
Computational algorithms forordinary di�erential equations{Revised O
tober 19, 1999{Warwi
k Tu
kerIMPA, Est. D. Castorina 110Jardim Botâni
o, 22460-320Rio de Janeiro, RJ, Brazilwarwi
k�impa.brO
tober 14, 1999Abstra
tWe present an algorithm for
omputing rigorous solutions to a large
lass of or-dinary di�erential equations. The main algorithm is based on a partitioning pro
essand the use of interval arithmeti
. We illustrate the presented method by
omputingsolution sets for two expli
it systems.1 Introdu
tionIn this paper, we will
onsider a general initial value problem:_x = f(x); x(0) = x0; (1)where f 2 C1(D;Rn), and D � Rn. We will sometimes denote the solution of (1) by'(x; t), with '(x; 0) = x(0). This setting is
lassi
al, and mu
h studied in standardtext books on ordinary di�erential equations. It is, however, not diÆ
ult to �ndsituations where having a whole set of initial values is natural. Indeed, any modelof a physi
al system always has some un
ertainty
on
erning the measured initialvalues. Furthermore, we are seldom sure of exa
tly whi
h ve
tor �eld models oursystem. The natural thing do is to en
lose the initial value x0 in a box [x0℄ whoseside lengths re
e
t the maximal error made in the measurements of the initial data,and to repla
e f in (1) by a fun
tion F , whose
omponents are interval valued. Theproblem we then fa
e is to �nd the solution of the following system:_x 2 F ([x℄); x(0) 2 [x0℄; (2)Our obje
tive is to
ompute a set that is guaranteed to
ontain all the solutions of(2) at a given time T . The method we present is based on a partitioning pro
ess,whi
h will be presented in more detail below.

2 Interval arithmeti
In this se
tion, we will brie
y des
ribe the fundamentals of interval arithmeti
. Fora
on
ise referen
e on this topi
, see [2℄.Let I denote the set of
losed intervals. For any element [a℄ 2 I, we adapt thenotation [a℄ = [a; �a℄. If � is one of the operators +;�; �; =, we de�ne arithmeti
operations on elements of I by[a℄� [b℄ = fa� b : a 2 [a℄; b 2 [b℄g;ex
ept that [a℄=[b℄ is unde�ned if 0 2 [b℄. Working ex
lusively with
losed intervals,we
an des
ribe the resulting interval in terms of the endpoints of the operands:[a℄ + [b℄ = [a+ b; �a+�b℄[a℄� [b℄ = [a� �b; �a� b℄[a℄ � [b℄ = [min(ab; a�b; �ab; �a�b);max(ab; a�b; �ab; �a�b)℄[a℄=[b℄ = [a℄ � [1=�b; 1=b℄; if 0 =2 [b℄:To in
rease speed, it is
ustomary to break the formula for multipli
ation into nine
ases (depending of the signs of the endpoints), where only one
ase involves morethan two multipli
ations. Moreover, the formula for division
an be modi�ed forimproved a

ura
y. When
omputing with �nite pre
ision, dire
ted rounding mustalso be taken into a

ount, see e.g. [2℄, [3℄, [1℄.It follows immediately from the de�nitions that addition and multipli
ation areboth asso
iative and
ommutative. The distributive law, however, does not alwayshold. As an example, we have[�1; 1℄([�1; 0℄ + [3; 4℄) = [�1; 1℄[2; 4℄ = [�4; 4℄whereas [�1; 1℄[�1; 0℄ + [�1; 1℄[3; 4℄ = [�1; 1℄ + [�4; 4℄ = [�5; 5℄:This unusual property is important to keep in mind when representing fun
tions aspart of a program. Interval arithmeti
 satis�es a weaker rule than the distributivelaw, whi
h we shall refer to as sub-distributivity:[a℄([b℄ + [
℄) � [a℄[b℄ + [a℄[
℄:Another key feature of interval arithmeti
 is that it is in
lusion monotoni
, i.e., if[a℄ � [a0℄, and [b℄ � [b0℄, then [a℄� [b℄ � [a0℄� [b0℄;where we demand that 0 =2 [b0℄ for division.We
an turn I into a metri
 spa
e by equipping it with the Hausdor� distan
e:d([a℄; [b℄) = maxfja � bj; j�a� �bjg:For dealing with higher dimensional problems, we de�ne the arithmeti
 operationsto be
arried out
omponent-wise. We then talk about an interval ve
tor or, moresimply, a box. The metri
 is then de�ned byd([a℄; [b℄) = max1�i�nfd([ai℄; [bi℄)g:Matrix operations are de�ned analogously to the real
ase.

