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Unusual features: The database gives 100 digits rigorously proved using Computer-Assisted techniques
and 1000 digits using an optimal adaptive Taylor series method.
Running time: Not Applicable.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In computational physics and dynamics new developments
in numerical techniques appear continuously. As a consequence,
there is a need to validate the correctness and effectiveness of
these new methods. Therefore, it is advisable to have a top level
numerical database that may serve as a common benchmark for
all these new studies. A general belief is that it is not possible to
perform a reliable numerical simulation on a chaotic system, but
this is clearly amisunderstanding. In fact, using suitable techniques
and sufficiently high precision, it is possible to perform a very
precise simulation for deterministic dynamical systems. So, a top
and real challenge is to state correct and useful numerical data
that may be used by everybody. Thus, this paper focuses on
answering and providing results on the following question: is it
possible to provide useful data for very high-precision simulations
of deterministic chaotic systems? The answer is yes, and the
most suitable set of data corresponds to information about some
invariants of the system; in our case the set of unstable periodic
orbits. This set has several advantages: first, it is clear how to use
these data as a test of accuracy—simply try to follow one or several
periodic orbits. In addition to this, during the construction of the
set of benchmarks, we have reconfirmed some previous results on
the proposed model, the Lorenz model.

The Lorenz model [1] is the most classical and paradigmatic
low-dimensional chaotic problem since it is one of the first models
with the presence of chaotic behavior and chaotic attractors.
This nonlinear model has been analyzed by a large number of
researchers, but it is still an important dynamical system to be
studied. Based on a more complicated model by Saltzman [2],
Lorenz achieved his famous equations:

ẋ = σ(y − x), ẏ = −xz + rx − y, ż = xy − bz, (1)

where σ (the Prandtl number), r (the relative Rayleigh num-
ber) and b are three dimensionless control parameters. It is well
known that a good knowledge of the set of periodic orbits (POs)
of the Lorenz model (unstable periodic orbits, UPOs, foliated to the
attractor) provides some more general information about the sys-
tem, and gives critical information in chaotic regions [3–10]. There-
fore, having complete information of all UPOs of low–medium
multiplicity is highly desirable. Some partial data have been al-
ready published in the literature, but we focus on completing the
references, giving at the same time a useful benchmark for analyt-
ical and numerical techniques in both dynamical systems analysis
of low-dimensional chaotic systems, and in high-precision numer-
ical methods for ODEs.

The location of UPOs has been an important and a well stud-
ied problem by physicists [11–15] and mathematicians using a
vast number of numerical algorithms. Obtaining accurate informa-
tion of UPOs is thus a very interesting task. Another interesting
point is related to the question of computability of chaotic systems.
As commented above, deterministic chaotic systems can be accu-
rately numerically integrated, given sufficiently high precision; yet
this is scarcely done in the literature. Moreover, some very recent
publications state as a ‘‘computational challenge’’ the task of ob-
taining numerical solutions of the Lorenz system in some ‘‘long’’
time intervals [16–18]. The reported methods are extremely ex-
pensive, e.g. high-order implicit methods or simple implementa-
tions of the Taylor series method. As such they require thousands
of CPU-hours on massive parallel computers. Let us remark that
this issue – high-precision numerical solutions of ODEs – nowa-
days is handled without any problem by several freely available
softwares, such as TIDES1 [19] that uses a highly optimized Taylor-
series method [20]. As an example, using this software, a periodic
orbit (with 500 digits of precision) of the Lorenz systemwas shown
in [21]. Of course, locating the initial conditions of the UPOs, and
proving their existence with high precision become a much more
complex problem. In this paperwehave used a fast and accurate al-
gorithm for the correction of approximate periodic orbits [22] that
allows us to locate UPOs for any dynamical system up to any ar-
bitrary precision and, in particular, to compute UPOs with 1000
precision digits for low-dimensional problems such as the Lorenz
model. To our knowledge this is the only available method (Taylor
series method) capable of reaching arbitrary high precision (for in-
stance 1000 digits) for ordinary differential equations (ODEs) in a
reasonable computing time.

Another important application of the Taylor method is that it
can be made to use interval arithmetic, which allows us to obtain
validated numerical methods for differential equations. This is a
cornerstone of Computer-Assisted Proofs for proving the existence
of periodic orbits. Therefore, using interval methods, we give rigor
to the numerically obtained high-precision results. In other words,
the results rigorously enclose the exact invariants in small sets.
And therefore, we have not only some numerical results but, we
will have a rigorous result that states the skeleton of UPOs of the
system. This kind of information is an important complement to
numerical studies as it provides rigor to some simulations [23,24].

