An equivalence of two categories of sl(n, C)-modules

S. Konig and V. Mazorchuk*

Abstract

We prove that the following two categories of sl(n,C)-modules are equivalent: 1) the
category of modules with integral support filtered by submodules of Verma modules and
complete with respect to Enright’s completion functor; 2) the category of all subquotients
of modules FF ® M, where F is a finite-dimensional module and M is a fixed simple
generic Gelfand-Zetlin module with integral central character. Our proof is based on an
explicit construction of an equivalence which, additionally, commutes with translation
functors. Finally, we describe some applications of this both to certain generalizations of
the category O and to Gelfand-Zetlin modules.
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1 Introduction

Let & denote a semi-simple complex finite-dimensional Lie algebra. Apart from the finite-
dimensional &-modules, categories of &-modules studied in the literature typically either
have nice abstract properties or are accessible to explicit computations. But it is rare to find
both properties simultaneously. The aim of this note is to show that a category enjoying the
second property, produced from Gelfand-Zetlin modules, is equivalent to one of the first kind,
containing certain complete modules.

Both of these categories appeared in the context of a certain generalization O(P,A) of
the famous category O ([BGG]) which had been proposed in [FKM1]. This category O(P, A)
is associated with a parabolic subalgebra P of & and a category A of modules over the
Levi factor 2" of P satisfying certain properties (see definition of an admissible category in
[FKM1]). It was shown that several nice properties of O, e.g. decomposition into direct sum
of module categories over finite-dimensional algebras (which were shown to be left projectively
stratified) and BGG-reciprocity, can be generalized. Also in [FKM1] we presented two natural
examples of admissible categories. The first one in the case when the semi-simple part 2 of 2’
is isomorphic to sl(2,C) and the second one in the case when A is the category “generated”
by a fixed simple generic Gelfand-Zetlin module over the Lie algebra si(n,C) (in this case
A ~ sl(n,C)). The last example is quite natural and rather big. In fact, generic Gelfand-
Zetlin modules form the richest family ((n(n+1)/2—1) parameters) of known simple sl(n, C)-
modules, with many nice properties (see [DFO1, Chapter 2], [FKM1, Section 11] and [Mal,
Section 6]).
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To be completely honest, the first example is a special case of the second one, but it
differs from all others by the property that in the si(2,C) case all modules in A have finite-
dimensional weight spaces. Relying on this property and using some technical tools worked
out in [M], in [FKM2] the first mentioned example was investigated in more details. In
particular, an analogue of Soergel’s combinatorial description for blocks was obtained and a
theory of tilting modules was developed. Being optimistic that the approach used in [FKM2]
should work in a much more general situation, in [FKM3] we presented another example of
an admissible category of 2-modules (for arbitrary ) with finite-dimensional weight spaces
as a (full) subcategory in the classical category O. This category should play a basic role in
a conjectural generalization of the results of [FKM2]. The objects of this full subcategory
are modules with integral support filtered by submodules of Verma modules and complete
with respect to Enright’s completion functor. The most non-trivial feature in this example
is that the abelian structure on the category is not inherited from that on O. It was also
shown in [FKM3] that for corresponding generalizations of O based on the last example there
also exists a theory of tilting modules (including Ringel self-duality) which is an analogue of
Soergel’s combinatorial description for the classical case.

The above story is not yet completely satisfactory: first — we have a natural example
of the admissible category of Gelfand-Zetlin modules but we do not know much about it;
second — we have the relatively artificial second example of an admissible category but it has
a lot of nice properties. The aim of this paper is to clarify the situation. In fact, we will prove
that the two categories above are equivalent. Moreover, we construct an equivalence which
commutes with translation functors (the last ones control admissibility of the categories).
This allows us to translate all the results from [FKM3| to the second mentioned example
from [FKM1]. On the level of admissible categories this also gives us some new information
about Gelfand-Zetlin modules. For example, we obtain that indecomposable projectives in
the admissible category of Gelfand-Zetlin modules are rigid.

The paper is organized as follows: in Sections 2 and 3 we introduce our main objects —
the admissible category of complete modules having a quasi Verma flag and the admissible
category of Gelfand-Zetlin modules respectively. Our main result is presented in Section 4
and proved in Section 5. Section 4 also contains some applications of the main result. For
more details on admissible categories and corresponding generalizations of O we refer the
reader to [FKM1, FKM2, FKM3].