3 Interval-valued fun
tionsConsider a fun
tion f 2 C1(D;Rn), where D � Rn. Given a box [a℄ we de�ne therange of f over [a℄ by R(f ; [a℄) = ff(x) : x 2 [a℄g:If we �x a representation of f (whi
h we also denote f), and evaluate it in intervalarithmeti
, we always have R(f ; [a℄) � f([a℄);due to the in
lusion monotoni
 property. From this property, it also follows that bysplitting the box [a℄ into smaller pie
es [a0℄; : : : ; [an℄, we haveR(f ; [a℄) � n[i=0 f([ai℄) � f([a℄):It is
lear that, by splitting [a℄ into many small pie
es, we
an approximate the truerange of f over [a℄ with any desired a

ura
y. There are, however, better ways toapproximate the range of f : let m([a℄) denote the midpoint of [a℄. By the MeanValue Theorem, we have the following relation:R(f ; [a℄) � fMV ([a℄) := f(m([a℄)) + [Df ℄([a℄)([a℄ �m([a℄)):Let k[a℄k denote the maximal diameter of [a℄. It is easy to show thatd(R(f ; [a℄); f([a℄)) = O(k[a℄k);whereas d(R(f ; [a℄); fMV ([a℄)) = O(k[a℄k2):It is obvious that the latter version is preferred, seeing that we have a quadrati-
ally small error. This assumes, however, that we only deal with intervals of smallwidths. The most fundamental part of our algorithm { the partitioning pro
ess {guarantees that this indeed will be the
ase, and thus allows us to attain a quadrati
approximation of the ve
tor �eld range R(f ; [a℄).As mentioned earlier in the introdu
tion, it is often desirable in appli
ations toex
hange the fun
tion f for its interval extension F . Given a �nite representationof f , we de�ne F to be any fun
tion having the same representation as f , ex
eptthat all real
oeÆ
ients are repla
ed by en
losing intervals. As an example, givenf(x) = 2x� �y, we may take F (x) = [1:99; 2:01℄x � [3:14; 3:15℄y.4 AlgorithmsIn this se
tion, we will present some algorithms for rigorously solving an initial valueproblem. We will start with the most basi
 approa
h, using the Euler method.The solution of (1) is formally given by'(x; ti+1) = '(x; ti) + Z ti+1ti f('(x; s))ds; (3)

where '(x; t0) = x0. Approximating the integrand in (3) by f('(x; ti)), we arriveat the
lassi
al Euler method, whi
h gives the iterative s
hemexi+1 = xi +�tif(xi) i � 0for an approximate solution to (1), i.e., xi � '(x; ti). Here we have used the notation�ti = ti+1 � ti. The error we are making is in assuming that the ve
tor �eld f is
onstant over ea
h time step. With interval arithmeti
 this
an be over
ome byusing the following algorithm (in whi
h we have omitted the stopping
ondition for
larity):Algorithm 1. For i � 0 do the following:1 En
lose the
omputed solution at step i in a box: [xi℄ � [~xi℄;2 Compute a time step �ti su
h that [xi℄ + �tiF ([~xi℄) � [~xi℄;3 Set [xi+1℄ = [xi℄ + �tiF ([~xi℄).This algorithm produ
es a box-valued solution that is guaranteed to
ontain thetrue solution, i.e., '(x0; ti) 2 [xi℄. Moreover, it also
overs the
ase when the initialvalue is a whole box. There is, however, one major
aw in this method: even if thetrue solution set is shrinking, the
omputed boxes [xi℄ are always non-de
reasing ini. This is be
ause we always have the equality k[a℄ + [b℄k = k[a℄k+ k[b℄k for any twointervals [a℄ and [b℄.The abovementioned problem
an be over
ome by repla
ing the Euler step bya higher order Taylor-method, see e.g. [2℄, [4℄. This may in
rease the a

ura
y ona lo
al level, but we are still left with a global problem: if the
ow of the systemunder
onsideration is not
ontra
ting in all dire
tions, the strongest expanding (orneutral) dire
tion will generi
ally
ontaminate all other dire
tions. By this, we meanthat the
omputed en
losures [xi℄ will expand in all dire
tions, although the truesolution may
ontra
t in several dire
tions. This phenomena is often referred to asthe wrapping e�e
t, see Figure 1(a).
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Figure 1: (a) The wrapping e�e
t, and (b) how to over
ome it.Fortunately, we
an redu
e the wrapping e�e
t by enfor
ing a �xed s
ale: if anelement of any intermediate solution set (in
luding the initial set) attains a widthlarger than a predetermined
onstant MaxSize, it is bise
ted along the dire
tionsthat are too wide. Thus, the
omputed solution set will be made up of severalsmall boxes, all having widths less than MaxSize. If the system has
ontra
tingdire
tions, these will now show up in the solution set. This is due to the fa
tthat elements squeeze together in the
ontra
ting dire
tions, whi
h results in anoverlapping e�e
t as illustrated in Figure 1(b). The global error is now of the same