As a concrete benchmark, the values of the coordinates of nine
periodic orbits (one permultiplicity) along their complete period –
at fixed output times – are provided with 1000 precision digits for
comparison purposes for computational dynamics tests.

The work reported here gives a complete database of high-
precision and validated numerical data. We hope that these data
can act as a serious benchmark for new numerical and analytical
techniques aimed at dissipative chaotic systems.

The paper is organized as follows. In Section 2, we present
the low-precision location of unstable periodic orbits in chaotic
systems. In order to improve these, we explain in Section 3 the
computation of high-precision initial conditions of the periodic
orbits applied to the chaotic Lorenz system. Moreover, in this
sectionwe show the results of somenumerical tests using different
ODE solvers to illustrate their behavior for the Lorenz model.
Another important point that we deal with in Section 4 is the
rigorous location of unstable periodic orbits in chaotic systems. In
Section 5, we detail the contents of the developed database, which
is available to the scientific community. Finally, we present the
conclusions of this work, and in the Appendixwe show an example
of the files of the database.

1 http://cody.unizar.es/software.html
http://sourceforge.net/projects/tidesodes/.

http://cody.unizar.es/software.html
http://sourceforge.net/projects/tidesodes/


78 R. Barrio et al. / Computer Physics Communications 194 (2015) 76–83
Fig. 1. The Lorenz attractor and the symbolic notation.

2. Low-precision location of unstable periodic orbits in chaotic
systems

In this section, we describe how to locate low-precision unsta-
ble UPOs in the Lorenz model, for details see [25,26].

The Lorenz system (1) is well understood in terms of geometric
models [27]. It has been shown to be chaotic in the topological
sense for the non-classical [28] and classical [29] parameter values.
The existence of the Lorenz attractor has been verified using
Computer-Assisted Proofs techniques in [4].

Given the Lorenz model (1), let x(0) = y be the initial
conditions and

x = x(t; y), t ∈ R, x, y ∈ R3, (2)

the solution of the above autonomous differential system.
A periodic orbit, which is characterized by the vector y of initial

conditions and its period T , verifies the periodicity condition

x(T ; y) − y = 0. (3)

The chaotic attractor of the Lorenz model is illustrated in Fig. 1.
Here the classical Saltzman parameter values, b = 8/3, σ = 10,
r = 28 are used. The Lorenz system has three equilibria: one of
them is the origin P0 = (0, 0, 0), and the other two are symmetric:
P+ and P−, with coordinates (±

√
b(r − 1), ±

√
b(r − 1), r −

1) ≈ (±8.485, ±8.485, 27) [25]. In order to classify the orbits
densely filling the chaotic attractor, we use symbolic dynamics
notation [27]. Every time a trajectory passes through the left side
of the attractor the letter L is assigned to the trajectory. Likewise,
if the trajectory passes through the right side, the letter R is
assigned. It is known that any such infinite string of symbols
uniquely characterizes each periodic orbit. Periodic orbits repeat
indefinitely the finite sequence of symbols of its period, and can
therefore be characterized by a finite number of symbols. For
example, the LR periodic orbit does a loop on the left and another
one on the right. If a trajectory does two consecutive loops on the
left, one on the right, another one on the left and finally one on
the right, it corresponds to the notation LLRLR. Note that for the
Saltzman parameter values, two symbols are enough to describe
the orbits as the first return map is unimodal [27].

Now we describe the numerical techniques to obtain a low
precision location of the periodic orbits. Let us define a two-
dimensional section Σ—which is a rectangular subset of the plane
z = r − 1. We define the Poincaré map P:Σ → Σ as the planar
map P(x) = ϕ(TΣ (x); x), where ϕ denotes the flow, and TΣ (x) is
the return time, i.e., the time it takes for the trajectory starting at
x ∈ Σ to intersect the section Σ . Note that a periodic orbit of the
flow corresponds to a periodic orbit of the discretemap P . Our goal
here is to find all periodic orbits of P up to multiplicity 10.

