The supports of simple modules over toroidal algebras #### Volodymyr Mazorchuk #### Kyiv Taras Shevchenko University Short title: Modules over toroidal algebras 1991 AMS Mathematics Subject Classification: primary: 17B65, secondary: 17B10, 17B66 #### Abstract We present a description of possible supports for simple modules over toroidal Lie algebras associated with $sl(2,\mathbb{C})$. This description is analogous to that known for finite-dimensional simple Lie algebras and affine Lie algebras. #### 1 Introduction The problem to describe the support of a simple weight module over a Lie algebra with triangular decomposition is very popular and has been studied in many cases. The final results were obtained for complex simple finite-dimensional algebras in [1], for superalgebras in [2], for $A_1^{(1)}$ case in [4], for all affine Lie algebras in [9], for rank two generalized Witt algebras in [6] and for Harish-Chandra modules over higher rank Virasoro algebras in [7]. In the present paper we give the complete answer on the formulated question in the case of arbitrary toroidal Lie algebra that can be obtained from sl(2) by method described in [3]. In fact, the final result states that any simple weight module over such algebras is either dense (i.e. for any weight λ and root β an element $\lambda + \beta$ is again a weight) or cut (i.e. its support is a subset of the support of some induced module). The paper is organized as follows: In section 2 we collect all necessary preliminaries and formulate the main result of this paper. In section 3 we will prove some auxiliary lemmas that will be used in the proof of the main theorem presented in section 4. Finally, in section 5 we construct an example of simple cut \mathfrak{G} -module without semi-primitive elements. ## 2 Toroidal algebras and main theorem Let \mathbb{C} denotes the set of complex numbers, \mathbb{Z} denotes the set of integers and \mathbb{N} denotes the set of positive integers. For a Lie algebra L we will denote by U(L) its universal enveloping algebra. Fix $n \in \mathbb{N}$. Let $\mathfrak{A} = sl(2,\mathbb{C})$ be the Lie algebra of 2×2 complex matrix with zero trace and $A = \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ be the algebra of Laurent polynomials with complex coefficients. Let e, f, h be the standard basis of \mathfrak{A} . Consider the Lie algebra $\mathfrak{G}_A = \mathfrak{A} \otimes_{\mathbb{C}} A$ with bracket $[x \otimes a, y \otimes b] = [x, y] \otimes ab, \ x, y \in \mathfrak{A}$ and $a, b \in A$. Let $\hat{\mathfrak{G}}$ be the universal covering algebra for \mathfrak{G}_A ([5]). Algebra $\hat{\mathfrak{G}}$ is usually called toroidal. To get the representation theory of $\hat{\mathfrak{G}}$ reasonable we factor out the central ideal consisting of the span of all homogeneous elements of non-zero degree in Ω_A/dA and obtain the algebra $\tilde{\mathfrak{G}}$. Then for our convenience we will extend $\tilde{\mathfrak{G}}$ by commuting differentials d_1, \ldots, d_n such that $[d_i, x \otimes t_1^{k_1} \ldots t_n^{k_n}] = k_i x \otimes t_1^{k_1} \ldots t_n^{k_n}, x \in \mathfrak{A}$ (d_i commutes with Ω_A/dA) to form the Lie algebra \mathfrak{G} . Let H=< h> be the standard Cartan subalgebra of ${\mathfrak A}$. Then $$\mathfrak{H} = (H \otimes 1) \oplus \Omega_A/dA \oplus \langle d_1, \ldots, d_n \rangle$$ is the standard Cartan subalgebra of \mathfrak{G} . Let $\Delta \subset \mathfrak{H}^*$ be the root system of \mathfrak{G} with respect to \mathfrak{H} . For $\beta \in \Delta$ let \mathfrak{G}_{β} denotes the corresponding root space in \mathfrak{G} . In a standard way Δ can be decomposed into the disjoint union $\Delta = \Delta_{\Re} \cup \Delta_{\Im}$, where Δ_{\Re} is the set of roots of elements of the form $e \otimes a$ or $f \otimes a$, a is a monomial in A and $\Delta_{\Im} = \Delta \setminus \Delta_{\Re}$. We will also denote by Δ_{\Re}^+ (Δ_{\Re}^-) the set of roots of the elements of the form $e \otimes a$ ($f \otimes a$) and by \mathfrak{G}_+ (\mathfrak{G}_-) the corresponding subalgebras in \mathfrak{G} . A root $\alpha \in \Delta_{\Im}$ will be called simple if α/k is not a root for any $k \in \mathbb{N}$. It follows easily from the definition of \mathfrak{G} that the sum of two elements from Δ_{\Re}^+ (or Δ_{\Re}^-) is never a root and the sum of any element form Δ_{\Re}^+ (or Δ_{\Re}^-) with any element from Δ_{\Im} is always a root. For a \mathfrak{G} -module V and $\lambda \in \mathfrak{H}^*$ let $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v \text{ for all } h \in \mathfrak{H}\}$ denotes the weight subspace of V corresponding to a weight λ . A module V is said to be weight module provided it can be decomposed into a direct sum of its weight subspaces. For a weight \mathfrak{G} -module V let supp V be the set of all weights of V such that the corresponding weight subspaces are non-trivial. This set will be called support of V. Let P denotes the abelian group spanned by Δ . One can easily see that $P \simeq \mathbb{Z}^{n+1}$. For any order \leqslant on P (here and on by order we mean order on abelian group, hence, we assume that this order is compatible with the group structure) we will denote $P_+^{\leqslant} = \{p \in P \mid 0 \leqslant p, p \leqslant 0\}$, $P_-^{\leqslant} = \{p \in P \mid p \leqslant 0, 0 \leqslant p\}$, $P_0^{\leqslant} = \{p \in P \mid 0 \leqslant p, p \leqslant 0\}$ and set $\Delta_i^{\leqslant} = P_i^{\leqslant} \cap \Delta$, i = 0, +, -. We will say that \leqslant is non-trivial if P_+^{\leqslant} is not empty. Clearly, supp $V \subset \lambda + P$ for any simple weight module V and any $\lambda \in \operatorname{supp} V$. A weight module V is called dense if $\operatorname{supp} V = \lambda + P$, $\lambda \in \operatorname{supp} V$ and cut if $\operatorname{supp} V \subset \lambda + P^{\leq}$ for some non-trivial \leq and some $\lambda \in \mathfrak{H}^*$. For any weight module V and any $v \in V_{\lambda}$ ($\lambda \in \text{supp } V$) we will say that a subset $S \subset \Delta$ is an annihilating v-set provided $\mathfrak{G}_{\beta}v = 0$ for any $\beta \in S$. A non-zero element $v \in V_{\lambda}$ will be called semi-primitive if there exists a non-trivial order \leq on P such that Δ_{+}^{\leq} is an annihilating v-set. Any subset $S \subset \Delta$ can be enlarged by adding to it all the roots of the form $\alpha + \beta$, where $\alpha, \beta \in S$ and at least one of them belongs to Δ_{\Re} . Starting from S we can enlarge it to the set S_1 , the we can enlarge the obtained set to the set S_2 and so on. The set $\overline{S} = \bigcup_{i=1}^{\infty} S_i$ will be called additive closure of S. The following lemma follows easily from the fact that dim $\mathfrak{G}_{\delta} = 1$ for all $\delta \in \Delta_{\Im}$. **Lemma 1.** Let V be a weight \mathfrak{G} -module, $\lambda \in \operatorname{supp} V$, $v \in V_{\lambda}$ and S be an annihilating v-set. Then \overline{S} is an annihilating v-set. Now we can formulate the main result of this paper: **Theorem 1.