order as MaxSize, and the
ontamination is avoided. The following pseudo-
odeoutlines an implementation of the algorithm just des
ribed:Algorithm 2.Initialize Sta
k with a
olle
tion of boxes [x1℄; : : : ; [xN ℄while Sta
k is not emptyf Get a box [x℄ from Sta
kif [x℄ is too largeBise
t [x℄ in all dire
tions that are wider than MaxSizePut the partitioned boxes in Sta
kelseCompute a time step �t and an en
losure [x0℄
ontaining'([x℄;�t), using your favorite method (e.g. Algorithm 1)if [x0℄ satis�es the stopping
onditionPut [x0℄ in OutSta
kelsePut [x0℄ in Sta
kgOutput OutSta
kThe partitioning pro
ess just des
ribed is self-adaptive: there is no need to knowin advan
e where the expansion is strong, or in what dire
tions it may a
t. Ea
helement reports (by its
urrent size) if a expanding region has been en
ountered, andthe algorithm a
ts a

ordingly. Therefore, by just looking at the
omputed solutionset, we
an see whi
h regions that have en
ountered a lot of expansion/
ontra
tion.Also, as mentioned earlier, we
an attain quadrati
ally
lose approximations of theinterval-extended ve
tor �eld F by
hoosing MaxSize small.5 ExamplesIn this se
tion, we will present a few simple examples illustrating the e�e
tivenessof the partitioning pro
ess.Example 1: pure rotationConsider the system (_x1; _x2) = (x2;�x1). The exa
t solution is given by�'1(x1; x2; t)'2(x1; x2; t)� = �
os t sin t� sin t
os t��x1x2�:In [2℄, it is proved that Algorithm 1 produ
es extremely poor results for this system.If the time step is �xed, say �t = t=N , then the widths of the
omputed en
losingboxes satisfy exponential growth. If w0 denotes the width of the initial box, thenthe
omputed en
losing box at time t has width wt � etw0, whereas the en
losurewidth of the true solution is (
os t+ sin t)w0, whi
h is bounded above by p2w0.Algorithm 2, however, does not display this irregular feature. We
an makethe error as small as desired by
hoosing MaxSize suÆ
iently small. In Figure 2,

we illustrate a typi
al
omputed solution set at various times. Here, Algorithm 2was implemented (using the Euler step) on the initial set [�12 ; 12 ℄ � [�12 ; 12 ℄ withMaxSize = 1=5. No
omputation required more than one se
ond on an ordinarylaptop
omputer.
Figure 2: The solution set at times (a) �=20, (b) �=10, (
) �=4, and (d) �=3.Example 2: skew hyperboli
ityConsider the system (_x1; _x2) = (x2; x1). This is simply the un
oupled system(_x1; _x2) = (x1;�x2) rotated by the angle �4 . Here is a situation where one typi-
ally would expe
t
ontamination, mu
h like the
ase illustrated in Figure 1(a). InFigure 3, we again illustrate a
omputed solution set at various times. Here, Algo-rithm 2 was implemented (using the Euler step) on the initial set [�14 ; 14 ℄� [�14 ; 14 ℄with MaxSize = 1=16. Again, no
omputation required more than one se
ond onan ordinary laptop
omputer.

Figure 3: The solution set at times (a) p2=8, (b) p2=4, and (
) p2=2.Referen
es[1℄ L. H. de Figueiredo, J. Stol�, M�etodos num�eri
os auto-validados e apli
a�
~oes,Braz. Math. Colloq. 21, IMPA, 1997[2℄ R. E. Moore, Interval Analysis, Prenti
e-Hall Series in Automati
 Computation,Englewood Cli�s, N. J., 1966[3℄ R. E. Moore, Methods and Appli
ations of Interval Analysis, SIAM Studies inApplied Mathemati
s, Philadelphia, 1979[4℄ N. S. Nedialkov and K. R. Ja
kson, ODE Software that Computes GuaranteedBounds on the Solution, to appear in Advan
es in Software Tools for S
ienti�
Computing, (ed. H. P. Langtangen, A. M. Bruaset and E. Quak), Springer-Verlag, 1999

