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Abstract. In this paper we establish sharp invertibility results for the
elastostatics and hydrostatics single and double layer potential type
operators acting on Lp(∂Ω), 1 < p < ∞, whenever Ω is an infinite sector
in R

2. This analysis is relevant to the layer potential treatment of a vari-
ety of boundary value problems for the Lamé system of elastostatics and
the Stokes system of hydrostatics in the class of curvilinear polygons in
two dimensions, such as the Dirichlet, the Neumann, and the Regularity
problems. Mellin transform techniques are used to identify the critical
integrability indices for which invertibility of these layer potentials fails.
Computer-aided proofs are produced to further study the monotonic-
ity properties of these indices relative to parameters determined by the
aperture of the sector Ω and the differential operator in question.
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1. Introduction

Let Ω be a domain in R
n. Some of the classical boundary value problems

associated with the Lamé system in Ω are the Dirichlet, Neumann, and Reg-
ularity problems. When these problems are considered in the Lp(∂Ω) context,
1 < p < ∞, one seeks an elastic field �u ∈ C2(Ω) such that
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⎧
⎪⎪⎨

⎪⎪⎩

L�u = �0 in Ω,

�u|∂Ω = �f ∈ Lp(∂Ω),

M(�u) ∈ Lp(∂Ω),

(1.1)

in the case of the Dirichlet problem,
⎧
⎪⎪⎨

⎪⎪⎩

L�u = �0 in Ω,

∂νA(r)�u = �f ∈ Lp(∂Ω),

M(∇�u) ∈ Lp(∂Ω),

(1.2)

in the case of the Neumann problem, and
⎧
⎪⎪⎨

⎪⎪⎩

L�u = �0 in Ω,

�u|∂Ω = �f ∈ Lp
1(∂Ω),

M(∇�u) ∈ Lp(∂Ω),

(1.3)

in the case of the Regularity problem. Here L is the Lamé differential operator
from (3.1), ·|∂Ω denotes the non-tangential restriction to the boundary as in
(2.3), M denotes the non-tangential maximal operator introduced in (2.5),
∂νA(r) denotes the conormal derivative from (3.8) and (3.9), and the Sobolev
space of order one, Lp

1(∂Ω), is as in (2.6).
In a similar vein, analogous problems to (1.1)–(1.3) are posed for the

linearized, homogeneous, time independent Navier–Stokes equations, i.e., the
Stokes system. They reside in looking for a velocity field �u ∈ C2(Ω) and a
pressure function p ∈ C1(Ω) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

��u = �p in Ω,

div �u = 0 in Ω,

�u|∂Ω = �f ∈ Lp(∂Ω),

M(�u),M(p) ∈ Lp(∂Ω),

(1.4)

in the case of the Dirichlet problem,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

��u = �p in Ω,

div �u = 0 in Ω,

∂νA(r){�u,p} = �f ∈ Lp(∂Ω),
M(∇�u),M(p) ∈ Lp(∂Ω),

(1.5)

in the case of the Neumann problem, and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

��u = �p in Ω,

div �u = 0 in Ω,

�u|∂Ω = �f ∈ Lp
1(∂Ω),

M(∇�u),M(p) ∈ Lp(∂Ω),

(1.6)

in the case of the Regularity problem. The conormal derivative ∂νA(r){�u,p}
in (1.5) is as introduced in (4.3).
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Boundary value problems for the Lamé and Stokes systems in non-
smooth domains have been investigated in numerous contexts and the math-
ematical and engineering literature on these topics is very ample. Some of
the classical references are the monographs by Deuring [10], Kupradze et
al. [23,24], Ladyzhenskaya [25], and Maz’ya [29]. The case of the Lamé sys-
tem in Lipschitz domains and domains with isolated singularities has been
considered by, among others, Bacuta and Bramble [3], Dahlberg et al. [6–8],
Lewis [27], Mayboroda and Mitrea [28], Maz’ya et al. [20,21,29–31], and Shen
[41]. Boundary value problems for the Stokes system in non-smooth domains
have been treated by Dauge [9], Deuring [11], Fabes et al. [14], Kellogg and
Osborn [17], Kilty [18], Kohr and Wendland [19], Maz’ya and collaborators
[20–22,29,30], Mitrea and Wright [34], and Shen [41,42].

Considering for instance the Regularity problem, when Ω is a bounded
Lipschitz domain in R

n, n ≥ 3, with connected boundary and p = 2, the well-
posedness of the boundary value problem (1.3) has been studied by Dahlberg
et al. [7]. Building on the work in [8], the well-posedness of (1.3) in the class
of bounded Lipschitz domains in R

3 was further investigated by Dahlberg
and Kenig [6] who showed there exists ε = ε(Ω) > 0, depending only on
the Lipschitz character of the domain Ω, such that the problem (1.3) is well-
posed whenever p ∈ (1, 2 + ε). This integrability range is sharp in the class
of bounded Lipschitz domains in R

3. The regularity problem (1.6) for the
Stokes system in the class of bounded Lipschitz domains in R

n, n ≥ 3, with
connected boundary has been treated by Fabes et al. [14] when p = 2. More
recently, as a byproduct of their study of the transmission boundary value
problem for the Stokes system, Mitrea and Wright established in [34] opti-
mal well-posedness results for (1.4)–(1.6) in Lipschitz domains with arbitrary
topology, in all space dimensions.

The focus of this paper is to establish sharp invertibility results for
singular integral operators naturally associated with problems (1.1)–(1.3) and
(1.4)–(1.6), stated in the class of infinite sectors in two dimensions. Our main
result regarding layer potential operators associated with the Lamé system is

Theorem 1.1. Let Ω ⊆ R
2 be an infinite sector of aperture θ ∈ (0, 2π), assume

p ∈ (1,∞), and consider the Lamé system of elastostatics in Ω as in (3.1)
with Lamé moduli μ > 0 and λ + μ ≥ 0. Introduce

κ :=
μ + λ

3μ + λ
. (1.7)

Then κ ∈ [0, 1) and the following hold:
(A) If κ ∈ (0, 1), there exist

p1(θ, κ) ∈
(
2, 2π−θ

π−θ

)
and p2(θ, κ) ∈

(
2π−θ
π−θ ,∞

)
, if θ ∈ (0, π),

p3(θ, κ) ∈
(

θ
θ−π ,∞

)
and p4(θ, κ) ∈

(
2, θ

θ−π

)
, if θ ∈ (π, 2π),

(1.8)

such that

p1(θ, κ) = p4(2π − θ, κ) and p2(θ, κ) = p3(2π − θ, κ), ∀ θ ∈ (0, π), (1.9)

with the following significance.
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(A.1) With SLamé denoting the single layer potential operator in (3.12),
there holds

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞)\{p1(θ, κ), p2(θ, κ)},
(1.10)

and

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{p3(θ, κ), p4(θ, κ)}.
(1.11)

(A.2) With KLamé
Ψ standing for the boundary-to-boundary pseudo-stress

double layer potential operator from (3.27), the operators

± 1
2I + KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (0, π) if and only if p ∈ (1,∞)\{p′

1(θ, κ), p′
2(θ, κ)},

(1.12)

and the operators

± 1
2I + KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{p′

3(θ, κ), p′
4(θ, κ)}.

(1.13)

Here for each j ∈ {1, . . . , 4}, p′
j(θ, κ) stands for the conjugate expo-

nent of pj(θ, κ).
(A.3) With ∂νΨ := ∂

∂νΨ
standing for the pseudo-stress conormal deriva-

tive from (3.10), and with DLamé
Ψ denoting the boundary-to-domain

pseudo-stress double layer potential operator from (3.26), one has
that

∂νΨDLamé
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ (0, π) if and only if p ∈ (1,∞)\{p1(θ, κ), p2(θ, κ)},

(1.14)

and

∂νΨDLamé
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{p3(θ, κ), p4(θ, κ)}.

(1.15)

(B) If κ = 0 then:
(B.1) The operator

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞)\{ 2π−θ
π−θ

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{ θ
θ−π

}
.

(1.16)

(B.2) The operators

± 1
2I + KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (0, π) if and only if p ∈ (1,∞)\{ 2π−θ

π

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{ θ
π

}
.

(1.17)

(B.3) The operator

∂νΨDLamé
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ (0, π) if and only if p ∈ (1,∞)\{ 2π−θ

π−θ

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞)\{ θ
θ−π

}
.

(1.18)

(C) For each κ ∈ [0, 1) one has:
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(C.1) The operator

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.19)

(C.2) The operators

± 1
2I + KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ = π for all p ∈ (1,∞). (1.20)

(C.3) The operator

∂νΨDLamé
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ = π for all p ∈ (1,∞).

(1.21)

Before stating a similar result regarding the hydrostatics layer potential
operators, let us consider the function

f : [0, π] −→ R, f(θ) := sin θ + (2π − θ) · cos θ. (1.22)

A simple differentiation shows that f ′(θ) = −(2π − θ) · sin θ < 0 on (0, π),
and consequently f is strictly decreasing on (0, π). Combined with the fact
that f(π/2) = 1 and f(2π/3) =

√
3

2 − 2π
3 < 0, we obtain that

there exists a unique θo ∈ [0, π]
such that sin θo + (2π − θo) · cos θo = 0,

(1.23)

and
θo ∈ (π/2, 2π/3). (1.24)

In addition

f(θ) > 0 whenever θ ∈ [0, θo) and f(θ) ≤ 0 whenever θ ∈ [θo, π]. (1.25)

In fact, using a computer-assisted proof (see Lemma 5.4) it can be shown
that

θo ∈ [1.78977584927052, 1.78977584927053]. (1.26)

Theorem 1.2. Let Ω ⊆ R
2 be an infinite sector of aperture θ ∈ (0, 2π), assume

p ∈ (1,∞), and recall θo from (1.23)–(1.25). Then the following hold.

(A) Suppose θ ∈ (0, θo)∪ (2π −θo, 2π). Then there exist integrability indexes
p1(θ), p2(θ), p3(θ), p4(θ) ∈ (2,∞) such that

p1(θ) ∈
(
2, 2π−θ

π−θ

)
and p2(θ) ∈

(
2π−θ
π−θ ,∞

)
, if θ ∈ (0, θo),

p3(θ) ∈
(

θ
θ−π ,∞

)
and p4(θ) ∈

(
2, θ

θ−π

)
, if θ ∈ (2π − θo, 2π),

(1.27)

and

p1(θ) = p4(2π − θ) and p2(θ) = p3(2π − θ), ∀ θ ∈ (0, θo), (1.28)

with the following significance.
(A.1) With SStokes standing for the operator in (4.12), there holds

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, θo) if and only if p ∈ (1,∞)\{p1(θ), p2(θ)},
(1.29)
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and
SStokes : Lp(∂Ω) → L̇p

1(∂Ω) is invertible
when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞)\{p3(θ), p4(θ)}.