** Let V be a simple weight \mathfrak{G} -module. Then V is either dense or cut. We have to remark that in the case n = 1 our algebra \mathfrak{G} is an affine Lie algebra. For this case theorem 1 was obtained in [4]. ## 3 Preliminary lemmas For a simple weight \mathfrak{G} -module V we will denote by P(V) the set $\lambda + P$, $\lambda \in \text{supp } V$. Clearly, P(V) does not depend on the choice of λ . We also set $s(V) = P(V) \setminus \text{supp } V$. During this section we fix a non-trivial non-dense simple weight \mathfrak{G} -module V. For a fixed $\mu \in \mathfrak{H}^*$ we will write \mathcal{H}_{μ} for the set $\{\mu\} \cup \mu + \Delta$. We note that s(V) is not empty since V is not dense. A non-zero element v of a weight module V will be called bounded of type $(\beta_1, \ldots, \beta_n)$, where $\beta_i \in \Delta_{\Im}$, $1 \leq i \leq n$ are linearly independent simple roots provided there exist $\alpha^{\pm} \in \Delta_{\Re}^{\pm}$ such that $\{\alpha^{\pm} + k_1\beta_1 + \cdots + k_n\beta_n \mid k_i \in \mathbb{Z}_+, i = 1, \ldots, n\}$ is an annihilating v-set. **Lemma 2.** There exists $\mu \in s(V)$ and $\lambda \in \text{supp } V \cap \mathcal{H}_{\mu}$ such that $\mu - \lambda \in \Delta_{\Re}$. *Proof.* Clearly, there exists $\mu_1 \in s(V)$ such that supp $V \cap \mathcal{H}_{\mu_1}$ is not empty. If $\mu_1 + \Delta_{\Re} \subset s(V)$ then one can take $\mu \in \mu_1 + \Delta_{\Re}$ and $\lambda \in \text{supp } V \cap \mathcal{H}_{\mu_1}$. **Lemma 3.** Suppose that $v \in V_{\lambda}$ is a non-zero element. Then either $\mathfrak{G}_+ v \neq o$ ($\mathfrak{G}_- v \neq o$) or v is semi-primitive. *Proof.* Follows from the fact that by setting $\Delta_+^{\leqslant} = \Delta_{\Re}^+$ one defines a non-trivial order \leqslant on P. **Lemma 4.** Let $v \in V_{\lambda}$ and $S \subset \Delta$ be an annihilating v-set. Suppose that $g \in \mathfrak{G}_{\beta}$ and $S_1 \subset S$ such that $\beta + S_1 \cap \Delta \subset S$. Then S_1 is an annihilating gv-set. *Proof.* Let $\alpha \in S_1$ and $x \in \mathfrak{G}_{\alpha}$. One has xgv = [x,g]v + gxv. The right hand side of this equality will be zero as soon as [x,g] = 0 since xv = 0. Moreover, if $[x,g] \neq 0$ it follows that $[x,g] \in \mathfrak{G}_{\alpha+\beta}$ with $\alpha + \beta \in S$. Hence xgv = 0 and the statement follows. **Lemma 5.** Let V be a simple weight module and $0 \neq v \in V$ be a bounded element of type $(\beta_1, \ldots, \beta_n)$. Then any non-zero element in V is bounded of the same type. *Proof.* Let $0 \neq w \in V$. Since V is simple there exists $u \in U(\mathfrak{G})$ such that w = uv. Thus it is sufficient to prove the statement of the lemma for any element of the form xv where $x \in \mathfrak{G}_{\gamma}, \gamma \in \Delta$. Consider an r-dimensional Euclidean space X and fix linearly independent $x_1, \ldots, x_r \in X$. For $y \in X$ set C_y be the cone consisting of all elements of the form $y + s_1x_1 + \cdots + s_rx_r$ where s_i are non-negative for $1 \leq i \leq r$. Since X is r-dimensional it follows immediately that for any two cones C_{y_1} and C_{y_2} there exists $y \in X$ such that $C_y \subset C_{y_1} \cap C_{y_2}$. The statement now follows from lemma 4. **Lemma 6.** Let V be a non-trivial simple weight \mathfrak{G} -module and $v \in V$ be a non-zero bounded element of type β_1, \ldots, β_n . Suppose that V is not dense and $\mu \in s(V)$. Then $\mu + s_1\beta_1 + \cdots + s_n\beta_n \in s(V)$ for $s_i \in \mathbb{N}$, $1 \leq i \leq n$. Proof. Suppose that $\lambda = \mu + s_1\beta_1 + \cdots + s_n\beta_n \in \text{supp } V$ for some $s_i \in \mathbb{N}$, $1 \leq i \leq n$ and $0 \neq w \in V_{\lambda}$. Then w is bounded element of type β_1, \ldots, β_n by lemma 5. Let T denotes the corresponding annihilating w-set. Then the additive closure of $T \cup \{\mu - \lambda\}$ is an annihilating w-set by lemma 4. But this closure coincides with Δ and thus w generates trivial \mathfrak{G} -submodule in V and we obtain a contradiction. **Lemma 7.