Computational algorithms for
ordinary differential equations

Revised October 19, 1999

Warwick Tucker
IMPA, Est. D. Castorina 110
Jardim Botanico, 22460-320

Rio de Janeiro, RJ, Brazil
warwick@impa.br

October 14, 1999

Abstract

We present an algorithm for computing rigorous solutions to a large class of or-
dinary differential equations. The main algorithm is based on a partitioning process
and the use of interval arithmetic. We illustrate the presented method by computing
solution sets for two explicit systems.

1 Introduction

In this paper, we will consider a general initial value problem:

i=f=); 2(0) = m, 1)

where f € C'(D,R"), and D C R". We will sometimes denote the solution of (1) by
o(xz,t), with @(x,0) = 2(0). This setting is classical, and much studied in standard
text books on ordinary differential equations. It is, however, not difficult to find
situations where having a whole set of initial values is natural. Indeed, any model
of a physical system always has some uncertainty concerning the measured initial
values. Furthermore, we are seldom sure of exactly which vector field models our
system. The natural thing do is to enclose the initial value xy in a box [zy] whose
side lengths reflect the maximal error made in the measurements of the initial data,
and to replace f in (1) by a function F', whose components are interval valued. The
problem we then face is to find the solution of the following system:

z e F(z]); x(0) € [z, (2)

Our objective is to compute a set that is guaranteed to contain all the solutions of
(2) at a given time 7. The method we present is based on a partitioning process,
which will be presented in more detail below.

2 Interval arithmetic

In this section, we will briefly describe the fundamentals of interval arithmetic. For
a concise reference on this topic, see [2].

Let J denote the set of closed intervals. For any element [a] € J, we adapt the
notation [a] = [a,a]. If ® is one of the operators +, —, -, /, we define arithmetic
operations on elements of J by

[a] ©[b] = {a©®b: a € [a],b € [b]},

except that [a]/[b] is undefined if 0 € [b]. Working exclusively with closed intervals,
we can describe the resulting interval in terms of the endpoints of the operands:

la] + [6] = [a+ b,a+5
fa] — [= [a— b.a— b
la] - [b] = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)|
[al/[b] = [a] - [1/B,1/8), 0 ¢ [B].

To increase speed, it is customary to break the formula for multiplication into nine
cases (depending of the signs of the endpoints), where only one case involves more
than two multiplications. Moreover, the formula for division can be modified for
improved accuracy. When computing with finite precision, directed rounding must
also be taken into account, see e.g. [2], [3], [1].

It follows immediately from the definitions that addition and multiplication are
both associative and commutative. The distributive law, however, does not always
hold. As an example, we have

[71, 1]([71a0] + [374]) = [71, 1][2a4] = [74, 4]
whereas
[—1,1][-1,0] + [-1,1][3,4] = [-1,1] + [-4,4] = [-5,5].

This unusual property is important to keep in mind when representing functions as
part of a program. Interval arithmetic satisfies a weaker rule than the distributive
law, which we shall refer to as sub-distributivity:

[a]([0] + [¢]) < [a][b] + [a][c]-
Another key feature of interval arithmetic is that it is inclusion monotonic, i.e., if
[a] C [a'], and [b] C [¥'], then
[a] © [b] C [a] © [b'],

where we demand that 0 ¢ [b] for division.
We can turn J into a metric space by equipping it with the Hausdorff distance:

d([al, [b]) = max{|a — bl,|a — b}

For dealing with higher dimensional problems, we define the arithmetic operations
to be carried out component-wise. We then talk about an interval vector or, more
simply, a boz. The metric is then defined by

d([a], [b]) = max {d([a], [bi])}-

1<i<n

Matrix operations are defined analogously to the real case.

3 Interval-valued functions

Consider a function f € C1(D,R"), where D C R". Given a box [a] we define the
range of f over [a] by

R(f;la]) = {f(z): z € [a]}.

If we fix a representation of f (which we also denote f), and evaluate it in interval
arithmetic, we always have

R(f;[a]) € f([a]),

due to the inclusion monotonic property. From this property, it also follows that by

splitting the box [a] into smaller pieces [ag], ..., [ay], we have
R(f;[a)) € | f(ai]) € f([a]).
i=0

It is clear that, by splitting [a] into many small pieces, we can approximate the true
range of f over [a] with any desired accuracy. There are, however, better ways to
approximate the range of f: let m([a]) denote the midpoint of [a]. By the Mean
Value Theorem, we have the following relation:

R(f;la]) € fuv(lal) := f(m(la])) + [Df]([al)([a] — m([a])).

Let ||[a]|| denote the maximal diameter of [a]. It is easy to show that

d(R(f;al), f([al)) = O([[a]l}),

whereas
d(R(f;a]), farv ([a])) = O([|[a]|]?).

It is obvious that the latter version is preferred, seeing that we have a quadrati-
cally small error. This assumes, however, that we only deal with intervals of small
widths. The most fundamental part of our algorithm the partitioning process
guarantees that this indeed will be the case, and thus allows us to attain a quadratic
approximation of the vector field range R(f; [a]).

As mentioned earlier in the introduction, it is often desirable in applications to
exchange the function f for its interval extension F. Given a finite representation
of f, we define F' to be any function having the same representation as f, except
that all real coefficients are replaced by enclosing intervals. As an example, given
f(z) = 2z — my, we may take F(z)=[1.99,2.01]z — [3.14, 3.15]y.