For the parameter values we are considering, all periodic orbits
of the Lorenz equations are unstable. Therefore, we cannot rely
upon any simple contraction principle for the direct flow. Instead,
we use a variant of Newton’s method which brings contraction
into play. More precisely, wewill consider the global Poincarémap
F :Σm

→ Σm defined by

Fk(z) = x(k+1 mod m) − P(xk), k = 1, . . . ,m (4)

where z = (x1, . . . , xm) ∈ Σm (xk ∈ Σ). Note that a zero
of F corresponds to a multiplicity m (or period-m) orbit of P .
ApplyingNewton’smethod on F makes the simple zeros of F super-
attracting, and thus numerically stable.

In order to make our numerical computations rigorous, we
use set-valued methods (sometimes known as interval analysis,
see [30,31]). In this framework, the interval Newton method
becomes

N([z]) = ž − [DF([z])]−1F(ž), (5)

where [z] = ([x1], . . . , [xm]) is an interval vector, and ž is the
midpoint of [z]. IfN([z]) ⊂ [z], then F has a unique zero in [z], and
therefore P has a unique periodic orbit of multiplicitym, with each
iterate xk inside the rectangle [xk] ⊂ Σ . That is, in the conditions
of the interval Newton operator:

1. If N([z]) ⊂ [z], then ∃!y ∈ [z] such that F(y) = 0.
2. If N([z]) ∩ [z] = ∅, then F(z) ≠ 0 in [z].
3. If ∃y ∈ [z] such that F(y) = 0, then y ∈ N([z]).

Note thatwe do not prove the existence of periodic orbits using the
basic definition given by Eq. (3) (this is in general not possible);
instead we resort to well-established fixed-point theorems that
involve only open conditions. From these conditions we see that,
if we have a good approximation of a zero of a function F , then if
that approximation is enclosed inside some small interval vector
(with width 10−100, for example), and the property of inclusion
is satisfied (condition 1), then we can claim that the interval
vector contains exactly one zero of the function, and automatically
the result gives us a mathematical proof of the existence and
uniqueness of a periodic orbit.

In order to find good candidate enclosures [z] containing true
periodic orbits, we use the fact that – for the Lorenz system –
the periodic orbits are uniquely characterized by their symbolic
dynamics. In effect, this means that we know exactly how many
low-period orbits to expect, and roughly where to find them.
Using a very long trajectory, we can search amongst its iterates
for a best-approximate match for any particular periodic orbit.
Applying Newton’s method to this approximation, followed by a
small inflation into a set produces the desired candidate enclosure
[z]. For details, see [26].

3. High-precision location of unstable periodic orbits in chaotic
systems

This section reviews briefly the numerical algorithm that
permits to compute periodic orbits with very high-precision.

In order to compute the roots of Eq. (3), equivalently, to find
the initial conditions of a periodic orbit with high-precision, we
use an iterative corrector of UPOs based on some modifications of
the Newton method and the key use of an ODE solver able to solve
differential systems with arbitrary precision. The Newton method
begins with a set of approximated initial conditions (y0, T0),
obtained in the previous section, being (yi, Ti) at step i of the
iterative process. Our aim is improve them, in such a way that

∥x(Ti + ∆Ti; yi + ∆yi) − (yi + ∆yi)∥ < ∥x(Ti; yi) − yi∥.

For this purpose, we calculate the approximate corrections
(∆xi, ∆Ti), which are obtained by expanding

x(Ti + ∆Ti; yi + ∆yi) − (yi + ∆yi) = 0,
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Table 1
CPU time (seconds) for the computation of some UPOs depending on the precision
digits.

Orbit Precision digits
50 100 500 1000

LR 0.04 0.22 22.29 251.49
LLR 0.08 0.31 33.32 372.27
LLLR 0.10 0.40 43.05 478.18
LLLLR 0.13 0.47 50.38 579.47
LLLLLR 0.14 0.54 59.10 666.32
LLLLLLR 0.17 0.63 66.95 760.35
LLLLLLLR 0.18 0.69 75.20 845.65
LLLLLLLLR 0.20 0.77 85.17 929.85
LLLLLLLLLR 0.21 0.83 90.16 1034.80

in a multi-variable Taylor series up to the first order

x(Ti; yi) − yi +


∂x
∂y

− I


∆yi +

∂x
∂t

∆Ti = 0, (6)

where I is the identity matrix of order 3. The 3 × 3 matrix
∂x/∂y is the fundamentalmatrix, i.e. the solution of the variational
equations. This matrix evaluated at (yi, Ti) is an approximation Mi
of the monodromymatrixM . And, ∂x/∂t represents the derivative
of the solution with respect to the time, i.e., ẋ = f (x). This vector,
evaluated at the corrected initial conditions (yi, Ti), corresponds to
f (yTi) where yTi = x(Ti, yi).