** Let V be a simple weight \mathfrak{G} -module. Suppose that there exists $\alpha \in \Delta_{\Re}$, $0 \neq X_{\alpha} \in \mathfrak{G}_{\alpha}$, $k \in \mathbb{N}$ and $0 \neq v \in V$ such that $X_{\alpha}^{k}v = 0$. Then X_{α} acts locally nilpotent on V. *Proof.* Follows from the fact that ad X_{α} is nilpotent on \mathfrak{G} . **Lemma 8.** Let V be a simple weight non-dense \mathfrak{G} -module, $\lambda \in \operatorname{supp} V$, $\mu \in s(V)$ such that $\mu - \lambda = k\alpha$ for some $\alpha \in \Delta_{\Re}$ and $k \in \mathbb{N}$. Then $\lambda + l\alpha \not\in \operatorname{supp} V$ for all $l \geqslant k$. Proof. Let $0 \neq v \in V_{\lambda}$ and $0 \neq X_{\alpha} \in \mathfrak{G}_{\alpha}$. Then $X_{\alpha}^{k}v = 0$ and thus X_{α} is locally nilpotent on V by lemma 7. Suppose that $\lambda + l\alpha \in \text{supp } V$ for some $l \geqslant k$. Then $V_{\lambda + l\alpha} \neq 0$ and $\mathfrak{G}_{-\alpha}^{l-k}V_{\lambda + l\alpha} = 0$ and thus $X_{-\alpha}$ is also locally nilpotent on V. Since $\mathfrak{G}_{\pm\alpha}$ generate an sl(2)-subalgebra of \mathfrak{G} it follows that sl(2)-module $\bigoplus_{m \in \mathbb{Z}} V_{\lambda + m\alpha}$ contains two finite dimensional subquotients and their supports have empty intersection. The last is impossible and thus we obtain the statement of the lemma. ### 4 Proof of the main theorem Suppose that V is a simple weight non-dense \mathfrak{G} -module. Clearly, existence of a semi-primitive vector in V will imply the statement of the main theorem. It is impossible to prove the existence of a semi-primitive element in general case, so, in fact we will prove the following statement: Let V be a non-dense simple \mathfrak{G} -module, then either there exists a semi-primitive element in V or V is cut. Thus we can suppose that there were no semi-primitive elements in V. Our first goal is to prove that there exist some bounded element in V. Consider elements $\mu \in s(V)$ and $\lambda \in \text{supp } V$ given by lemma 2. Without loss of generality we can assume that $\mu - \lambda \in \Delta_{\Re}^+$. Let $v \in V_{\lambda}$ be some non-zero element. Then the set $S = \{\mu - \lambda\}$ is an annihilating v-set. Since v is not semi-primitive then by lemma 3 there exists $\hat{\alpha} \in \Delta_{\Re}^+$ and $g \in \mathfrak{G}_{\hat{\alpha}}$ such that $v_1 = gv \neq 0$. Let δ be the simple root such that $\mu - \lambda - \hat{\alpha} = N\delta$ for some $N \in \mathbb{N}$. One can choose $\hat{\alpha}$ such that $\mathfrak{G}_{\mu-\lambda+k\delta}v = 0$, 0 < k < N. By lemma 4 we have that S is an annihilating v_1 -set. Moreover, we can enlarge S to an annihilating v_1 -set S_1 by elements $\mu - \lambda + k\delta$, 0 < k < N, $N\delta$ and thus by $\mu - \lambda + k\delta$, $k \in \mathbb{N}$. Applying \mathfrak{G}_{δ} to v_1 we can find an element $0 \neq v_2 \in V_{\mu+N_1\delta}$ such that $S_2 = \{\delta\} \cup \{\mu - \lambda + k\delta \mid k \in \mathbb{N}\}$ is an annihilating v_2 -set. Since v_2 is not semi-primitive then using lemma 3 and the same procedure as above one can fine an element $\alpha \in \Delta_{\Re}^+$ and $g_1 \in \mathfrak{G}_{\alpha}$ such that $v_3 = g_1v_2 \neq 0$. Suppose that $\alpha = \mu - \lambda + k\delta$ for some $k \in \mathbb{Z}$ and it is impossible to choose α that is not of this form. Then $\Delta_{\Re}^+ \setminus \{\mu - \lambda + k\delta \mid k \in (\mathbb{Z} \setminus \mathbb{N})\}$ is an annihilating v_3 -set. Applying to v_3 any non-zero element x from \mathfrak{G}_{β} where $\beta \in \Delta_{\Im}$ such that β and δ are linearly independent