(1.30)

(A.2) With KStokes
Ψ denoting the boundary-to-boundary pseudo-stress dou-

ble layer potential operator from (4.15), the operators

± 1
2I + KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (0, θo) if and only if p ∈ (1,∞)\{p′

1(θ), p
′
2(θ)},

(1.31)

and the operators

± 1
2I + KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞)\{p′

3(θ), p
′
4(θ)}.

(1.32)

Here for each j ∈ {1, . . . , 4}, p′
j(θ) stands for the conjugate expo-

nent of pj(θ).
(A.3) With ∂νΨ standing for the pseudo-stress conormal derivative from

(4.3)–(4.4), and with DStokes
Ψ standing for the boundary-to-domain

pseudo-stress double layer potential operator from (4.14), one has
that

∂νΨDStokes
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ (0, θo) if and only if p ∈ (1,∞)\{p1(θ), p2(θ)},

(1.33)

and
∂νΨDStokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞)\{p3(θ), p4(θ)}.
(1.34)

(B) If θ ∈ [θo, π) ∪ (π, 2π − θo] then there exist q1(θ), q2(θ) ∈ (2,∞) such
that

q1(θ) ∈
(
2, 2π−θ

π−θ

)
if θ ∈ [θo, π),

q2(θ) ∈
(
2, θ

θ−π

)
, if θ ∈ (π, 2π − θo],

(1.35)

and
q1(θ) = q2(2π − θ) ∀ θ ∈ [θo, π), (1.36)

with the following significance.
(B.1) The operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ [θo, π) if and only if p ∈ (1,∞)\{q1(θ)},
(1.37)

and the operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞)\{q2(θ)}.
(1.38)

(B.2) The operators

± 1
2I + KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ [θo, π) if and only if p ∈ (1,∞)\{q′

1(θ)},
(1.39)

and the operators

± 1
2I + KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞)\{q′

2(θ)}.
(1.40)
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Here for each j ∈ {1, 2}, q′
j(θ) stands for the conjugate exponent

of qj(θ).
(B.3) The operator

∂νΨDStokes
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ [θo, π) if and only if p ∈ (1,∞)\{q1(θ)},

(1.41)

and the operator

∂νΨDStokes
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞)\{q2(θ)}.

(1.42)

(C) The following hold:
(C.1) The operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.43)

(C.2) The operators

± 1
2I + KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible
when θ = π for all p ∈ (1,∞). (1.44)

(C.3) The operator

∂νΨDStokes
Ψ : L̇p

1(∂Ω) → Lp(∂Ω) is invertible
when θ = π for all p ∈ (1,∞).

(1.45)

The methods employed for proving these results are those of pseudo-
differential calculus of Mellin type. This is possible since in the current
geometrical setting, that of infinite sectors in two dimensions, the opera-
tors ∂τSLamé and ∂τSStokes can be identified with Mellin convolution type
operators. The invertibiliy results established for the operators ∂τSLamé and
∂τSStokes yield in turn invertibilty results for the operators SLamé and SStokes,
and ultimately for the operators, ± 1

2I + KLamé
Ψ and ± 1

2I + KStokes
Ψ , and

∂νΨDLamé
Ψ and ∂νΨDStokes

Ψ , via the operator identities (3.266)–(3.267), for the
Lamé system, and (4.40)–(4.41), for the Stokes system.

One novel aspect of this work is the realization that interval analysis
techniques and computer-aided proofs can be employed to shed further light
on the nature of the critical indices from Theorems 1.1 and 1.2. The imple-
mentation of this mix of Mellin transform techniques and validated numerics
methods is motivated by the fact that the critical indices arise as roots of cer-
tain explicit elementary functions dependent however on parameters related
to the geometry of the domain and the underlying differential operator, θ
and κ respectively. The dependence of the roots on θ and κ is intricate mak-
ing it difficult to be studied via traditional analytic methods. As such the
computer-aided proofs we produce in the second part of the paper help us
elucidate at least partially the nature of this dependence. Concretely in the
case of the Lamé system we have:

Theorem 1.3. Let Ω be an infinite sector of aperture θ ∈ (0, 2π)\{π}, assume
κ ∈ (0, 1), and recall the critical indices pi(θ, κ), i ∈ {1, . . . , 4}, from Theo-
rem 1.1. Then, with ε = 10−6 and δ = 10−4, the following hold
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(1) The critical value p1(θ, κ) is increasing in θ and decreasing in κ on
[ε, π − ε] × [0, 1 − δ].

(2) The critical value p2(θ, κ) is increasing in θ and increasing in κ on
[ε, π − ε] × [0, 1 − δ].

(3) The critical value p3(θ, κ) is decreasing in θ and increasing in κ on
[π + ε, 2π − ε] × [0, 1 − δ].

(4) The critical value p4(θ, κ) is decreasing in θ and decreasing in κ on
[π + ε, 2π − ε] × [0, 1 − δ].

The reason for not being able to take ε = δ = 0 in Theorem 1.3 is that
the behavior of p1(θ, κ) ceases to be strictly monotonic if either θ = π or κ = 1
and a similar phenomenon can be observed for the other critical indices. As
our computer-aided proofs are based on set-valued computations, rounding
errors are introduced, and we can therefore only prove strict inequalities. We
should stress that, even though the proof of Theorem 1.3 is computer-aided,
it is rigorous in the mathematical sense (see e.g., [1,35,37]).

Based on (non-rigorous) numerical simulations we conjecture that when
κ ∈ [0, 1] there holds

p1(θ, κ) is increasing in θ and decreasing in κ on (0, π) × [0, 1],
p2(θ, κ) is increasing in θ and increasing in κ on (0, π) × [0, 1],
p3(θ, κ) is decreasing in θ and increasing in κ on (π, 2π) × [0, 1],
p4(θ, κ) is decreasing in θ and decreasing in κ on (π, 2π) × [0, 1].

(1.46)

The remainder of the paper has the following format. Section 2 contains
basic definitions, a brief review of the algebra generated by Hardy kernels and
the truncated Hilbert transform, and an introduction to the Mellin transform.
Section 3 debuts with some background information on the elastic single layer
potential SLamé and in Sect. 3.1 we compute the Mellin symbol of the operator
∂τSLamé in preparation for the proof of Theorem 1.1, which is presented in
Sect. 3.2. A key role in our analysis is played by Lemma 3.7, whose proof
relies on a delicate argument by contradiction. In Sect. 4 we treat the case
of the Stokes system where we prove Theorem 1.2. Section 5 contains in
its first part the computer-aided analysis of the critical indices pi(θ, κ), i ∈
{1, . . . , 4} culminating with the proof of the monotonicity statements made
in Theorem 1.3. Section 5.1 briefly discusses relevant computational details of
the computer-aided proof approach while Sect. 5.3 provides basic background
on the interval analysis method.

2. Preliminaries

In this section we introduce basic notation and review known results that are
useful for the remainder of the paper.

Definition 2.1. An open and proper set Ω ⊆ R
2 is called a graph Lipschitz

domain provided there exists a Lipschitz function φ : R → R such that

Ω = {X = (X1,X2) ∈ R
2 : X2 > φ(X1)}. (2.1)
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Throughout the paper, given a graph Lipschitz domain Ω ⊆ R
2, we

shall introduce the surface measure σ := H 1�∂Ω, where H 1 stands for the
1-dimensional Hausdorff measure in R

2. Also ν will denote the outward unit
normal vector to ∂Ω which exists almost everywhere with respect to σ. Going
further, set Ω+ := Ω and Ω− := R

2\Ω (where, given a set E ⊆ R
2, E stands

for the closure of E in R
2). For any P ∈ ∂Ω, introduce the non-tangential

approach regions Υ±(P ) with vertex at P by setting

Υ±(P ) := {X ∈ Ω± : |P − X| < ω dist (X, ∂Ω)}, (2.2)

where ω > 1 is a fixed, sufficiently large constant. The regions defined in
(2.2) are then used to define non-tangential traces on ∂Ω. Specifically, if
u± : Ω± → R are sufficiently nice functions we let

u±
∣
∣
∂Ω

(P ) := lim
X∈Υ±(P )

X→P

u±(X), for a.e. P ∈ ∂Ω, (2.3)

and

∂νu±(P ) := 〈ν(P ), (∇u±)
∣
∣
∂Ω

(P )〉, for σ-a.e. P ∈ ∂Ω. (2.4)

Here and elsewhere 〈·, ·〉 stands for the canonical inner product in R
2. Also, we

recall the non-tangential maximal function operator M acting on functions
u± : Ω± → R which is given at each boundary point P ∈ ∂Ω by

M(u±)(P ) := sup {|u±(X)| : X ∈ Υ±(P )}. (2.5)

For each 1 < p < ∞, the space Lp(∂Ω) is the Lebesgue space of p-
integrable functions on ∂Ω with respect to the surface measure σ, and we
denote by Lp

loc(∂Ω) the local version of this space. Also let

Lp
1(∂Ω) := {f ∈ Lp(∂Ω) : ∂τf ∈ Lp(∂Ω)}, (2.6)

and
L̇p

1(∂Ω) := {f ∈ Lp
loc(∂Ω) : ∂τf ∈ Lp(∂Ω)}/R, (2.7)

where ∂τ is the tangential derivative along ∂Ω. Here, if [g] ∈ L̇p
1(∂Ω) denotes

the equivalence class of the function g, we set

‖[g]‖L̇p
1(∂Ω) := ‖∂τg‖Lp(∂Ω). (2.8)

When understood from the context, we shall not distinguish between Lp(∂Ω)
and

[
Lp(∂Ω)

]m with a similar convention for L̇p
1(∂Ω) and

[
L̇p

1(∂Ω)
]m, for

some m ∈ N. A simple observation is that the operator (also denoted by ∂τ )
given by

∂τ : L̇p
1(∂Ω) −→ Lp(∂Ω), ∂τ ([f ]) := ∂τf,

is well-defined, linear, bounded and invertible for each p ∈ (1,∞).
(2.9)

Next we shall discuss Hardy kernel operators on Lp(R+), where R+

stands for the set of non-negative real numbers. We start with the following
definition.

Definition 2.2. Let h be a real-valued measurable function on R+ × R+ and
assume that 1 ≤ p < ∞. Then h is called a Hardy kernel for Lp(R+) provided
that
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(1) h is a homogeneous function of degree −1, i.e., for each λ > 0 and each
s, t ∈ R+ one has h(λs, λt) = λ−1h(s, t);

(2)
∫ ∞

0

|h(1, t)|t−1/p dt

(

=
∫ ∞

0

|h(s, 1)|s1/p−1 ds

)

< ∞.

Given m ∈ N, a matrix-valued measurable function h =
(
hij

)

i,j∈{1,...,m} on

R+ ×R+ is called a Hardy kernel for
[
Lp(R+)

]m provided that hij is a Hardy
kernel for Lp(R+) for each i, j ∈ {1, . . . , m},.