In order to compute new values, the correction algorithm
imposes an orthogonal displacement

(f (yi))T∆yi = 0. (7)

In this way, the next (n + 1) × (n + 1) linear system is obtained
Mi − I f(yTi)
(f(yi))T 0


∆yi
∆Ti


=


yi − yTi

0


. (8)

The linear system (8) is solved using singular value decomposition
(SVD) techniques which provide a stable numerical method [22],
and this gives us the corrected initial conditions.

To be able to compute the correction we use the software
TIDES [19], that computes simultaneously the solution and the par-
tial derivatives of the solution of (3), in double or multiple preci-
sion (using the multiple precision libraries gmp and mpfr [32]).
This software is a key technique for computing the database as
this is one of the few available softwares capable to solve ODEs
in arbitrary precision. In [33], due to the lack of arbitrary preci-
sion numerical ODE solvers at that time, amuchmore cumbersome
approach (based on the Lindstedt–Poincaré technique) is used to
obtain high-precision periodic orbits.

The performance of the correction method can be seen in
Table 1. Each row, which corresponds to a periodic orbit of
multiplicitym (m = 2, . . . , 10), shows the CPU time in seconds vs.
the number of digits of the computational relative error (precision
digits). All the numerical tests have been carried out using a
personal computer PC Intel quad-core i7, CPU 860, 2.80 GHz under
a 2.6.32-29-generic SMP x86 64 Linux system.

The behavior of themethod in the determination of the periodic
orbits of the Lorenz model is quite similar for all of them, as we
obtain our goal of 1000 digits of precision in just 10 iterations.
Therefore, we illustrate the process in Fig. 2 just for the LR and
LLRLR periodic orbits. As expected, our algorithm is quadratically
convergent since it is mainly based on the Newton method.

Having a database of periodic orbits of the Lorenz system has
two important applications. The first one is to serve as benchmark
of high-precision numerical ODE solvers. In the literature there
are quite a few high-precision numerical integrations of chaotic
dynamical systems that can be used to that purpose. Therefore,
Fig. 2. Computational relative error vs. number of iterations in the computation of
high-precision initial conditions of periodic orbits.

it is quite useful for that community to dispose of such an
information, as to have correct data of initial conditions of periodic
orbits permits to compare easily different numerical methods. For
instance, in Fig. 3 we show some comparisons on the numerical
integration of the LR periodic orbit of the Lorenz model using the
well established codesdop853 (a Runge–Kutta code) andodex (an
extrapolation code) developed by Hairer andWanner [34], and the
Taylor series method implemented on the TIDES code.We observe
that the RK code dop853 becomes the fastest option for low-
precision requests. Nevertheless, in quadruple precision the odex
code is by farmore efficient than the RK code because it is a variable
order code, as the Taylor series method. Finally, for very high-
precision requests the Taylor series method is the only reliable
method amongst the standard methods, and is capable to solve
ODE systems up to thousands of precision digits in a reasonable
CPU time. In our benchmark test, Fig. 3, it has been of great help to
have as reference orbit the precise initial conditions and period of
several periodic orbits.

We remark that these tests are also related to the computability
of a deterministic chaotic system using a given precision (the
round-off unit of the computations). The Lyapunov exponent λ of a
periodic orbit is defined as log(m1)/T , where m1 is the magnitude
of its leading characteristic multiplier and T is its period. As an
example, for the orbit LR we have λ ≃ 0.99465. So, with this
value we may estimate the number of laps that we may follow
the periodic orbit with some precision. This total time Ttotal, the
Lyapunov time that reflects the limits of the predictability of the
system at a given precision, is obtained from exp(λTtotal) ≃ 1/u,
with u the round-off unit of the computations. If we take as
example the LR orbit with 1000 digits (u ≈ 3.8055 × 10−1000 in
mpfr) we obtain

Ttotal = −
log u

λ
≈ 2313.74

that is, we can follow the periodic orbit ⌊Ttotal/T⌋ = 1484 laps,
approximately. Note that this is the limit of the computability at
the precision u of the orbit LR of the Lorenz system, its Lyapunov
time. The computability of the Lorenz system itself is also obtained
in the same way, as it is already well known in the dynamical
systems literature.