2 Complete modules having a quasi Verma flag

Let 2 be a semi-simple complex finite-dimensional Lie algebra with a fixed triangular decom-
position A = N_ & H & N, and let O = O(A) be the corresponding category of finitely-
generated, $)-diagonalizable and locally 9, -finite modules (see [BGG]). A module, M, from
O is said to have a quasi Verma flag if there is a filtration 0 = My C M, C --- C My = M such
that each M;/M;_; is a (non-zero) submodule in a Verma module. As each Verma module
has a simple socle, which is itself a Verma module, the length of a quasi Verma flag does not
depend on the choice of a flag above and equals the number of simple Verma subquotients of
M.

Fix a Weyl-Chevalley basis in 2. With any simple root o we can associate an elementary
Enright completion, r, defined as the composition of the following three functors ([E, De, M]).
The first one is an induction from U = U(2) to the Ore localization U, of U with respect to



the powers of X_,. The second one is the restriction back to U and the last one is taking
the locally X,-finite part. Clearly ro : O — O and r 07y = ro. It is known that (on objects
which are torsion-free over 91_) the functors r,, satisfy the braid relations (main result in [De]),
hence for any element w of the Weyl group W we can define the corresponding composition
ry. Now by Enright completion we will mean r = r,,,, where wq is the longest element in W.

A module, M, from O is said to be complete if (M) = M. Our first main object of
interest is the full subcategory K of O which consists of all complete modules having a quasi
Verma flag and integral support ([FKM3, Section 4]).

Let M,N € K and f: M — N be a homomorphism. Define coker(f) as r(N/r(f(M))).
Then the usual kernels of homomorphisms and the cokernels just defined endow K ([FKM3,
Lemma 13]) with an abelian structure. Moreover, tensoring with a finite-dimensional module
is an exact endofunctor on K with respect to this abelian structure ([FKM3, Proposition 2]).
Altogether this means that & is an admissible category, that is, K is an abelian category, is a
full subcategory in the category of all A-modules, all modules in K are finitely generated and
tensoring with a finite-dimensional module is an exact endofunctor on . We note, that the
abelian structure on K is not inherited from that on O.

Remark: In the recent paper [KM] the authors have studied this abelian structure and
explained how it is related to the abelian structure of category O.

3 Gelfand-Zetlin modules

From now on we assume that 2l ~ sl(n,C) and X;, Y;, i = 1,2,...,n —1 denote the canonical
generators of 2. By a tableau we mean a doubly indexed complex vector [s] = (s; ;)] =12

1=1,2,...,n"
We also denote by [0%/] the Kronecker tableau.
Fix a tableau [I] satisfying the following conditions:

o ii—lLixygZforalli=1,2,...,n—-1,1<j<k<q

o liji—lipiggZForalli=1,2,...,n—1,7=1,2,...4, k=1,2,...,i + 1.
Let S([I]) be the set of all tableaux [t] satisfying the following conditions:

o tyj=I,;forallj=1,2,...,n;

o tij—lijEeZforalli=12..n—1j=12,...i

Let V([{]) be the complex vector space with basis S([/]). It is known ([DFO1]) that the

formulae
o e —tig) o TGk —tig)
X[ =y -4 +109]), v =Y =& t] — [6%
[t] ]Z_:l et ([t] +[6™]),  Yilt] ,2—:1 Tr—t) ([t] = [6%])

k#j k#j

define on V([l]) the structure of a simple A-module.

Fix [I] as above such that all [, ; are integers. The second main object of our interest
will be the category F = F([I]), which is a full subcategory in the category of all 2-modules
and consists of all subquotients of all modules of the form F' ® V ([I]), where F is a finite-
dimensional 2-module. By definition, F is an abelian category with the natural abelian



structure. By [FKM1, Lemma 4], the module F' ® V ([I]) is of finite length and belongs to F.
With respect to the standard abelian structure, F ® _ is exact and hence F is an admissible
category.

This information is enough to state the main result of the paper, but our proof will require
some additional information about Gelfand-Zetlin modules and it is natural to present it in
this Section.