Fix p ∈ [1,∞) and m ∈ N and assume that h = (hij)i,j∈{1,...,m} is a
Hardy kernel for [Lp(R+)]m. For any vector-valued function �f ∈ [Lp(R+)

]m,
define the action of the operator T , called a Hardy kernel operator with kernel
h, on �f by setting

T �f(s) :=
∫ ∞

0

h(s, t) · �f(t) dt, ∀ s ∈ R+, (2.10)

where · denotes matrix multiplication.
Going further, let f be an infinitely differentiable function with compact

support in the interval [0,∞). Then the Mellin transform of f is defined as

Mf(z) :=
∫ ∞

0

xz−1f(x) dx, z ∈ C. (2.11)

If f is a measurable function on R+ and the integral in (2.11) converges
absolutely for all z in some non-empty strip Γα,β := {z ∈ C : α < Re z < β},
α, β ∈ R, then the integral Mf(z) is called the Mellin transform of the
function f . The strip Γα,β is occasionally referred to as a strip of holomorphy
for f . It is straightforward to see that for each z ∈ C such that z + 1 belongs
to a strip of holomorphy for a function f one has

(Mg)(z) = (Mf)(z + 1), whenever g(t) := tf(t). (2.12)

Finally, if X is a Banach space and T : X → X is a linear and continuous
operator, the spectrum of T acting on X is defined as the set

σ(T ;X ) := {w ∈ C : wI − T is not invertible on X}, (2.13)

where I denotes the identity operator on X . In the above context the spectral
radius of the operator T acting on X is given by

ρ(T ;X ) := sup{|w| : w ∈ σ(T ;X )}. (2.14)

In particular, ρ(T ;X ) is the radius of the smallest closed circular disc centered
at the origin containing σ(T ;X ).

The following result found in [4] and [12] allows one to explicitly
determine the spectrum of the operator T (as defined in (2.10)) acting on
[Lp(R+)]m, if its kernel k is a linear combination of the kernel of the Hilbert
transform and Hardy kernels for [Lp(R+)]m for some 1 < p < ∞.

Theorem 2.3. Let m ∈ N and assume that h = (hij)i,j∈{1,...,m} is a Hardy
kernel for

[
Lp(R+)

]m for some 1 < p < ∞. Consider M ∈ R
m×m a matrix
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with real constant entries and let c1, c2 ∈ R be constants. If an operator T
acting on [Lp(R+)]m is given by

T �f(s) :=
∫ ∞

0

k(s, t) · �f(t) dt, a.e. s ∈ R+, (2.15)

for each �f ∈ [Lp(R+)
]m, where

k(s, t) := c1 · h(s, t) +
c2

s − t
· M, ∀ s, t ∈ R+, (2.16)

then T is a linear and bounded operator from [Lp(R+)]m into itself. Moreover,
its spectrum satisfies

σ(T ; [Lp(R+)]m) = S, (2.17)

where S denotes the closure of the set S ⊆ C given by

S :=
{
w ∈ C : det(wI − Mk(·, 1))(1/p + iξ) = 0, for some ξ ∈ R

}
, (2.18)

with I standing for the identity operator.

An immediate corollary of Theorem 2.3 is as follows.

Corollary 2.4. In the context of Theorem 2.3, with c1, c2 ∈ R, and c2 �= 0 and
detM �= 0, the operator T is invertible on [Lp(R+)]m, 1 < p < ∞, if and
only if the following holds

detMk(·, 1)(1/p + iξ) �= 0 ∀ ξ ∈ R. (2.19)

Proof. Start by fixing 1 < p < ∞. For the direct implication, assume that T
is invertible on [Lp(R+)]m. Consequently 0 �∈ σ(T ; [Lp(R+)]m) and using the
characterization (2.17) from Theorem 2.3 we obtain that 0 �∈ S where S is as
in (2.18). In particular 0 �∈ S and thus (2.19) holds.

Turning our attention to the reverse implication, assume that (2.19) is
valid and seeking a contradiction, suppose that the operator T is not invert-
ible on [Lp(R+)]m. This implies 0 ∈ S and, consequently there exist sequences
{wj}j∈N ⊂ C and {ξj}j∈N ⊂ R such that

lim
j→∞

wj = 0, (2.20)

and
det(wjI − Mk(·, 1))(1/p + iξj) = 0 for each j ∈ N. (2.21)

Consider first the case when the sequence {ξj}j∈N contains a bounded sub-
sequence. Employing the Bolzano-Weierstrass theorem, we can then assume
without loss of generality that there exists ξ∗ ∈ R such that

lim
j→∞

ξj = ξ∗. (2.22)

Since the application

R � ξ �→ Mk(·, 1)(1/p + iξ) is continuous, (2.23)

and the determinant function is continuous, based on (2.20) and (2.22) we
can then deduce that det(Mk(·, 1))(1/p + iξ∗) = 0, contradicting (2.19).
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We are left with considering the scenario when the sequence {ξj}j∈N

has a subsequence {ξjk
}k∈N convergent to either +∞ or −∞ as k → ∞. In

this case, introduce the space L1
∗(R+) by setting

L1
∗(R+) :=

{

f : ∂Ω → C : f measurable and
∫

R+

|f(x)| dx

x
< ∞

}

.

(2.24)
Using that h is a Hardy kernel for [Lp(R+)]m, it follows that the matrix-
valued function hp defined by hp(x) := x1/ph(x), for each x ∈ R+, has all its
entries belonging to L1

∗(R+). Since the Fourier transform on the Haar group
is in fact the Mellin transform (cf. e.g., [39]), the latter condition along with a
version of the Riemann-Lebesgue lemma in the Haar group context guarantee
that

lim
ξ→±∞

Mh(·, 1)(1/p + iξ) = 0, (2.25)

where 0 stands for the m×m zero matrix. Combining this with the informa-
tion that

lim
ξ→±∞

M
(

1
· − 1

)

(1/p + iξ) = −πi, (2.26)

and (2.16), allows us to conclude that

lim
ξ→±∞

Mk(·, 1)(1/p + iξ) = −c2πi · M. (2.27)

Passing then to the limit in (2.21) along the subsequence {jk}k∈N, and using
(2.20) and (2.27) along with the continuity of the determinant function, we
arrive at

0 = lim
k→∞

det Mk(·, 1)(1/p + iξjk
) = (−c2πi)m · det M. (2.28)

Finally this is a contradiction since, by hypotheses, c2 �= 0 and detM �= 0.
This completes the proof of the corollary. �

For the remainder of the paper we will refer to Mk as the Mellin symbol
of k, the kernel of the operator T .

3. The Case of the Lamé System

The goal of this section is to investigate invertibility properties of singular
integral operators of single and double layer type associated with the Lamé
system on infinite sectors in R

2. After recalling some notation, in Sect. 3.1
we compute the Mellin symbol of the kernel of the tangential derivative of
the elastic single layer potential operator in infinite sectors. In Sect. 3.2 we
present the proof of Theorem 1.1, the main result regarding the Lamé system.

Start by fixing Ω ⊆ R
2, a graph Lipschitz domain, and denote by L

the Lamé differential operator. Specifically, if �u = (u1, u2) : Ω → R
2 is a

vector-valued function (called displacement) with components in C2(Ω), the
action of L on �u is given by

L�u := μΔ�u + (λ + μ)∇div �u, (3.1)
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where the constants μ and λ are called the Lamé moduli and they satisfy

μ > 0 and λ + μ ≥ 0. (3.2)

It is straightforward to see that for each r ∈ R, there holds

L�u =

(
μΔu1 + (λ + μ)∂1(div �u)

μΔu2 + (λ + μ)∂2(div �u)

)

=

(
a1


ij (r)∂i∂ju


a2

ij (r)∂i∂ju


)

, (3.3)

where

ak

ij (r) := μδijδk
 + (λ + μ − r)δikδj
 + rδi
δjk, ∀ i, j, k, � ∈ {1, 2}. (3.4)

Above and throughout the paper we use Einstein’s convention for summation
over repeated indices and δk
 denotes the Kronecker symbol for k, � ∈ {1, 2}.
For each r ∈ R, we shall refer to the collection

A(r) := (ak

ij (r))i,j,k,
∈{1,2} (3.5)

as the tensor of coefficients associated with the writing of L as in (3.3)–(3.4).
Moving on, recall the classical, radially-symmetric matrix-valued fun-

damental solution of the Lamé differential operator GLamé := (GLamé
ij )i,j∈{1,2}

given by (c.f. e.g., [23, formula (9.2) in Chapter 9] and [33, formula (10.7.1)
in Chapter 10])

GLamé
ij (X) := C1δij log |X|2 − C2

XiXj

|X|2 , ∀X = (X1,X2) ∈ R
2\{0}, (3.6)

where

C1 :=
3μ + λ

8μ(2μ + λ)π
and C2 :=

μ + λ

4μ(2μ + λ)π
. (3.7)

In particular LGLamé = δI2×2 as distributions in R
2, where the operator L

acts on the columns of the matrix GLamé, I2×2 is the 2 by 2 identity matrix,
and δ is the Dirac-delta distribution with mass at the origin.

Next, fix r ∈ R and consider the tensor of coefficients (3.5), where the
ak


ij (r)’s are as in (3.4). Then, given a suitably smooth vector-valued function
�u = (u1, u2) defined in Ω, the conormal derivative of �u associated to the
choice of tensor of coefficients A(r) is given by

∂�u

∂νA(r)
:=
(( ∂�u

∂νA(r)

)1

,
( ∂�u

∂νA(r)

)2
)

, (3.8)

where, for each j ∈ {1, 2},
(

∂�u

∂νA(r)

)j

:= νia
j

ik(r)

(
∂ku


)∣∣
∣
∂Ω

(3.9)

= μ
〈
ν, (∇uj)

∣
∣
∣
∂Ω

〉
+(λ + μ − r)νj(div �u)

∣
∣
∣
∂Ω

+rνi(∂jui)
∣
∣
∣
∂Ω

.

Above ν = (ν1, ν2) is the outward unit normal vector to ∂Ω and
∣
∣
∣
∂Ω

denotes non-tangential restriction to ∂Ω in the sense of (2.3). The conor-
mal derivative ∂

∂νA(r)
from (3.8)–(3.9) is called the pseduo-stress conormal
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derivative, denoted by ∂νΨ, when the value of the parameter r is equal to
μ(λ + μ)/(3μ + λ), i.e.,

∂

∂νΨ
:=

∂

∂νA(ro)
where ro :=

μ(λ + μ)
3μ + λ

. (3.10)

Also, when r = μ the conormal derivative ∂
∂νA(r)

from (3.8)–(3.9) is called
the traction or stress conormal derivative.