Another application of having the database is to provide a
computer-assisted verified topological template of the Lorenz
attractor, whose existence was established in [4,5]. Here, we
just comment that, having a rigorous set of UPOs embedded in
the attractor, we can guarantee the values of the linking matrix
obtained considering the knots formed by the UPOs of the chaotic
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Fig. 3. Precision vs. CPU time diagram (benchmark test) in double, quadruple and multiple precision for the numerical integration of the LR periodic orbit of the Lorenz
model using a Runge–Kutta code (dop853), an extrapolation code (odex) and a Taylor series method (TIDES code).
attractor. The topological structure of the Lorenz attractor [6–8]
is described in terms of a paper-sheet model, called a template
made of ‘‘normal’’ and twisted, like a Möbius band, stripes. The
topological model can be quantified by a set of linking numbers—
the local torsions. The torsions are, locally, the crossings number
of the stripes in the template, i.e., the number of twists of the
layering graph between any two unstable periodic orbits in the
chaotic attractor. The local torsions determine the linkingmatrices
and hence the template of the attractor. In practice, the template
may be derived using a Poincaré return map of trajectories in the
chaotic attractor, and by studying the unstable periodic orbits of
the attractor [35]. This information is briefly summarized in Fig. 4.
On the top we show the classical topological ‘‘mask’’ [6–8,36].
On the bottom we show the unimodal FRM (First Return Map)
for the attractor of the Lorenz model (for the classical Saltzman
values) defined on successive localmaxima, z(i). This is a unimodal
map; it has only one relative extremum. As a consequence, the
topological template has just two branches and therefore, we need
two symbols to describe all orbits. Moreover, the Linking Matrix
(LM), the Insertion Matrix and the topological template of the
equivariant fundamental domain (one wing) [37] are given to
complete the information. This information is checked with our
rigorous database, obtaining the same results.

This is just one example of the use of high-precision validated
data (apart from the use also as a benchmark test of validated
numerical ODE integrators).

4. Rigorous location of unstable periodic orbits in chaotic
systems

The rigorous computations needed to validate the high-
precision periodic orbits were carried out along the strategy
outlined in Section 2. All computations were performed using the
CAPD library, see [38], which uses gmp and mpfr libraries for its
multiple precision. Given a specific high-precision approximation
of the initial conditions at the m different iterates of the Poincaré
map of a periodic orbit (x1, . . . , xm), we begin by inflating the
trajectory into an interval vector [z] = ([xi], . . . , [xm]), each
component having width 10−100. This will be our candidate
enclosure for applying the interval Newton method for the global
Poincaré map, as described earlier. We note that to obtain a
rigorous enclosure we need a validated solution of the ODE system
(see the review [39] or the book [40] for mode details about
suitable numerical methods based on interval arithmetic and
rigorous computing).

The CAPD library can compute rigorous enclosures of both the
Poincaré map P and its partial derivatives DP over a given initial
set [z] ⊂ Σm. Looking at the structure of the global Poincaré map
(4), this is all information we need to form the Newton image of
the enclosure set [z] according to (5). For each enclosure, we verify
thatN([z]) ⊂ [z], and thus validate the existence (anduniqueness)
Fig. 4. Top: Orbits on the Lorenz template [36] and its topological mask. Bottom:
FRM, linking matrix and the topological classical template of the equivariant
fundamental domain (one wing) of the chaotic attractor for the Lorenz model.

of a multiplicity-m orbit within distance 10−100 of its given high-
precision approximation.

All in all, we validated all 116 periodic orbits with a tolerance
of 10−100. For this, we performed the computations with 400
bits of precision, and used a Taylor integration scheme of order
90. The CPU time varied between 35 s and 25 min per orbit
for a single thread running on a AMD Opteron 6274 @ 2.2 GHz.
Theoretically, it should be possible to reduce the computation
time for a multiplicity-m orbit by a factor m by parallelizing the
component-bound computations. We did not pursue this option;
instead we parallelized over the orbits, and launched all 116
computations concurrently on 64 threads. The total computation
time was less than 50 min.