Consider a natural chain of subalgebras si(2,C) C sl(3,C) C --- C sl(n,C), where si(k,C)
is generated by X;, Y;, 1 = 1,2,...,k—1. Then we have the corresponding chain U(sl(2,C)) C
-+ C U(sl(n,C)) in U. Denote by T" the algebra generated by $ and all centers Z(sl(k,C)),
k = 2,3...,n. It is known that I' is a polynomial algebra in (n(n + 1)/2) — 1 variables.
An 2A-module M will be called a Gelfand-Zetlin module if M decomposes into a direct sum
of non-isomorphic finite-dimensional I'-modules ([DFO1]). For example, each basis element
[t] of V([I]) generates a one-dimensional I'-submodule in V'([{]), moreover, the characters of
Z(sl(k,C)) acting on [t] can be computed in terms of certain symmetric functions in ;,
i=1,2,...,k ([DFOL1, Corollary 23]). By our choice of [[], these characters are distinct for
distinct [t] € S([!]). Additionally, for the Cartan elements H; = [X;,Y;] one has

k k-1 kt1
Hylt] = (2 D ki =Y ko1 — Ztk—l—l,i) [t]
i=1 i=1 i=1

([DFO1, Proposition 21}).

Tableaux naturally parametrize simple I'-modules. A Gelfand-Zetlin module is said to
have strong tableauz realization if any simple I'-submodule of it is parametrized by a tableau,
which does not have integer differences in the i-th row for all i = 1,2,...,n — 1 (compare
with [Ma2]). Each simple Gelfand-Zetlin module having a strong tableaux realization can be
constructed in the same way as modules V([l]) ([DFO1, Section 2.3] or [Ma2, Section 4]).

Originally, the module V([I]) was constructed first for the algebra gl(n,C) and then it
becomes an si(n,C)-module by restriction. Hence it may happen that V ([{]) and V([s]) are
isomorphic even if [I] # [s]. The corresponding criterion can be formulated as follows.

Lemma 1. V([l]) ~ V([s]) if and only if there exist x € C and permutations o; € ¥,
i =1,2...,n such that l; — x = s, 5,) for all i =1,2,....,n and ly; — T — Sk 0, (;) € Z for
alk=1,2,....,n—1,i=1,2,...,k

Proof. Follows from [DFO1, Section 2.1]. O

Finally, we note that the k-th row of the tableau [¢] has a precise representation theoretical
meaning. It gives us the parameter (highest weight plus the half sum of all positive roots, see
[D]) of the Verma module (over gl(k,C)) having the same central character (with respect to
gl(k,C)) as [t], see [Mal, Section 6.4] for details.

4 The main result and some applications

Now we are ready to state our main result.

Theorem 1. Let A = sl(n,C) and K, F be defined as above. The categories K and F
are equivalent, moreover, this equivalence can be chosen such that it preserves the natural
decomposition of both K and F with respect to the central characters and commutes with



translation functors. In particular, the categories F([l]) and F([l']) for different [I] and [I'],
both satisfying the conditions from Section 3, are equivalent.

We note that in the case l;; — [} ; € Z the equivalence between F([l]) and F([I']) follows
already from [FKMI, Section 11].

We give the proof in the next Section. Now we will only describe one important tool
which we will use. As it was originally defined in [M] we will call it the Mathieu twist. Fix a
simple root . Then, according to [M, Lemma 4.3], the algebra U,, defined in the Section 2,
has a one-parameter family 6,, z € C of automorphisms such that 6,(u) = X% uX "7 for all
u € Uy, ¢ € Z and the map x — 0,(u) is polynomial in z for all u € U,. Now for a simple «
and z € C we define the Mathieu twist functor m’, as the composition of the following three
functors. The first one is U, ®y _; the second one is the twist by 6, and the last one is the
restriction to U. We will denote by [, the functor of taking the locally X,-finite part of an
2l-module. Thus o = lg o mY.

The main result has the following applications.

Corollary 1. The indecomposable projective object in Fy is rigid, that is, its socle series
coincides with the radical series.

Proof. First we prove that the indecomposable projective P in Ky is rigid. Let W; denote the
set of elements in W which have length i. Then by induction on i we have that soc!(P) ~
r(@wew,_, M(w - 0)) and rad’(P) =~ T(@WEWIA+|—i+1M(w - 0)). This means that the socle
and the radical filtrations of P coincide and hence P is rigid. Now everything follows from
Theorem 1. O

We remark that the argument in the previous proof fully determines the cohomology in
the categories Ky and Fy. In fact, it is easy to read off all possible self-extensions of the
respective simple objects.