Next, define the elastostatics single layer potential operator SLamé, and
its boundary version SLamé acting on a vector-valued function �f : ∂Ω −→ R

2,
�f =

( f1

f2

)
, by setting

SLamé �f(X) :=
∫

∂Ω

GLamé(X − Q) · �f(Q) dσ(Q), X ∈ R
2\∂Ω, (3.11)

SLamé �f(X) :=
∫

∂Ω

GLamé(X − Q) · �f(Q) dσ(Q), X ∈ ∂Ω, (3.12)

where GLamé := (GLamé
ij )i,j∈{1,2} is the fundamental solution from (3.6)–(3.7).

We shall also work with double layer potential operators associated with
the differential operator L from (3.1). Specifically, if r ∈ R is fixed and the
tensor of coefficients A(r) = (ak


ij (r))i,j,k,
∈{1,2} is as in (3.4), then the double
layer potential operator associated with A(r) is denoted by DLamé

A(r) and its

action on a vector-valued function �f : ∂Ω −→ R
2 with �f =

( f1

f2

)
is given by

the formula

DLamé
A(r)

�f(X) :=
∫

∂Ω

[
∂GLamé

∂νA(r)
(X − ·)

]t

(Q) · �f(Q) dσ(Q),

at each point X ∈ R
2\∂Ω,

(3.13)

where the conormal derivative ∂
∂νA(r)

is applied to the columns of the funda-
mental solution GLamé from (3.6)–(3.7), i.e.,

∂GLamé

∂νA(r)
(X − ·) = −

(
νi(·)ak


ij (r)(∂jG
Lamé

m )(X − ·)

)

k,m∈{1,2}
, (3.14)

and the superscript t stands for transposition of matrices. The boundary
version of DLamé

A(r) is the operator KLamé
A(r) whose action on �f as above is defined

by setting

KLamé
A(r)

�f(X) := p.v.

∫

∂Ω

[
∂GLamé

∂νA(r)
(X − ·)

]t

(Q) · �f(Q) dσ(Q),

for σ-a.e. point X ∈ ∂Ω,

(3.15)

where p.v. denotes principle value. The formal adjoint of the operator KLamé
A(r)

is
(
KLamé

A(r)

)∗, whose action on �f is given by

(
KLamé

A(r)

)∗ �f(X) := −p.v.

∫

∂Ω

[∂GLamé

∂νA(r)
(· − Q)

]
(X) · �f(Q) dσ(Q),

for σ-a.e. point X ∈ ∂Ω.
(3.16)
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A basic result which follows from [5] and standard techniques is

Proposition 3.1. Let Ω be a graph Lipschitz domain in R
2, assume that r ∈ R

is fixed, and recall the tensor of coefficients A(r) = (ak

ij (r))i,j,k,
∈{1,2} from

(3.4). Set Ω+ := Ω and Ω− := R
2 \ Ω. Then, for each p ∈ (1,∞),

(1) There holds

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is a linear and bounded operator, (3.17)

KLamé
A(r) : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator, (3.18)
(
KLamé

A(r)

)∗ : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator.

(3.19)

(2) For each �f ∈ Lp(∂Ω) there holds M
(
DLamé

A(r)
�f
)

∈ Lp(∂Ω). Moreover
there exists a finite constant C > 0 depending only on the Lipschitz character
of Ω such that

‖M
(
DLamé

A(r)
�f
)
‖Lp(∂Ω) ≤ C‖�f‖Lp(∂Ω). (3.20)

(3) For every �f ∈ Lp(∂Ω) there holds

DLamé
A(r)

�f
∣
∣
∣
∂Ω±

(P ) = (± 1
2I + KLamé

A(r) )�f(P ), σ − a.e. P ∈ ∂Ω. (3.21)

(4) For every �f ∈ Lp(∂Ω) one has M
(
∇SLamé �f

)
∈ Lp(∂Ω). Moreover

there exists a finite constant C > 0 depending only on the Lipschitz character
of Ω such that

‖M
(
∇SLamé �f

)
‖Lp(∂Ω) ≤ C‖�f‖Lp(∂Ω). (3.22)

(5) For each �f ∈ Lp(∂Ω), the single layer satisfies

SLamé �f
∣
∣
∣
∂Ω+

= SLamé �f
∣
∣
∣
∂Ω−

= SLamé �f, (3.23)

and
∂τSLamé �f

∣
∣
∣
∂Ω+

= ∂τSLamé �f
∣
∣
∣
∂Ω−

= ∂τSLamé �f. (3.24)

Moreover, if (∂τSLamé)∗ is the formal adjoint of ∂τSLamé, then
(
∂τSLamé

)∗ = −SLamé∂τ . (3.25)

We conclude this section by introducing the notation DLamé
Ψ and KLamé

Ψ

for the boundary-to-domain and boundary-to-boundary double layer poten-
tials associated with the pseudo-stress conormal derivative from (3.10). Con-
cretely we set

DLamé
Ψ := DLamé

A(ro), with ro :=
μ(λ + μ)
3μ + λ

, (3.26)

and

KLamé
Ψ := KLamé

A(ro) with ro :=
μ(λ + μ)
3μ + λ

. (3.27)
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3.1. The Mellin Symbol of the Tangential Derivative of the Single Layer

The main goal of this subsection is to explicitly compute the matrix of Mellin
symbols of the operator ∂τSLamé on infinite angles in R

2. Specifically, we shall
assume that Ω is the infinite sector in R

2 of aperture θ ∈ (0, 2π) that is the
upper-graph of the Lipschitz function φ : R → R given by

φ(x) := |x| cot(θ/2), x ∈ R. (3.28)

Recall the matrix-valued fundamental solution GLamé = (GLamé
ij )i,j∈{1,2}

of the Lamé system of elastostatics (3.1) from (3.6)–(3.7) and the single layer
potential operator SLamé from (3.12). In the following lemma we compute the
formula for the kernel of the operator ∂τSLamé.

Lemma 3.2. Let θ ∈ (0, 2π) and assume that Ω ⊆ R
2 is the upper-graph of

the function φ : R → R from (3.28). Then for each �f : ∂Ω → R
2 such that

�f ∈ Lp(∂Ω) for some p ∈ (1,∞), there holds

(∂τSLamé �f)(X) =
∫

∂Ω

k(X,Q) · �f(Q) dσ(Q), ∀X ∈ ∂Ω\{0}, (3.29)

with

k(X,Q) :=
(

A11(X,Q) A12(X,Q)
A21(X,Q) A22(X,Q)

)

,

∀ X,Q ∈ ∂Ω, X �= Q and X �= 0,
(3.30)

where the functions

Aij : ∂Ω × ∂Ω\
(
diag(∂Ω) ∪ ({0} × ∂Ω

)) −→ R, i, j ∈ {1, 2}, (3.31)

are as described below. Specifically, if the point X = (X1,X2) ∈ ∂Ω\{0} and
Q = (Q1, Q2) ∈ ∂Ω, Q �= X, then with the vector ν(X) = (ν1(X), ν2(X))
denoting the outward unit normal to ∂Ω at the point X, one has

A11(X,Q) := −2ν2(X)(X1 − Q1)
|X − Q|2

{

(C1 − C2) + C2
(X1 − Q1)2

|X − Q|2
}

+
2ν1(X)(X2 − Q2)

|X − Q|2
{

C1 + C2
(X1 − Q1)2

|X − Q|2
}

, (3.32)

A12(X,Q) := −C2ν2(X)(X2 − Q2)
|X − Q|2

{

−1 + 2
(X1 − Q1)2

|X − Q|2
}

+
C2ν1(X)(X1 − Q1)

|X − Q|2
{

−1 + 2
(X2 − Q2)2

|X − Q|2
}

, (3.33)

A21(X,Q) := −C2ν2(X)(X2 − Q2)
|X − Q|2

{

−1 + 2
(X1 − Q1)2

|X − Q|2
}

+
C2ν1(X)(X1 − Q1)

|X − Q|2
{

−1 + 2
(X2 − Q2)2

|X − Q|2
}

, (3.34)
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and

A22(X − Q) := −2ν2(X)(X1 − Q1)
|X − Q|2

{

C1 + C2
(X2 − Q2)2

|X − Q|2
}

+
2ν1(X)(X2 − Q2)

|X − Q|2
{

(C1 − C2) + C2
(X2 − Q2)2

|X − Q|2
}

.

(3.35)

Proof. Fix p ∈ (1,∞) and assume that �f ∈ Lp(∂Ω). Using the Lebesgue
dominated convergence theorem we may write for each X ∈ ∂Ω\{0}

∂τSLamé �f(X) =
∫

∂Ω

∂τ(X)[GLamé(X − Q)] · �f(Q) dσ(Q). (3.36)

Thus (3.29) holds with

k(X,Q) =

(
∂τ(X)[GLamé

11 (X − Q)] ∂τ(X)[GLamé
12 (X − Q)]

∂τ(X)[GLamé
21 (X − Q)] ∂τ(X)[GLamé

22 (X − Q)]

)

, (3.37)

for any X,Q ∈ ∂Ω satisfying X �= Q and X �= 0.
To finish the proof, there remains to show that

∂τ(X)[GLamé
ij (X − Q)] = Aij(X,Q),

∀ i, j ∈ {1, 2} and ∀X,Q ∈ ∂Ω satisfying X �= Q and X �= 0.
(3.38)

With this goal in mind fix i, j ∈ {1, 2} and let ν(X) = (ν1(X), ν2(X)) be the
outward unit normal vector at X ∈ ∂Ω\{0}. Then τ(X) = (−ν2(X), ν1(X)),
and consequently

∂τ(X)[GLamé
ij (X − Q)] =

〈
τ(X), (∇GLamé

ij )(X − Q)
〉

= − ν2(X)(∂1G
Lamé
ij )(X − Q)

+ ν1(X)(∂2G
Lamé
ij )(X − Q). (3.39)

Moreover, straightforward calculations based on (3.6)–(3.7) give that when-
ever X = (X1,X2) �= 0 there holds

(∂1G
Lamé
ij )(X) = 2C1δij

X1

|X|2 − C2
δi1Xj + δ1jXi

|X|2 + 2C2
XiXjX1

|X|4 , (3.40)

(∂2G
Lamé
ij )(X) = 2C1δij

X2

|X|2 − C2
δi2Xj + δ2jXi

|X|2 + 2C2
XiXjX2

|X|4 . (3.41)

Then (3.38) follows from (3.39) and (3.40)–(3.41), completing the proof of
the lemma. �

Going further, if θ ∈ (0, 2π) and Ω is as in the hypothesis of Lemma 3.2
in what follows we shall denote by (∂Ω)1 and (∂Ω)2 the left and the right
side of the (infinite) angle ∂Ω, respectively. Hence

(∂Ω)j =
{
((−1)js sin θ

2 , s cos θ
2 ) : s ∈ R+

}
for each j ∈ {1, 2}. (3.42)