we immediately obtain that either v_3 or $xv_3 \neq 0$ is semi-primitive (or bounded in the case n = 1). Thus we can choose α such that $\alpha \neq \mu - \lambda + k\delta$ for all $k \in \mathbb{Z}$. Let α_1 be the weight of v_3 . In this case an additive closure T of $\{\mu - \lambda + k\delta \mid k \in \mathbb{N}\} \cup \{\mu - \alpha_1\}$ is an annihilating v_3 -set by lemma 1 and lemma 4. Moreover, one can see that α can be chosen such that it would be possible to find simple $\beta_1, \beta_2 \in \Delta_{\mathfrak{F}}$ and $\gamma^{\pm} \in \Delta_{\mathfrak{F}}^{\pm}$ such that T contains $\gamma^{\pm} + s_1\beta_1 + s_2\beta_2$, $s_1s_2 \in \mathbb{Z}_+$. Applying the same procedure to v_3 now with the use of elements from Δ_{\Re}^- and then again from Δ_{\Re}^+ and so on one can construct a bounded element $0 \neq w \in V$ of type β_1, \ldots, β_n for some simple linearly independent $\beta_i \in \Delta_{\Im}$, $1 \leq i \leq n$. Thus, any element of V should be bounded of type β_1, \ldots, β_n by lemma 5. By lemma 6 we also obtain that $\mu + s_1\beta_1 + \cdots + s_n\beta_n \in s(V)$ for $s_i \in \mathbb{N}$, $1 \leq i \leq n$. Now, using lemma 5 and the same arguments as in previous paragraph it is easy to see that there exists a non-trivial order \leq_{\Im} on Δ_{\Im} and $\xi \in (\mu + \Delta_{\Im}) \cup \{\mu\}$ such that $\xi + P_{\Im}^+ \subset s(V)$, where $P_{\Im}^+ = \{\alpha \in \Delta_{\Im} \mid \alpha \not\leq_{\Im} 0, 0 \leq_{\Im} \alpha\}$. Indeed, fixing the support of V and assuming that this statement is false it follows with the same arguments as used above that s(V) can be enlarged. The last observation together with lemma 5 immediately implies the following: if $\mu' \in \text{supp } V$ and $\alpha \in \Delta_{\Im}$ such that $\mu' + \alpha \in s(V)$ then there exists $\xi' \in \mu' + \Delta_{\Im}$ such that $\xi' + P_{\Im}^+ \subset s(V)$. Otherwise, one can easy find $0 \neq v \in V$ such that $\mathfrak{G}v = 0$. Consider the subsets \mathcal{H}_{\pm} of \mathcal{H}_{μ} defined as follows: $\mathcal{H}_{\pm} = \mu + \Delta_{\Re}^{\pm}$. Suppose that $\mathcal{H}_{-} \subset \text{supp } V$ ($\mathcal{H}_{+} \subset \text{supp } V$). Then $\mathcal{H}_{+} \subset s(V)$ ($\mathcal{H}_{-} \subset s(V)$) by lemma 8 and we obtain that any non-zero element in V_{μ} is semi-primitive. Hence we can fix elements $\xi' \in \mathcal{H}_{-}$ and ξ described above. Set $\beta = \xi - \xi' \in \Delta_{\Re}^{+}$. Consider the non-trivial order \leq on Δ (and thus on P) such that $P_{\Im}^+ \subset \Delta_+^{\leq}$ and $\pm \beta + P_{\Im}^+ \subset \Delta_+^{\leq}$, which is trivially exists. Now lemma 8 guarantees that $\xi + P_+^{\leq} \subset s(V)$ that completes the proof of the theorem. ## 5 Examples Example of cut \mathfrak{G} -modules with semi-primitive elements can be easily constructed as the unique simple quotients of Verma modules using partitions of Δ as it was done for example in [4, 8]. At the same time, examples of dense modules also can be constructed by using the standard technique. Unlike the classical case of affine Kac-Moody Lie algebras we can not state that any cut \mathfrak{G} -module contains a semi-primitive element. The aim of this section is to construct an example of a simple cut module without semi-primitive elements. Let $P_{\Im} = \mathbb{Z}\Delta_{\Im}$ and consider an order \leqslant on P_{\Im} that satisfies the following condition: for any $0 \leqslant x \leqslant y$, $x, y \in P_{\Im}$ there exists $k \in \mathbb{N}$ such that $y \leqslant kx$. Let P_+ denotes the set $\{x \in P_{\Im} \mid 0 \leqslant x, x \not\leqslant 0\}$. Fix $\alpha \in \Delta_{\Re}^+$ and set $\Delta_+ = P_+ \cup \{\alpha\} \cup \alpha + P_+ \cup -\alpha + P_+$, $\Delta_- = -\Delta_+$. Let $\mathfrak{G} = \mathfrak{G}_+ \oplus \mathfrak{H} \oplus \mathfrak{H} \oplus \mathfrak{H}$ be the corresponding decomposition of \mathfrak{G} . Consider \mathbb{C} as the trivial $\mathfrak{G}_+ \oplus \mathfrak{H}$ -module and form a module M as follows: $$M = U(\mathfrak{G}) \bigotimes_{U(\mathfrak{G}_+ \oplus \mathfrak{H})} \mathbb{C}.