Corollary 2. The indecomposable projective object in Fy is injective as well.

Proof. By Corollary 1, this projective object has a simple socle. Hence its injective envelope
is indecomposable. Having the same dimension as vector spaces, these two objects must
coincide. ]

Let &, P and 2 be as in Section 1. Denote by O(P, F) (resp. O(P, K)) the full subcategory
of the category of &-modules, which consists of all finitely generated modules, which are weight
modules with respect to the center of the Levi factor of P, locally finite with respect to the
nilpotent radical of P and which can be decomposed into a direct sum of modules from F
(resp. K), when viewed as A-modules.

Corollary 3. O(P,F) and O(P,K) are blockwise equivalent. In particular, Soergel’s endo-
morphism Theorem, Soergel’s double centralizer property and Ringel self-duality are true for
the principal block of O(P,F) and Soergel’s character formulae for tilting modules is true for
O(P,F) (see [FKM3] for precise formulations).

Proof. The statement about the existence of equivalence follows from Theorem 1 and Lemma, 9
(the last to be proved in Section 5). The rest follows from [FKM3]. O



5 Proof of the main result

First we recall some known properties of X and F.

Lemma 2. With respect to the action of the center of U(2L), both F and K decompose into
a direct sum of module categories over local algebras.

Proof. For F this is proved in [FKM1, Section 11], for K this is proved in [FKM3, Lemma 15,
Lemma 16). O

Lemma 3. Fiz x € Z(A)*. Then the lengths of the indecomposable projectives in F, and
in Ky are the same and this common number coincides with the number of non-isomorphic
Verma modules (over 2) having central character x.

Proof. Let [ be the number of non-isomorphic Verma modules over 2 having central character
Xx- That the length of the indecomposable projective in F, equals [ is proved in [FKMI,
Section 12]. For K, it can be shown as follows. The indecomposable projective in K, is
the big projective module P()), where A belongs to the closure of the antidominant Weyl
chamber ([FKM3, Corollary 3]). Moreover, its length in K, coincides with the composition
multiplicity (P(X) : L(X)). As L(A) is a simple socle of each Verma module in O,, the last
number equals the length of any Verma flag of P()\). By BGG-reciprocity and the mentioned
description of the socles of Verma modules, each Verma module from O, occurs exactly once
in any Verma flag of P()). Hence, the length of P()) in K, which coincides with the length
of a (quasi) Verma flag of P()\), equals . O

Lemma 4. Assume that we have already constructed an exact functor, f, from F to K, which
commutes with F ® _ for any finite-dimensional F, faithful on morphisms and sends (for each
X) the simple from F, to the simple from Ky inducing an isomorphism on the endomorphism
rings. Then f is the desired equivalence, which proves Theorem 1.

Proof. Denote by x the central integral character of a simple-projective Verma module. For
this x, the simple module in Fy; (or Ky) coincides with the corresponding indecomposable
projective. As F' ® _ is exact on both F and K and f commutes with ' ® _, we get that
f sends the indecomposable projective from F, to the indecomposable projective in K, for
any x. As f is exact, it sends simples to simples. All F, and K, are module categories over
local algebras. Moreover, f acts blockwise, so it is enough to prove that f : 7, — Ky is an
equivalence. But the lengths of the indecomposable projectives in F, and K, coincide by
Lemma 3. Since f preserves the endomorphism ring of a simple and is exact, we derive that
f is full on morphisms and the final statement follows from the exactness of f. O

By Lemma 4, to prove Theorem 1 we need only to construct an exact functor from F to
K, which commutes with all FF ® _, is faithful on morphisms and sends simples from F to
simples in K preserving the central character and the endomorphism ring of any simple. We
will construct this functor composing several m’ and [,. Hence, in the next step we review
some properties of these functors.

Fix a simple root, «, and denote by (a) the sl(2,C) subalgebra of 2 associated with
a. Let A, denote the full subcategory of the category of all finitely-generated 2((a)-modules,
which consists of all direct summands of the modules ¥ ® M, where F' is finite-dimensional
and M is a finitely generated weight module with one-dimensional weight spaces and such



that X_, acts bijectively on M. Let M, denote the full subcategory of the category of all
finitely generated 2A-modules, which consists of all modules M, that can be decomposed into
a direct sum of modules from A, when viewed as 2(a)-modules. It is easy to see that A,
(resp. M, ) inherits an abelian structure from the category of all A(«) (resp. ) -modules
(see [FKM2, Remark 1)).