Next observe that one can naturally identify the sides (∂Ω)j for j = 1, 2
with R+ via the mapping (∂Ω)j � P �→ |P | ∈ R+. Based on this for each
p ∈ [1,∞), the space Lp(∂Ω) can be identified with Lp(R+)⊕Lp(R+). In turn,
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in light of these identifications the kernel k from (3.30) with entries (3.32)–
(3.35) can be regarded as a kernel on R+×R+. Specifically the function k(·, ·)
defined on ∂Ω×∂Ω\diag(∂Ω×∂Ω) shall be identified with the following 4×4
kernel matrix k̃ defined on R+ × R+\diag(R+ × R+) given by

k̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

k̃11
11 k̃11

12 k̃12
11 k̃12

12

k̃11
21 k̃11

22 k̃12
21 k̃12

22

k̃21
11 k̃21

12 k̃22
11 k̃22

12

k̃21
21 k̃21

22 k̃22
21 k̃22

22

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.43)

where using notation introduced in Lemma 3.2, for each i, j ∈ {1, 2} and
s, t ∈ R+ with s �= t one has

k̃11
ij (s, t) = Aij

(
(−s sin θ

2 , s cos θ
2 ), (−t sin θ

2 , t cos θ
2 )
)
, (3.44)

k̃12
ij (s, t) = Aij

(
(−s sin θ

2 , s cos θ
2 ), (t sin θ

2 , t cos θ
2 )
)
, (3.45)

k̃21
ij (s, t) = Aij

(
(s sin θ

2 , s cos θ
2 ), (−t sin θ

2 , t cos θ
2 )
)
, (3.46)

k̃22
ij (s, t) = Aij

(
(s sin θ

2 , s cos θ
2 ), (t sin θ

2 , t cos θ
2 )
)
. (3.47)

Indeed, if i, j ∈ {1, 2} and X and Q are such that X,Q ∈ ∂Ω satisfying
|X| = s ∈ R+ and |Q| = t ∈ R+ with s �= t, then

k̃11
ij (s, t) = Aij(X,Q), if X,Q ∈ (∂Ω)1,

k̃12
ij (s, t) = Aij(X,Q), if X ∈ (∂Ω)1 and Q ∈ (∂Ω)2,

k̃21
ij (s, t) = Aij(X,Q), if X ∈ (∂Ω)2 and Q ∈ (∂Ω)1,

k̃22
ij (s, t) = Aij(X,Q), if X,Q ∈ (∂Ω)2,

(3.48)

from which (3.44)–(3.47) immediately follow.
Our next result establishes an explicit formula and useful properties for

the kernel k̃ introduced in (3.43), with entries as in (3.44)–(3.47).

Lemma 3.3. Let θ ∈ (0, 2π), C1 ∈ (0,∞), C2 ∈ [0,∞), and consider the kernel
k̃ : R+×R+ → R

4×4 introduced in (3.43), with entries given in (3.44)–(3.47).
Then, for each s, t ∈ R+ such that s �= t there holds

k̃(s, t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 2C1

s − t
0 −A(s, t) B(s, t)

0 − 2C1

s − t
B(s, t) −C(s, t)

A(s, t) B(s, t)
2C1

s − t
0

B(s, t) C(s, t) 0
2C1

s − t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.49)
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where the functions A,B,C : R+ × R+ → R are given by

A(s, t) := 2 · C1(s − t cos θ) − C2(s + t) sin2( θ
2 )

s2 − 2st cos θ + t2

+ 2C2 · sin2( θ
2 )(s + t)2(s − t cos θ)

(s2 − 2st cos θ + t2)2
, (3.50)

B(s, t) := −C2 · s sin θ

s2 − 2st cos θ + t2

+C2 · (s2 − t2)(s − t cos θ) sin θ

(s2 − 2st cos θ + t2)2
, (3.51)

and

C(s, t) := 2 · C1(s − t cos θ) − C2(s − t) cos2( θ
2 )

s2 − 2st cos θ + t2

+ 2C2 · cos2( θ
2 )(s − t)2(s − t cos θ)

(s2 − 2st cos θ + t2)2
. (3.52)

In addition, for each s, t ∈ R+ such that s �= t, there holds

k̃(s, t) = h(s, t) +
2C1

s − t
·

⎛

⎜
⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , (3.53)

where h : R+ × R+ → R
4×4 given by

h(s, t) :=

⎛

⎜
⎜
⎝

0 0 −A(s, t) B(s, t)
0 0 B(s, t) −C(s, t)

A(s, t) B(s, t) 0 0
B(s, t) C(s, t) 0 0

⎞

⎟
⎟
⎠ , ∀ s, t ∈ R+,

(3.54)

is a Hardy kernel for [Lp(R+) ⊕ Lp(R+)]2 ≡ [Lp(R+)]4.

Proof. Fix s, t ∈ R+ such that s �= t and let X,Q ∈ ∂Ω be such that s = |X|
and t = |Q|. If X,Q ∈ (∂Ω)1, there holds

X =
(−s sin θ

2 , s cos θ
2

)
and Q =

(−t sin θ
2 , t cos θ

2

)
, (3.55)

and

ν(X) =
(− cos θ

2 ,− sin θ
2

)
. (3.56)

Appealing to (3.55), (3.32)–(3.35) and (3.48), straightforward calculations
give

k̃11(s, t) :=

(
k̃11
11(s, t) k̃11

12(s, t)

k̃11
21(s, t) k̃11

22(s, t)

)

= − 2C1

s − t
· I2×2. (3.57)

Consider next the case when X ∈ (∂Ω)1, Q ∈ (∂Ω)2. Then,

X =
(−s sin θ

2 , s cos θ
2

)
and Q =

(
t sin θ

2 , t cos θ
2

)
, (3.58)
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and ν(X) is as in (3.56). Based on this, (3.58), (3.32)–(3.35), and (3.48) we
may write

k̃12(s, t) :=

(
k̃12
11(s, t) k̃12

12(s, t)
k̃12
21(s, t) k̃12

22(s, t)

)

=
(−A(s, t) B(s, t)

B(s, t) −C(s, t)

)

, (3.59)

where A(s, t), B(s, t) and C(s, t) are as in (3.50), (3.51) and (3.52), respec-
tively.

Moving on, when X ∈ (∂Ω)2 and Q ∈ (∂Ω)1 we have

X =
(
s sin θ

2 , s cos θ
2

)
and Q =

(−t sin θ
2 , t cos θ

2

)
, (3.60)

and

ν(X) =
(
cos θ

2 ,− sin θ
2

)
. (3.61)

Thus, algebraic manipulations based on (3.60)–(3.61), (3.32)–(3.35), (3.48)
and (3.50)–(3.52) give

k̃21(s, t) :=

(
k̃21
11(s, t) k̃21

12(s, t)

k̃21
21(s, t) k̃21

22(s, t)

)

=

(
A(s, t) B(s, t)

B(s, t) C(s, t)

)

. (3.62)

Next we shall consider the scenario where X,Q ∈ (∂Ω)2. Then

X =
(
s sin θ

2 , s cos θ
2

)
and Q =

(
t sin θ

2 , t cos θ
2

)
, (3.63)

and ν(X) is as in (3.61). This, (3.63), (3.32)–(3.35), (3.48), and straightfor-
ward algebra yield

k̃22(s, t) :=

(
k̃22
11(s, t) k̃22

12(s, t)

k̃22
21(s, t) k̃22

22(s, t)

)

=
2C1

s − t
· I2×2. (3.64)

Combining (3.57), (3.59), (3.62) and (3.64) immediately gives (3.49), as
desired.

Turning our attention to proving the last statement in the lemma, notice
that on grounds of (3.49), the formula (3.53) holds with h as in (3.54). Thus, it
remains to establish that the function h : R+×R+ → R

4×4 given in (3.54) is a
Hardy kernel for [Lp(R+)]4, or equivalently that each of the functions A, B, C
given in (3.50)–(3.52) is a Hardy kernel for Lp(R+). With this goal in mind,
we start with the observation that, based on (3.50)–(3.52), the functions
A,B,C are homogeneous of degree −1. In addition, note that

1 − 2t cos θ + t2 �= 0 for any θ ∈ (0, 2π) and any t ∈ R+. (3.65)

Indeed, since 1 − 2t cos θ + t2 = (t − cos θ)2 + sin2 θ ≥ sin2 θ then (3.65)
follows immediately when θ �= π. When θ = π the expression 1 − 2t cos θ + t2

becomes (t + 1)2, which is > 0 for t ∈ R+. In particular, (3.65) in concert
with (3.50)–(3.52) yield

A(1, ·), B(1, ·), and C(1, ·) are continuous functions on [0,∞), (3.66)

and

|A(1, t)|, |B(1, t)|, and |C(1, t)| are O
(1

t

)
as t → ∞. (3.67)
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From (3.66) and (3.67) it easily follows that for each p ∈ (1,∞) one has
∫ ∞

0

|A(1, t)|t−1/p dt < ∞,
∫ ∞

0

|B(1, t)|t−1/p dt < ∞,
∫ ∞

0

|C(1, t)|t−1/p dt < ∞,

(3.68)

and consequently A, B, and C are Hardy kernels for Lp(R+) in the sense of
Definition 2.2. The proof of the lemma is now complete. �

Lemma 3.4. Consider θ ∈ (0, 2π), C1 ∈ (0,∞), C2 ∈ [0,∞), and assume
that the function k̃ : R+ × R+\diag(R+ × R+) −→ R

4×4 is as introduced in
(3.43), with its entries given in (3.44)–(3.47). Then, for each z ∈ C with the
property that Re z ∈ (0, 1) there holds

M(k̃(·, 1))(z) :=

⎛

⎜
⎜
⎝

−v(z) 0 −a(z) b(z)
0 −v(z) b(z) −c(z)

a(z) b(z) v(z) 0
b(z) c(z) 0 v(z)

⎞

⎟
⎟
⎠ , (3.69)

where, with γ := π − θ and the constants C1, C2 as in (3.7),

v(z) := −2C1π · cos(πz)
sin(πz)

, (3.70)

a(z) := − 2C1π

sin(πz)
cos(γz + θ) +

C2π(z − 1) sin θ

sin(πz)
sin(γz + θ), (3.71)

b(z) := −C2π(z − 1) sin θ

sin(πz)
cos(γz + θ), (3.72)

c(z) := − 2C1π

sin(πz)
cos(γz + θ) − C2π(z − 1) sin θ

sin(πz)
sin(γz + θ). (3.73)

Proof. Fix an angle θ ∈ (0, 2π)\{π}, pick a complex number z ∈ C satisfying
Re z ∈ (0, 1), and consider the functions g, h : R+ −→ R given by

g(s) :=
1

s2 − 2s cos θ + 1
and h(s) := sg(s), ∀ s ∈ R+. (3.74)

Using (3.65) we have that g, h ∈ C(R+) and elementary calculations give

h′(s) =
1 − s2

(s2 − 2s cos θ + 1)2
, ∀ s ∈ R+. (3.75)