As a final result, we conclude that all 116 files with high-
precision initial conditions include also a validated periodic orbit;
in this case the 100 first initial digits are correct. In this sense, each
file gives rise to a theorem. Below we show one example using the
data file lor_2_LR.txt shown in the Appendix.

Theorem 1. For the Lorenz system (1) with the Saltzman parameter
values (b = 8/3, σ = 10, r = 28) there exists a unique periodic
orbit with symbolic notation LR (multiplicity m = 2) whose initial
conditions are

x0 = x̌0 ± 10−100,

y0 = y̌0 ± 10−100,
z0 = 27,
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Table 2
Number of periodic orbits nm depending on their multiplicity m and total number
of computed UPOs.

m 2 3 4 5 6 7 8 9 10 TOTAL

nm 1 1 2 3 5 9 16 28 51 116

Fig. 5. Periodic orbits of the Lorenz model of multiplicities between 2 and 5.

with

x̌0 = −2.147367631918116125647657994834426364
539183126377307270606358273648286122
240899658325767107886028868,

y̌0 = 2.078048211461249400317478579765812352
432481250078273367551283626639574888
006207392602813065110324916.

Note that the above result is a theorem; it is rigorously
proved via Computer-Assisted techniques. The 1000 digits in the
files are very high-precision results checked numerically with a
carefully done numerical study (they have been checkedwithmore
precision digits and we have some ‘‘guarantee’’ on the correctness
of the presented digits, but all the digits have not been proved
theoretically). In [16,18] some long numerical integrations with
high-precision (thousands of digits) of one particular set of initial
conditions for the Lorenz system are also presented.

Although the techniques used in this paper are not new, the
systematic high-precision computations can serve as a benchmark.
Indeed, the 100 leading digits of the coordinates of each reported
periodic orbit can serve as amust-pass-test for anynewODE-solver
equipped with high-precision arithmetic as they are all proved
to be correct. The remaining 900 digits – which we believe are
accurate, but not proven – can be used for extended comparisons.
Finally, the timings reported here can also serve as a benchmark
for efficiency.

5. The Lorenz database

The goal of this work is to develop a database that consists
of two kinds of files. The complete database is provided as a
complementary folder of this paper. In the first set of files, we
provide the initial conditions of one periodic orbit per file with
1000 precision digits and the values of these coordinates validated
with 100 digits that prove the existence of the periodic orbit. Recall
that in all cases the z-coordinate has a fixed value, z = 27 (the
same as the equilibria P±).
In total there are 116 fileswith initial conditions (all the UPOs of
the Lorenz attractor of multiplicitym ≤ 10) as we show in Table 2,
which specifies the number of UPOs, nm, depending on their
multiplicity,m, and the total number of computedUPOs. These files
are denoted by lor_m_symb.txtwherem is themultiplicity and
symb the symbolic sequence of the orbit. The format of these files
is shown in the Appendix. First of all, the individual number of the
orbit (num) is specified; then the multiplicity (orbit-mult), the
number of the orbit among all the orbitswith the samemultiplicity
(num-same-mult) and the symbolic sequence of the orbit (symb).
After that we find, with 1000 precision digits, the period T and
the initial conditions x and y of the orbit (z = 27 in all cases).
Finally, the rigorous intervals for the same variables (x, y, z) in high-
precision are obtained just by taking the first 100 digits (these are
the rigorously proved digits).

Besides, there are nine files with complete data of one periodic
orbit each, one per each multiplicity (2 ≤ m ≤ 10), which are
denoted as symb_orbit.txt. In these files, we give with 1100
digits the values of the coordinates of the orbit at fixed output
times with time increment h = 0.01. The format of the files is to
give in each line one complete point, that is, the values of ti, x(ti),
y(ti), z(ti). Most of the shown digits are most likely correct (the
computations have been done with an error tolerance of 10−1090

and each data has been carefully checked for the first 1000 digits),
and again the first 100 digits are rigorously proved digits.

In Fig. 5, we can see some of the orbits, ofmultiplicities between
2 and 5, that have been computed and that are included in the
database. The LR and LLRR orbits are symmetric, while the LLR,
LLLR, LLLLR, LLLRR and LLRLR orbits are non-symmetric.

