one can prove this fact in the same way as [M2, Theorem 1]. O
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