Based on (3.74)–(3.75) and (3.50)–(3.52), we obtain that for each s ∈ R+

there holds

A(s, 1) = 2C1(s − cos θ)g(s) − 2C2(1 + cos θ) sin2( θ
2 )h′(s), (3.76)

B(s, 1) = −C2 sin θ
(
sg(s) + (s − cos θ)h′(s)

)
, (3.77)

and

C(s, 1) = 2C1(s − cos θ)g(s) + 2C2(1 − cos θ) cos2( θ
2 )h′(s). (3.78)
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Using (3.49) and (3.76)–(3.78) we may therefore write

k̃(s, 1) =

⎛

⎜
⎜
⎝

−V (s, 1) 0 −A(s, 1) B(s, 1)
0 −V (s, 1) B(s, 1) −C(s, 1)

A(s, 1) B(s, 1) V (s, 1) 0
B(s, 1) C(s, 1) 0 V (s, 1)

⎞

⎟
⎟
⎠ ,

∀ s ∈ R+\{1},

(3.79)

where

V (s, 1) :=
2C1

s − 1
, ∀ s ∈ R+\{1}. (3.80)

The next step is to compute the Mellin transform of each of the entries
in the matrix in (3.79) at the point z. Employing formula 2.12 on p.14 in [38]
(recall that Re z ∈ (0, 1)) and (3.70) we get

MV (·, 1)(z) = −2C1π cot(πz) = v(z). (3.81)

Next, based on (3.76)–(3.78) and (3.74), we also have

MA(·, 1)(z) = 2C1 · Mh(z) − 2C1 cos θ · Mg(z)

−2C2(1 + cos θ) sin2( θ
2 ) · Mh′(z), (3.82)

MB(·, 1)(z) = −C2 sin θ ·
(
Mh(z) + Mh′(z + 1) − cos θ · Mh′(z)

)
,

(3.83)

and

MC(·, 1)(z) = 2C1 · Mh(z) − 2C1 cos θ · Mg(z)

+2C2(1 − cos θ) cos2( θ
2 ) · Mh′(z). (3.84)

Going further, our goal is to compute the Mellin transforms Mg(z),
Mh(z), Mh′(z), Mh′(z + 1), and the value of Mh(z) − cos θ · Mg(z). First,
employing formula 2.54 on p.23 in [38] (which requires that Re z ∈ (0, 2) and
θ ∈ (0, 2π), conditions that are satisfied in the current setting) we have

Mg(z) = π csc θ · csc(πz) · sin[(π − θ)z + θ] = π · sin(γz + θ)
sin θ · sin(πz)

, (3.85)

where γ := π − θ. Also, formula 1.3 on p.11 in [38] and formula (3.85) (the
latter applied for z +1 which still satisfies Re(z +1) ∈ (0, 2) as required) give
that

Mh(z) = Mg(z + 1) = π csc θ · csc(πz) · sin[(π − θ)z]

= π · sin(γz)
sin θ · sin(πz)

. (3.86)

Based on (3.85) and (3.86) we obtain

Mh(z) − cos θ · Mg(z) =
π

sin θ · sin(πz)
·
(
sin(γz) − cos θ · sin(γz + θ)

)

= −π · cos(γz + θ)
sin(πz)

, (3.87)

where the last equality above follows from the elementary trigonometric iden-
tity sin(γz) − cos θ · sin(γz + θ) = − sin θ · cos(γz + θ).
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Moving on, based on the definition of the function h from (3.74) it is
straightforward to check that

lim
s→0+

sz−1h(s) = 0 and lim
s→∞ sz−1h(s) = 0

whenever z ∈ C satisfies Re z ∈ (0, 3).
(3.88)

In turn, (3.88), formula 1.9 on p.11 in [38] (which requires the properties in
(3.88)), and the first identity in (3.86) guarantee that

Mh′(z) = −(z − 1) · Mh(z − 1) = −(z − 1) · Mg(z). (3.89)

Combining this with (3.85) yields

Mh′(z) = −π(z − 1) · sin(γz + θ)
sin θ · sin(πz)

. (3.90)

Next, appealing again to (3.88) and formula 1.9 on p.11 in [38], this time with
z + 1 in place of z (note that in our setting the condition Re(z + 1) ∈ (0, 3)
is still satisfied), we deduce that

Mh′(z + 1) = −z · Mh(z) = −zπ · csc θ · csc(πz) · sin[(π − θ)z]

= −zπ · sin(γz)
sin θ · sin(πz)

. (3.91)

Having established (3.85), (3.86), (3.87), (3.90) and (3.91), these iden-
tities in combination with (3.82)–(3.84) give that

MA(·, 1)(z) = a(z),
MB(·, 1)(z) = b(z),
MC(·, 1)(z) = c(z),

(3.92)

where a, b, c are as in (3.71)–(3.73). Thus, the conclusion (3.69) of the lemma
holds whenever θ ∈ (0, 2π)\{π}.

There remains to treat the case when θ = π and to this end we start by
picking z ∈ C with Re z ∈ (0, 1). On the one hand (3.76)–(3.78) give that

A(s, 1) = C(s, 1) =
2C1

s + 1
and B(s, 1) = 0, ∀ s ∈ R+. (3.93)

On the other hand, thanks to (3.71)–(3.73) and the fact that θ = π, we obtain
that

a(z) = c(z) =
2C1π

sin(πz)
and b(z) = 0. (3.94)

Then the identities in (3.92) continue to hold, since due to formula 2.4 on
p.13 in [38] one has

M
( 1

· + 1

)
(z) =

π

sin(πz)
if z ∈ C and Re z ∈ (0, 1). (3.95)

The proof of the lemma is now complete. �

The next result will be useful in computing the determinant of the
matrix in (3.69).
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Lemma 3.5. Let n ∈ N and assume that M,N,S, T are n × n matrices with
complex entries satisfying the property that MS = SM . Then

det
(

M N
S T

)

= det (MT − SN). (3.96)

Proof. Assume first that the matrix M is invertible and denote by M−1 its
inverse. Then, with O standing for the n × n matrix with zero entries, we
clearly have

det
(

I O
SM−1 −I

)

= (−1)n, (3.97)

and
(

I O
SM−1 −I

)

·
(

M N
S T

)

=
(

M N
O SM−1N − T

)

. (3.98)

Thus, taking the determinant in each side of (3.98) and using (3.97), we
obtain

(−1)n · det
(

M N
S T

)

= det M · det (SM−1N − T )

= det (MSM−1N − MT )
= (−1)n · det(MT − SN), (3.99)

where, in the last equality above, we have used that MS = SM . From (3.99)
the identity (3.96) easily follows.

The case when the matrix M is not invertible follows from the fact that
the set of invertible matrices is a dense subset of the set of n × n matrices
with complex entries. Indeed, for M as in the hypothesis and for each t ∈ C

introduce
Mt := M + tIn×n. (3.100)

Then detMt = det(M+tIn×n) = pM (t), where pM is a polynomial of degree n
in the variable t ∈ C. Consequently, there exist disjoint values �1, . . . , �N ∈ C

with N ≤ n such that pM (t) = 0 if and only if t ∈ {�1, . . . , �N} and as such

Mt is invertible for each t ∈ C\{�1, . . . , �N}. (3.101)

Next, consider a sequence {tj}j∈N satisfying

{tj}j∈N ⊆ C\{�1, . . . , �N} and lim
j→∞

tj = 0. (3.102)

From the first part of (3.102) and (3.101) we obtain that Mtj
is an invertible

matrix for each j ∈ N. Using this and the fact that SMtj
= Mtj

S for each
j ∈ N (an immediate consequence of the fact that S and M commute and
the definition of Mt), based on the first part of the proof we may therefore
write

det
(

Mtj
N

S T

)

= det(Mtj
T − SN). (3.103)

Finally, using (3.103) and the continuity of the determinant function the
desired equality (3.96) then follows. �
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Corollary 3.6. Let θ ∈ (0, 2π), C1 ∈ (0,∞) and C2 ∈ [0,∞), and recall
the function k̃ from (3.43) with entries as in (3.44)–(3.47) where for each
i, j ∈ {1, 2} the functions Aij are as in (3.32)–(3.35). Then z ∈ C with the
property that Re z ∈ (0, 1) satisfies det M(k̃(·, 1))(z) = 0 if and only if one
of the following identities holds

κ(z − 1) sin θ = sin[(2π − θ)(z − 1)], (3.104)
κ(z − 1) sin θ = − sin[(2π − θ)(z − 1)], (3.105)
κ(z − 1) sin θ = sin[θ(z − 1)], (3.106)
κ(z − 1) sin θ = − sin[θ(z − 1)], (3.107)

where

κ :=
C2

2C1
. (3.108)

Proof. Fix a complex number z ∈ C such that Re z ∈ (0, 1). In light of (3.69)
from Lemmas 3.4 and 3.5, applied for the choice of matrices M := −v(z)·I2×2,
T := v(z) · I2×2, and

N :=
(−a(z) b(z)

b(z) −c(z)

)

and S :=
(

a(z) b(z)
b(z) c(z)

)

, (3.109)

with v(z), a(z), b(z) and c(z) as in (3.70)–(3.73), elementary algebraic manip-
ulations give that

detM(k̃(·, 1))(z)=det
(−v2(z)+a2(z) − b2(z) −b(z)

[
a(z) − c(z)

]

b(z)
[
a(z)−c(z)

] −v2(z) − b2(z) + c2(z)

)

.

(3.110)

Thus

det M(k̃(·, 1))(z) =
[−v2(z) + a2(z) − b2(z)

][−v2(z) − b2(z) + c2(z)
]

+ b2(z)
[
a(z) − c(z)

]2

=
[
v2(z) + b2(z) − a(z)c(z)

]2 − v2(z)
[
a(z) − c(z)

]2
,

(3.111)

where the last equality follows from straightforward algebra. Using (3.111)
we can therefore conclude that

det M(k̃(·, 1))(z) = 0 if and only if
v2(z) + b2(z) − a(z)c(z) = ±v(z)

[
a(z) − c(z)

]
.

(3.112)

Next, due to (3.71) and (3.73) there holds

a(z)c(z)=
π2

sin2(πz)
· [4C2

1 · cos2(γz+θ)−C2
2 · (z−1)2 · sin2 θ · sin2(γz+θ)

]
,

(3.113)
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where as before γ := π − θ. In turn, (3.113) combined with (3.70) and (3.72)
gives that

v2(z) + b2(z) − a(z)c(z)

=
π2

sin2(πz)
·
[
4C2

1 ·
(
cos2(πz) − cos2(γz + θ)

)
+ C2

2 · (z − 1)2 · sin2 θ
]
,

(3.114)

and

v(z)[a(z) − c(z)] = −4C1C2π
2

sin2(πz)
· (z − 1) cos(πz) · sin θ · sin(γz + θ).