Let A* denote the full subcategory of the category of all finitely generated 2((«)-modules,
which consists of complete modules having a quasi-Verma, flag from the corresponding category
0. Let M® denote the full subcategory of the category of all finitely-generated A-modules,
which consists of all modules M, that can be decomposed into a direct sum of modules from
A% when viewed as A(«)-modules. A% has a natural abelian structure with usual kernels and
cokernels defined for f : M — N as 74(N/ro(M)) ([FKM3, Lemma 13]). In a natural way,
this abelian structure can be extended to M®. In the following Lemma we will refer to this
abelian structure on M¢%.

Lemma 5. [, : My, — M® is exact, commutes with FF ® _ for any finite-dimensional F' and
faithful on morphisms.

Proof. All properties can be checked on the 2(«a)-level, where they are trivial (see also [FKM2,
Lemma 3,5] for a much more general situation). O

Lemma 6. For any x € C we have that m? : M, — M, is ezact and faithful on morphisms.
Proof. Follows directly from the definitions of mZ and M. O

Lemma 7. Let M$? denote the full subcategory of M, consisting of all Gelfand-Zetlin
modules having strong tableauz realization. Then for any x € C the functor m’ sends Mg’Z

into itself and its restriction to this category commutes with F ® _ for any finite-dimensional
F.

We note, that the category M, does not contain all Gelfand-Zetlin modules (even not
those having a strong tableaux realization) if « is not the first simple root. We also note that
the statement can be easily extended to m2 : (1o,(MS%)) — MGZ.

Proof. Let X, = X; for some ¢ € {1,2,...,n — 1}. By exactness of m? we have only to
prove the statement for simple objects from MSZ. Let M be a simple object in M$Z. AsY;
acts bijectively on M, there is a finite number of I'-weight generators v;, 7 € J such that the
corresponding tableaux [ti,l] satisfy the following condition: tg—l,l = tg,l foralll =1,2...,i—1.
Hence X;_1v; = 0 for all j. Moreover, Xv; = 0 for any X corresponding to a positive root
having X;_1 as a summand and all other summands of the form X, k£ < ¢ — 1. Y; commutes
with all Z(sl(k,C)), k # i, and with (H,)". By polynomiality of Mathieu’s twist, mZ sends an
H,-weight vector of weight y to an H,-weight vector of weight y+2z. Now let ¢ € Z(sl(i,C))
and cvj = yjvj. From X; 1v; = 0 we get [Xifl,XrL'72:|‘/i =0, [[Xifl,Xi,Q],Xifg]’Uj =0 and
so on. Thus we can apply the generalized Harish-Chandra homomorphism ([DFO2] or [Mal,
Section 3.3]). We obtain ¢; € Z(sl(i—1,C)) and H € S($) such that mZ(c)v; = m%(ci1+H)v;.
We conclude that the images of all v; are I'-weight vectors, thus implying mZ (M) € MEZ.
Moreover, one sees that mf (M) is a simple object of Mgz , which can be precisely computed
in terms of [t,jc’l] and z. Now the statement about F' ® _ follows from calculations in [FKM1,
Lemma 4]. O



Lemma 8. Both functors l, and m? respect the action of the center. In particular, they
respect (generalized) central characters.

Proof. Obvious. O
Lemma 9. Both l, and m? commute with parabolic inductions.
Proof. For l, this follows from Lemma 5 and for m% from [FKM3, Lemma 4]. O

Lemma 10. Let P be a parabolic subalgebra of a semi-simple Lie algebra & and V be a simple
module over the Levi factor of P which is turned into a P-module via the trivial action of the
nilradical. Then any endomorphism of the module U(®) ®y(py V (which usually is called a
generalized Verma module associated with P and V') is scalar.