6. Conclusions

The goal of this paper is to present a high-precision and vali-
dated database of periodic orbits useful to scientific community.
This consists of hundreds of approximated initial conditions (with
1000 digits of precision) of all the periodic orbits of the Lorenz
attractor with multiplicities between 2 and 10. To obtain this
database, we have combined two different methods: a corrector
of periodic orbits algorithm in arbitrary precision, which allows us
to obtain the initial conditions of UPOs of any dynamical system
with the required precision, and Computer-Assisted techniques to
prove the existence of these orbits within a tolerance of 10−100.
This database is a ‘‘computational challenge’’ and it can be used as a
benchmark for checking newnumerical and theoretical techniques
in computational physics and dynamics.

Acknowledgments

We thank Profs. E. Ghys and J. Leys [36] for permission of using
a picture of Fig. 4. The authors R.B. and A.D. were supported by
the Spanish Research project MTM2012-31883, and W.T. by the
Swedish Research Council grant 2007-523.

Appendix. File lor_2_LR.txt

================================================
Lorenz Database: High precision and

rigorous data file
File: lor_2_LR.txt

================================================
* Numerical data with 1000 precision digits ***
* (error < 10^(-1000)) ***
* The first 100 digits are rigorously proved ***
* via CAP techniques. They give a Theorem ***
* of existence of the Periodic Orbit. ***
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************************************************
******************* FORMAT *******************
************************************************
***************** Data of the orbit ***********
* num | orbit-mult | num-same-mult | symb

1 2 1 LR
*********** Initial conditions (1000 digits) ***
T = 1.5586522107161747275678702092126960705284

805489972439358895215783190198756258880854
355851082660142374227874628676588925856759
114998565388913608713285011019327706322439
313214649374465282053245397773437382070265
038689003930946637574777949263393159437541
623011610884405671641950154306933323049096
162291405158398552430505472975477593892734
206854673172738936026993914663645933054022
189761784055859520883303114513251097516232
856917878431617597363720748783672257211325
662086758469406354756156487387177650044370
454248933780710742659716738020422549262291
333210964856082100412502113122061849916697
973523392695931523265206965940137017550539
699545689811043543162019034070112606824561
903563007526645593784918880438439263450120
625109594685133700759631857668509485055243
223996057006402060530026179463699015245595
033093872400297506789639255487515858437209
627081541412899445444256582441991078147467
765689395686384271173335081992134537066065
694742760880531107895985179385297145888797
830428111474345661639697827320258658080745
546645389940133286984072568999426750324798
267652782047614476776946084749296290153599
326908602

x = -2.1473676319181161256476579948344263645391
831263773072706063582736482861222408996583
257671078860288685519677370558563429547486
605895676290598523687812781098722230972187
262033850465367144898223380814452401981070
814342093623677105339157133941615290986783
571794270184327168026759931161103325194824
164227655414132873997507004053059711216356
574150375356858873365020048243430228835021
836513730479627166658184017565158130895088
274385428150842625062154742132607627769976
978976419805208327908486164289266143982923
606380647647044871033936630315467336826742
843458831192176096824455498673117655818315
383124497033769336819193724989102515222691
900292841071936008530072491470578952381790
051769917148434292675094735410259879438780
966758152308238848109127435975809636611429
188564166440038221628456041830667200064968
436090251373045854367659518877238474359199
744355074321354572981759029457060162234081
997571617253506903724889072866646150027113
706583673983028023296187777548562182909040
415036997238022952647202830517650784159493
114408580942249235770049714948136302482824
667603017160138684083311963774670685336801
763179293

y = 2.0780482114612494003174785797658123524324
812500782733675512836266395748880062073926
028130651103249169852108870521308699282559
469673015670838903747526759636485599294729
432463904901202551341628059576690377511330
638977113875846234568597404146956064096117
239797849362718721864237093464022138068085
394681323529698800475076250038669795767969
360955427915532896483014016015919944636236
662965349866267624234955157359579460952244
654359517991870154559448825863685819061560
961123926834254736653707830913133093954565
833197795039610240479117866798032368314397
223028690056106631450511033879996633563025
708806934614955550764097498856242201673401
712794022785983063271985029968280404584960
027801129335843498299100475726125323052835
943174177460023453331904583876396932802531
016431720506859782544800224853690666966327
941170192404700687891069617885714789404814
934098731781680300758236420856811954640014
979712396472715422991678177345324057959566
642779652752526027994483211072185288125184
730180543839514812217592209661253548414412
422934425190796386507711054645070627748184
823866114202952135376014293316533904495746
013910176

z = 27
===============================================
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