(3.115)

Next, based on the Pythagorean Theorem we write the following
sequence of trigonometric identities

cos2(πz) − cos2(γz + θ) = sin2(γz + θ) − sin2(πz)
= sin2(γz+θ) cos2(πz)+sin2(πz)

(
sin2(γz+θ) − 1

)

= sin2(γz + θ) cos2(πz) − cos2(γz + θ) sin2(πz).
(3.116)

Thus, using (3.116), the notation introduced in (3.108), and (3.114), we
obtain

v2(z) + b2(z) − a(z)c(z)

=
4C2

1π2

sin2(πz)
·
[
sin2(γz + θ) cos2(πz) − cos2(γz + θ) sin2(πz)

]

+
4C2

1π2

sin2(πz)
· κ2 · (z − 1)2 · sin2 θ. (3.117)

Based on this and (3.115), cancel
4C2

1π2

sin2(πz)
from both sides of the identity

v2(z) + b2(z) − a(z)c(z) = ±v(z)
[
a(z) − c(z)

]
to obtain that v2(z) + b2(z) −

a(z)c(z) = ±v(z)
[
a(z) − c(z)

]
if and only if

sin2(γz + θ) cos2(πz) − cos2(γz + θ) sin2(πz) + κ2(z − 1)2 sin2 θ
= ±2κ(z − 1) sin θ sin(γz + θ) cos(πz). (3.118)

In turn, (3.118) can be rewritten as
(
sin(γz + θ) cos(πz) ± κ(z − 1) sin θ

)2

= sin2(πz) cos2(γz + θ).

(3.119)

At this point, (3.112) and (3.119) give that

detMk̃(·, 1)(z) = 0 if and only if
sin(γz + θ) cos(πz) ± κ(z − 1) sin θ = ± sin(πz) cos(γz + θ),

(3.120)
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where the choices of sign ± in the left-hand side and right-hand side of (3.120)
are independent of one another. In light of the following useful identities

− sin(γz + θ) cos(πz) + sin(πz) cos(γz + θ)
= sin(πz − γz − θ)
= sin[θ(z − 1)], (3.121)

and

− sin(γz + θ) cos(πz) − sin(πz) cos(γz + θ)
= − sin(πz + γz + θ)
= − sin[(2π − θ)(z − 1)], (3.122)

statement (3.120) becomes

det Mk̃(·, 1)(z) = 0

⇐⇒ κ(z − 1) sin θ =

⎧
⎨

⎩

± sin[θ(z − 1)]
or

± sin[(2π − θ)(z − 1)].
(3.123)

This finishes the proof of Corollary 3.6. �

Our next goal is to identify those complex numbers z ∈ C with the
property that Re z ∈ (0, 1) and which also satisfy (3.123). An important
ingredient in achieving this is the following result.

Lemma 3.7. Let θ ∈ (0, 2π) and assume that the constants C1 ∈ (0,∞) and
C2 ∈ [0,∞) are such that

κ :=
C2

2C1
∈ [0, 1]. (3.124)

Then the following implication holds:

if z ∈ C is such that Re z ∈ (0, 1)
and one of the identities (3.104)–(3.107) holds, then Im z = 0.

(3.125)

Proof. First note that changing θ to 2π − θ in any one of the Eqs. (3.104),
(3.105), (3.106) or (3.107) yields one of the other three equations. Conse-
quently, it suffices to restrict our analysis to the case when θ ∈ (0, π]. Going
further, since for any w ∈ C one has

sin(w) = sin(w), (3.126)

where the bar denotes conjugation of complex numbers, a quick inspection of
(3.104)–(3.107) shows that if z ∈ C satisfies one of the Eqs. (3.104)–(3.107)
then so does z. In this light, (3.125) follows as soon as we establish that

if θ ∈ (0, π] and z ∈ C, Re z ∈ (0, 1) and Im z ∈ [0,∞)
and one of the identities (3.104)–(3.107) holds, then Im z = 0.

(3.127)

First we will show that the implication (3.127) is true in the case when
θ = π or κ = 0. Indeed, if θ = π or κ = 0, then the left-hand sides of (3.104)–
(3.107) are all equal to zero and having any one of these equations satisfied
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requires that

either sin[(2π − θ)(z − 1)] = 0 or sin[θ(z − 1)] = 0. (3.128)

However, since all the zeros of the sine function lie on the real line, it follows
that in the current case z − 1 ∈ R and hence Im z = 0 as desired.

Therefore it remains to consider the implication (3.127) when

θ ∈ (0, π), κ ∈ (0, 1],
and z ∈ C is such that Re z ∈ (0, 1) and Im z ∈ [0,∞), (3.129)

which follows immediately as soon as we establish that

if θ ∈ (0, π), κ ∈ (0, 1],
and z ∈ C is such that Re z ∈ (0, 1) and Im z ∈ (0,∞),

then none of the Eqs. (3.104)–(3.107) is satisfied.
(3.130)

Indeed, if any of the Eqs. (3.104)–(3.107) are satisfied (with θ, κ and z as in
(3.129)) then, using (3.130) necessarily Im z = 0.

With the goal of establishing (3.130) fix θ ∈ (0, π) and κ ∈ (0, 1]. We
shall treat each of the four Eqs. (3.104)–(3.107) as a separate case. Before
proceeding with this plan, let us recall the Taylor series expansions of the
functions sinh and cosh,

sinh t =
∞∑

j=0

t2j+1

(2j + 1)!
and cosh t =

∞∑

j=0

t2j

(2j)!
, t ∈ R. (3.131)

Case 1. If z is as in (3.130) then

κ(z − 1) sin θ �= sin[(2π − θ)(z − 1)], (3.132)

i.e., Eq. (3.104) is not satisfied.
We shall argue by contradiction and to this end assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞)
such that (3.104) holds. (3.133)

Introduce the functions G,H : [0, 1] × (0,∞) → R given by

G(x, y) := κ(x − 1) · sin θ − sin[(2π − θ)(x − 1)] · cosh[(2π − θ)y], (3.134)
H(x, y) := κy · sin θ − cos[(2π − θ)(x − 1)] · sinh[(2π − θ)y]. (3.135)

By taking the real and imaginary parts in (3.104), under assumption (3.133)
we obtain that the system of two equations with two unknowns x and y,

{
G(x, y) = 0,
H(x, y) = 0, (3.136)

has (x0, y0) ∈ (0, 1)× (0,∞) as a solution. Since for y0 > 0 and θ ∈ (0, π) the
hyperbolic trigonometric functions in (3.134)–(3.135) have positive values, it
is necessary that

sin[(2π − θ)(x0 − 1)] < 0 and cos[(2π − θ)(x0 − 1)] > 0. (3.137)
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In turn, conditions (3.137) along with the fact that x0 ∈ (0, 1) and θ ∈ (0, π)
force the membership (2π − θ)(x0 − 1) ∈ (−π/2, 0), i.e.,

x0 ∈ I1 :=
(

3π − 2θ

2(2π − θ)
, 1
)

. (3.138)

Note that for θ ∈ (0, π) the inequality 1 > (3π − θ)/(2(2π − θ)) > 0 holds
and consequently I1 ⊂ (0, 1). In addition,

sin[(2π − θ)(x − 1)] < 0 and cos[(2π − θ)(x − 1)] > 0, ∀x ∈ I1. (3.139)

Therefore,

∃ (x0, y0) ∈ I1 × (0,∞) such that G(x0, y0) = H(x0, y0) = 0. (3.140)

Going further, using the Taylor expansion for the hyperbolic sine func-
tion given in (3.131) we obtain that for each x ∈ [0, 1] and y ∈ (0,∞) there
holds

H(x, y) = h1(x) · y +
∞∑

j=1

h2j+1(x) · y2j+1, (3.141)

where the functions h2j+1 : [0, 1] → R, for j ∈ N ∪ {0} are given by

h1(x) := κ · sin θ − cos[(2π − θ)(x − 1)] · (2π − θ), (3.142)

and

h2j+1(x) := − cos[(2π − θ)(x − 1)] · (2π − θ)2j+1

(2j + 1)!
, j ∈ N. (3.143)

Thanks to the second inequality in (3.139) and the definition (3.143), we have
that h2j+1(x) < 0 for all x ∈ I1 and j ≥ 1. In particular, h2j+1(x0) < 0 for
all j ≥ 1. Thus H(x0, y0) = 0 necessarily requires that h1(x0) > 0. Notice
from (3.142) that the function h1 is continuous, and hence

∃ ε > 0 such that (x0 − ε, x0 + ε) ⊂ I1

and h1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.144)

Next, using again (3.142) and the first inequality in (3.139), we obtain

h′
1(x) = sin[(2π − θ)(x − 1)] · (2π − θ)2 < 0, ∀x ∈ I1. (3.145)

Therefore, the function h1 is monotonically decreasing on the interval I1,
which further combined with (3.144) yields

h1(x) > 0 for all x ∈
(

3π − 2θ

2(2π − θ)
, x0 + ε

)

. (3.146)

Reasoning similarly, this time based on the Taylor expansion of the cosh
function from (3.131) we obtain that for each x ∈ [0, 1] and y ∈ (0,∞) there
holds

G(x, y) = g0(x) +
∞∑

j=1

g2j(x) · y2j , (3.147)

where g2j : [0, 1] → R, for j ∈ N ∪ {0}, are given by

g0(x) := κ(x − 1) · sin θ − sin[(2π − θ)(x − 1)], (3.148)
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and

g2j(x) := − sin[(2π − θ)(x − 1)] · (2π − θ)2j

(2j)!
, j ∈ N. (3.149)

Upon recalling the first inequality in (3.137) it follows that g2j(x0) > 0 for
all j ∈ N. Consequently, since G(x0, y0) = 0 and y0 ∈ (0,∞), we obtain on
the one hand that

g0(x0) < 0. (3.150)

On the other hand, based on (3.148) and (3.142), we may write

g′
0(x) = κ·sin θ−cos[(2π−θ)(x−1)]·(2π−θ) = h1(x), ∀x ∈ [0, 1]. (3.151)

Thus (3.151) and (3.146) imply that

g′
0(x) > 0 for all x ∈

(
3π − 2θ

2(2π − θ)
, x0 + ε

)

, (3.152)

and in particular the function g0 is increasing on
(

3π−2θ
2(2π−θ) , x0 + ε

)
. A simple

inspection of (3.148) shows that g0 is also continuous on the interval [0, 1].
Since x0 ∈

(
3π−2θ

2(2π−θ) , x0 + ε
)

we may therefore conclude that

g0(x0) > g0

(
3π − 2θ

2(2π − θ)

)

= 1 − κπ

2(2π − θ)
· (sin θ) > 0, (3.153)

where the last inequality follows using κ ∈ (0, 1], that π/(2(2π − θ)) < 1, and
sin θ ∈ (0, 1] whenever θ ∈ (0, π). However, (3.153) contradicts (3.150) and
finishes the argument by contradiction. Consequently the assumption (3.133)
is violated and this establishes the statement made at the beginning of Case 1
completing our analysis in this case.