Proof. U(8) ®y(py V is generated by V and any endomorphism of U(®) ®yp) V sends
the unique copy of V' in U(8) ®y(py V into itself. Now the statement follows from [D,
Proposition 2.6.5]. O

By virtue of Lemmas above we need only to find a composition of different m{ and I,
which sends simples from F to simples in K preserving their endomorphism rings. These
endomorphism rings equal C in the case of F by [D, Proposition 2.6.5]. We note, that simple
objects in K are not simple 2-modules but coincide with projective Verma modules (which
are quite far from being simple 2-modules) which also have C as endomorphism ring.

Using usual induction together with exactness of parabolic induction and Lemma, 9, it is
sufficient to construct a composition of different m? and [, which sends simples from F to
the generalized Verma modules over 2 induced from simple Gelfand-Zetlin modules having
strong tableaux realization over the parabolic subalgebra with simple Levi part generated by
X;, Y;, i > 1. In fact, on each step the endomorphism ring will be preserved by Lemma 10
and iterating this process inductively we will end up with a Verma module from O. As both
m? and [, respect the central character, the result will be in the correct block of O. As
we will also see later, on each step we will obtain a module, complete with respect to some
To, Where « is a simple root, so that the final module will be complete. This will prove our
Theorem. Using the integer shift of tableaux one can also see that it is sufficient to construct
such a composition for one fixed simple module from F.

So, fix some V([l]) € F such that the upper row of [I] defines the projective Verma
module in O (this means that the entries of the row decrease). The only Y; acting bijectively
on V([l]) is Y1. Let X, = X;. Then, clearly, V([I]) € MS$Z and from the proof of Lemma 7
it follows that m%(V([{])) =~ V([s]), where s;; = l;;, ¢ > 1 and s1,1 = l1,1 + 2z. Choose
x such that [; 1 + 2z = l; and consider the module M; = [,(m%(V ([l]))). It is generated
by a I'-weight vector corresponding to the tableau [s] as above. Let us show that Y> acts
bijectively on M;. Indeed, any tableau [p] appearing as a basis element in M; satisfies the
condition py 1 — p1,1 € Z4 because of the local nilpotency of X;. Assume that py;1 = p11
and consider the set P of all tableaux obtained from [p] by integer shift of ps 5. Applying Y>
to any tableau from P and using Gelfand-Zetlin fomulae we see that we can reduce either
P2,1 Or pa2 by 1, but pa1 — 1 < p1,1 and hence in fact we can only reduce p2 2. This means
that Y5 sends any tableau from P into a (non-zero by Gelfand-Zetlin formulae) multiple of
another tableau. From this we obtain that Ys acts bijectively on the subspace generated by
P, moreover this subspace is a simple dense module over 2((3) (see [M, Section 4.3]). Letting
Y act on all tableaux with py 1 = p1,1 we will obtain all basis elements of M;. This means



that M is generated by a direct sum of simple dense 2((3)-modules. From the fact that U ()
is a direct sum of finite-dimensional 2((3)-modules under adjoint action we get that, as an
2(3)-module, M; is a direct sum of subquotients of the modules V' ® F, where V is simple
dense and F is finite-dimensional. By [FKM1, Section 10] this means that Y5 acts bijectively
on My and M; € Mgz . Hence we are allowed to apply mg

Again from the proof of Lemma 7 one gets that this is equivalent to changing s 2, which
can be choosen arbitrarily, for example equal to s3 ;. Now we can apply m{, and make s; ;
equal to sp9 = s31. Again applying m% we can achieve sg 1 = s32. As our tableaux are
defined up to permutations of the elements in each row, we can have s = s21 = s31 and
S22 = s32. Now it is clear that proceeding with other simple roots as above we will be able
to arrive at a module N generated by a I'-weight element v corresponding to the tableau [t]
defined as follows: t,; = I, ; for all ¢, ¢, 1; = I, 1; for all4 > 1, t;; = ¢, for all + and
tgi = tp1, for all K < n. By Lemma 5, this module will be automatically r,-complete, i.e.
ro(N) = N. (Hence, at the very end of the induction process we get a complete module.)
But one also has X,v = 0 for any positive root -y containing . From this we get that N is
isomorphic to a generalized Verma module induced from a simple Gelfand-Zetlin module, N,
over the parabolic subalgebra with simple Levi part generated by X;, Y;, ¢ > 1 (see [Ma2,
Section 8]). From ¢,_1; — tn,—1,; & Z we have that N has a strong tableaux realization. Now
induction completes our proof.
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