4 Algorithms

In this section, we will present some algorithms for rigorously solving an initial value
problem. We will start with the most basic approach, using the Euler method.
The solution of (1) is formally given by

tit1
plotin) = gl t)+ [ol)i, Q

where ¢(z,t9) = 9. Approximating the integrand in (3) by f(p(z,t;)), we arrive
at the classical Euler method, which gives the iterative scheme

Tipr = o + Atif(z;) i>0

for an approximate solution to (1), i.e., z; = ¢(x,t;). Here we have used the notation
At; = t;31 — t;. The error we are making is in assuming that the vector field f is
constant over each time step. With interval arithmetic this can be overcome by
using the following algorithm (in which we have omitted the stopping condition for
clarity):

Algorithm 1. For i > 0 do the following:

1 Enclose the computed solution at step i in a box: [x;] C [%;];
2 Compute a time step At; such that [x;] + At; F([z;]) C [Z4];
3 Set [$i+1] = [:El] + AtzF([.’il])

This algorithm produces a box-valued solution that is guaranteed to contain the
true solution, i.e., ¢(xg,t;) € [z;]. Moreover, it also covers the case when the initial
value is a whole box. There is, however, one major flaw in this method: even if the
true solution set is shrinking, the computed boxes [z;] are always non-decreasing in
i. This is because we always have the equality ||[a] + [b]|| = ||[a]]| + [|[b]]| for any two
intervals [a] and [b].

The abovementioned problem can be overcome by replacing the Euler step by
a higher order Taylor-method, see e.g. [2], [4]. This may increase the accuracy on
a local level, but we are still left with a global problem: if the flow of the system
under consideration is not contracting in all directions, the strongest expanding (or
neutral) direction will generically contaminate all other directions. By this, we mean
that the computed enclosures [z;] will expand in all directions, although the true
solution may contract in several directions. This phenomena is often referred to as
the wrapping effect, see Figure 1(a).

Figure 1: (a) The wrapping effect, and (b) how to overcome it.

Fortunately, we can reduce the wrapping effect by enforcing a fized scale: if an
element of any intermediate solution set (including the initial set) attains a width
larger than a predetermined constant MaxSize, it is bisected along the directions
that are too wide. Thus, the computed solution set will be made up of several
small boxes, all having widths less than MaxSize. If the system has contracting
directions, these will now show up in the solution set. This is due to the fact
that elements squeeze together in the contracting directions, which results in an
overlapping effect as illustrated in Figure 1(b). The global error is now of the same

order as MaxSize, and the contamination is avoided. The following pseudo-code
outlines an implementation of the algorithm just described:

Algorithm 2.
Initialize Stack with a collection of bozxes [x1],...,[TN]
while Stack is not empty
{
Get a box [z] from Stack
if [z] is too large
Bisect [x] in all directions that are wider than MaxSize
Put the partitioned boxes in Stack
else
Compute a time step At and an enclosure [x'] containing
o([x], At), using your favorite method (e.g. Algorithm 1)
if [2'] satisfies the stopping condition
Put [2'] in OutStack
else
Put [2'] in Stack
}

Output OutStack

The partitioning process just described is self-adaptive: there is no need to know
in advance where the expansion is strong, or in what directions it may act. Each
element reports (by its current size) if a expanding region has been encountered, and
the algorithm acts accordingly. Therefore, by just looking at the computed solution
set, we can see which regions that have encountered a lot of expansion/contraction.
Also, as mentioned earlier, we can attain quadratically close approximations of the
interval-extended vector field F' by choosing MaxSize small.

5 Examples

In this section, we will present a few simple examples illustrating the effectiveness
of the partitioning process.

Example 1: pure rotation
Consider the system (&1,%9) = (22, —z1). The exact solution is given by

o1(z1,22,t)\ [cost sint\ [z
(@2(351,%2775)) B (‘Sint COSt) ($2>
In [2], it is proved that Algorithm 1 produces extremely poor results for this system.
If the time step is fixed, say At = ¢/N, then the widths of the computed enclosing
boxes satisfy exponential growth. If wg denotes the width of the initial box, then
the computed enclosing box at time ¢ has width w; ~ e’wg, whereas the enclosure
width of the true solution is (cos ¢ + sint)wy, which is bounded above by v/2uwy.

Algorithm 2, however, does not display this irregular feature. We can make
the error as small as desired by choosing MaxSize sufficiently small. In Figure 2,

we illustrate a typical computed solution set at various times. Here, Algorithm 2
was implemented (using the Euler step) on the initial set [—3, 3] x [—3, 3] with
MaxSize = 1/5. No computation required more than one second on an ordinary
laptop computer.

Figure 2: The solution set at times (a) 7/20, (b) 7/10, (¢) 7/4, and (d) /3.

Example 2: skew hyperbolicity

Consider the system (&1,42) = (x9,21). This is simply the uncoupled system

(#1,%2) = (1, —x2) rotated by the angle 7. Here is a situation where one typi-

cally would expect contamination, much like the case illustrated in Figure 1(a). In
Figure 3, we again illustrate a computed solution set at various times. Here, Algo-
rithm 2 was implemented (using the Euler step) on the initial set [—, 1] x [—1, 1]
with MaxSize = 1/16. Again, no computation required more than one second on

an ordinary laptop computer.

Figure 3: The solution set at times (a) v/2/8, (b) v2/4, and (c) v/2/2.

References

[1] L. H. de Figueiredo, J. Stolfi, Métodos numéricos auto-validados e aplicacoes,
Braz. Math. Collog. 21, IMPA, 1997

[2] R. E. Moore, Interval Analysis, Prentice-Hall Series in Automatic Computation,
Englewood Cliffs, N. J., 1966

[3] R. E. Moore, Methods and Applications of Interval Analysis, STAM Studies in
Applied Mathematics, Philadelphia, 1979

[4] N. S. Nedialkov and K. R. Jackson, ODE Software that Computes Guaranteed
Bounds on the Solution, to appear in Advances in Software Tools for Scientific
Computing, (ed. H. P. Langtangen, A. M. Bruaset and E. Quak), Springer-
Verlag, 1999