$$ Let P(-) be the semigroup generated by $\Delta_{-} \cup \{0\}$. Clearly, M is a weight module and supp M = P(-). Let N be the subspace of M generated by all M_{λ} , $\lambda \neq 0$. **Proposition 1.** 1. N is a \mathfrak{G} -submodule of M. - 2. N is simple. - 3. N contains no semi-primitive elements. *Proof.* The first statement follows from the fact that N is the kernel of the canonical epimorphism of M onto trivial \mathfrak{G} -module. The last one follows from the second and the description of supp N. Thus we need only to prove the second statement. Let v denotes a canonical generator of M. First we note that it is enough to show that for any $w \in N$ the module $N_w = U(\mathfrak{G})w$ contains an element of the form $X_{\beta}v$ for some $\beta \in \Delta_{-}$. Fix a non-trivial w. The order \leqslant trivially induces an order on Δ_{-} which we will also denote by \leqslant . Thus by PBW theorem w can be written as a linear combination of the monomials and, moreover, each monomial is a product of X_{β} for $\beta \in \Delta_{-}$. By the length of a monomial we will mean the number of multiplicands occurring in this monomial. Fix the set S(w) of monomials of maximal length and choose the smallest β_1 that occurs as a multiplicand in these monomials. Applying the elements X_{β_2} to w such that $-\beta_2$ is smaller than arbitrary multiplicand of a monomial from S(w) but β_1 one can easily show that supp $N_w = \text{supp } N$ and, moreover, that N_w contains an element w_1 such that $|S(w_1)| = 1$. Thus we can assume that |S(w)| = 1. Now we can consider the sets $S_1 = \{-\beta_1 + \mathbb{Z}\alpha\} \cap \Delta$, $S_2 = S_1 + \beta$ for some $\beta \in \Delta_+$ small enough and $S_3 = S_1 \cup S_2$. Consider the elements $X_{\gamma}w$, $\gamma \in S_3$. One can see that β can be chosen in such way that at least one of $X_{\gamma}w$ is non-zero. Now it is easy to obtain that any monomial occurring in this non-zero element has length smaller than |S(w)|. Trivial induction completes our proof. ## 6 Acknowledgments The author would like to thank Professor V.Futorny for stimulating discussions and to CRDF for financial support. # References - [1] A.Cylke, V.Futorny, S.Ovsienko, On the support of irreducible weight modules, Preprint 96-011, Bielefeld University - [2] I. Dimitrov, O. Mathieu and I. Penkov, On the structure of weight modules, (to appear) - [3] M.A.Fabbri, R.V.Moody, Irreducible representations of Virasoro-Toroidal Lie algebras, Commun. Math. Phys. 159, 1-13 (1994) - [4] V.Futorny, Irreducible non-dense $A_1^{(1)}$ -modules, Pac. J. Math., 172, 83-99 (1996) - [5] C.Kassel, Kahler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J.Pure Appl. Algebra 34, 265-275 (1985) - [6] V.Mazorchuk, Futorny theorem for generalized Witt algebras of rank 2. Comm. Alg. 25, 533-541 (1997) - [7] V.Mazorchuk, On the support of simple Harish-Chandra module over higher rank Virasoro algebra, (to appear) - [8] V.Mazorchuk, Verma modules over generalized Witt algebras, (to appear in Comp. Math.) - [9] I.Penkov, to appear Mechanics and Mathematics department Kyiv Taras Shevchenko University 64, Volodymyrska st. 252033 Kyiv Ukraine e-mail: mazorchu@uni-alg.kiev.ua