Case 2. If z is as in (3.130) then

κ(z − 1) sin θ �= − sin[(2π − θ)(z − 1)], (3.154)

i.e., Eq. (3.105) is not satisfied.
Again we shall argue by contradiction and as such we assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞)
such that (3.105) holds. (3.155)

Introducing the functions M,N : [0, 1] × (0,∞) → R given by

M(x, y) := κ(x − 1) · sin θ + sin[(2π − θ)(x − 1)] · cosh[(2π − θ)y], (3.156)
N(x, y) := κy · sin θ + cos[(2π − θ)(x − 1)] · sinh[(2π − θ)y], (3.157)

and taking the real and imaginary parts of (3.105) we obtain that the follow-
ing system of two equations with two unknowns x and y

{
M(x, y) = 0,
N(x, y) = 0, (3.158)

has (x0, y0) ∈ (0, 1) × (0,∞) as a solution. An inspection of the signs of
the terms involved in the expressions in (3.156) and (3.157) shows that if
(x0, y0) ∈ (0, 1) × (0,∞) is a solution of the system (3.158), then

sin[(2π − θ)(x0 − 1)] > 0 and cos[(2π − θ)(x0 − 1)] < 0. (3.159)
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In turn, (3.159) along with the fact that x0 ∈ (0, 1) and θ ∈ (0, π) force that
(2π − θ)(x0 − 1) ∈ (−3π/2,−π). Consequently, x0 ∈

(
π−2θ

2(2π−θ) ,
π−θ
2π−θ

)
∩ (0, 1),

which further yields

xo ∈
⎧
⎨

⎩

(
π−2θ

2(2π−θ) ,
π−θ
2π−θ

)
=: I2, if θ ∈ (0, π

2

]
,

(
0, π−θ

2π−θ

)
=: I3, if θ ∈ (π

2 , π
)
.

(3.160)

Note that one has

sin[(2π − θ)(x − 1)] > 0 and cos[(2π − θ)(x − 1)] < 0
whenever x ∈

(
π−2θ

2(2π−θ) ,
π−θ
2π−θ

)
∩ (0, 1). (3.161)

Going further, thanks to the first identity in (3.131), for each x ∈ [0, 1]
and each y ∈ (0,∞) there holds

N(x, y) = η1(x) · y +
∞∑

j=1

η2j+1(x) · y2j+1, (3.162)

where the functions η2j+1 : [0, 1] → R, for j ∈ N ∪ {0}, are given by

η1(x) := κ · sin θ + cos[(2π − θ)(x − 1)] · (2π − θ), (3.163)

and

η2j+1(x) := cos[(2π − θ)(x − 1)] · (2π − θ)2j+1

(2j + 1)!
, j ∈ N. (3.164)

Appealing to the second inequality in (3.159) and (3.164), we obtain that

η2j+1(x0) < 0 for each j ∈ N. (3.165)

Therefore (3.162) and (3.165) in conjunction with the vanishing assumption
N(x0, y0) = 0 imply that η1(x0) > 0. Moreover, thanks to the continuity of
the function η1 and the fact that the intersection of two open intervals is an
open set, we may further conclude that there exists ε > 0 with the property
that

(x0 − ε, x0 + ε) ⊆
(

π − 2θ

2(2π − θ)
,

π − θ

2π − θ

)

∩ (0, 1), (3.166)

and

η1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.167)

Next, differentiating in (3.163) yields

η′
1(x) = − sin[(2π − θ)(x − 1)] · (2π − θ)2 < 0

for each x ∈
(

π−2θ
2(2π−θ) ,

π−θ
2π−θ

)
∩ (0, 1), (3.168)

where the inequality above follows from the first inequality in (3.161). In
particular, using (3.160) we obtain that the function η1 is decreasing on the
interval I2 when θ ∈ (0, π/2], and that the function η1 is decreasing on the
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interval I3 when θ ∈ (π/2, π). These facts, combined with (3.166)–(3.167),
guarantee that

η1(x) > 0 for all x ∈
(

π − 2θ

2(2π − θ)
, x0 + ε

)

whenever θ ∈
(
0,

π

2

]
,

(3.169)

and

η1(x) > 0 for all x ∈ (0, x0 + ε) whenever θ ∈
(π

2
, π
)

. (3.170)

Turning our attention to the function M , based on the second identity
in (3.131) for each x ∈ [0, 1] and each y ∈ (0,∞) we may write

M(x, y) = ξ0(x) +
∞∑

j=1

ξ2j(x) · y2j , (3.171)

where the functions ξ0, ξ2j : [0, 1] → R, j ∈ N, are given by

ξ0(x) := κ(x − 1) · sin θ + sin[(2π − θ)(x − 1)], (3.172)

and

ξ2j(x) := sin[(2π − θ)(x − 1)] · (2π − θ)2j

(2j)!
, j ∈ N. (3.173)

Thanks to the first inequality in (3.159), one has ξ2j(x0) > 0 for all j ∈ N.
Since M(x0, y0) = 0, this and (3.171) further force that

ξ0(x0) < 0. (3.174)

On the other hand, differentiating in (3.172) and using (3.163) yields

ξ′
0(x) = κ · sin θ + cos[(2π − θ)(x − 1)] · (2π − θ) = η1(x)

for each x ∈ [0, 1]. (3.175)

Using (3.175) along with properties (3.169) and (3.170) it follows that the
function ξ0 is increasing on the interval ((π − 2θ)/(2(2π − θ)), x0 + ε) when
θ ∈ (0, π/2], and that the function ξ0 is increasing on the interval (0, x0 + ε)
when θ ∈ (π/2, π). Based on this and the continuity of ξ0 on [0, 1] it follows
that when θ ∈ (0, π/2] one has

ξ0(x0) > ξ0

(
π − 2θ

2(2π − θ)

)

= 1 − 3κπ

2(2π − θ)
· sin θ ≥ 0, (3.176)

where the last inequality follows from the fact that κ ∈ (0, 1] and in the
current case one has sin θ ∈ (0, 1] and 3π

2(2π−θ) ∈ (0, 1]. Similarly, in the case
when θ ∈ (π/2, π), there holds

ξ0(x0) > ξ0(0) = (1 − κ) · sin θ ≥ 0, (3.177)

where the inequality above follows immediately since κ ∈ (0, 1] and the aper-
ture θ ∈ (π/2, π). However (3.176)–(3.177) contradict (3.174) and this com-
pletes the argument in this case.

Case 3. If z is as in (3.130) then

κ(z − 1) sin θ �= sin[θ(z − 1)], (3.178)

i.e., Eq. (3.106) is not satisfied.
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As in the previous two cases, in order to prove the claim above we shall
argue by contradiction. To this end assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞)
such that (3.106) holds. (3.179)

Introducing the functions R,S : [0, 1] × (0,∞) → R given by

R(x, y) := κ(x − 1) · sin θ − sin[θ(x − 1)] · cosh(θy), (3.180)
S(x, y) := κy · sin θ − cos[θ(x − 1)] · sinh(θy), (3.181)

and taking the real and imaginary parts of both sides of the identity (3.106)
we obtain that the pair (x0, y0) ∈ (0, 1)× (0,∞) is a solution of the following
system of two equations

{
R(x, y) = 0,
S(x, y) = 0. (3.182)

An inspection of the sign of each of the terms appearing in (3.180) and (3.181)
shows that necessarily

sin[θ(x0 − 1)] < 0 and cos[θ(x0 − 1)] > 0, (3.183)

and consequently θ(x0 − 1) ∈ (−π/2, 0). However, this further implies that

x0 ∈
(
1 − π

2θ

)
∩ (0, 1) =

{
(0, 1), if θ ∈ (0, π

2

]
,(

1 − π
2θ , 1

)
=: I4, if θ ∈ (π

2 , π
)
.

(3.184)

We shall also find it useful to observe that, in fact,

sin[θ(x − 1)] < 0 and cos[θ(x − 1)] > 0,
whenever x ∈ (1 − π

2θ

) ∩ (0, 1). (3.185)

Going further, based on the first identity in (3.131), for each x ∈ [0, 1]
and each y ∈ (0,∞) we may write

S(x, y) = s1(x) · y +
∞∑

j=1

s2j+1(y) · y2j+1, (3.186)

where the functions s1, s2j+1 : [0, 1] → R, j ∈ N, are given by

s1(x) := κ · sin θ − cos[θ(x − 1)] · θ, (3.187)

and

s2j+1(x) := − cos[θ(x − 1)] · θ2j+1

(2j + 1)!
, j ∈ N. (3.188)

Next, thanks to the second inequality in (3.183) we have s2j+1(x0) < 0 for all
j ∈ N. Since S(x0, y0) = 0 and y0 ∈ (0,∞), (3.186) implies that s1(x0) > 0.
The function s1 introduced in (3.187) is continuous, thus this further implies
there exists ε > 0 such that

(x0 − ε, x0 + ε) ⊂
(
1 − π

2θ

)
∩ (0, 1), (3.189)

and

s1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.190)
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Next, differentiating (3.187) and using the first inequality in (3.185) yields

s′
1(x) = sin[θ(x − 1)] · θ2 < 0, ∀x ∈

(
1 − π

2θ

)
∩ (0, 1). (3.191)

Recalling (3.184), we may therefore conclude that the function s1 is decreas-
ing on the interval (0, 1) whenever θ ∈ (0, π/2], and that s1 is decreasing
on the interval I4 whenever θ ∈ (π/2, π). Combining this information with
(3.190) gives that

s1(x) > 0 for all x ∈ (0, x0 + ε) when θ ∈ (0, π/2], (3.192)

and

s1(x) > 0 for all x ∈ (1 − π

2θ
, x0 + ε

)
when θ ∈ (π/2, π). (3.193)

We now turn our attention to the function R(·, ·). Appealing to the
second identity in (3.131), for each x ∈ [0, 1] and each y ∈ (0,∞) we may
write

R(x, y) = r0(x) +
∞∑

j=1

r2j(x) · y2j , (3.194)

where the functions r0, r2j : [0, 1] −→ R, j ∈ N, are given by

r0(x) := κ(x − 1) · sin θ − sin[θ(x − 1)], (3.195)

and

r2j(x) := − sin[θ(x − 1)] · θ2j

(2j)!
, j ∈ N. (3.196)

Thanks to the first inequality in (3.183), for each j ∈ N one has r2j(x0) > 0.
Since R(x0, y0) = 0 and y0 ∈ (0,∞), based on (3.194) we may deduce that

r0(x0) < 0. (3.197)

Next, differentiating in (3.195) and using (3.187) gives

r′
0(x) = κ · sin θ − sin[θ(x − 1)] · θ = s1(x), ∀x ∈ [0, 1]. (3.198)

Using (3.192)–(3.193) and (3.198) we obtain that the function r0 is increasing
on the interval (0, x0 + ε) when θ ∈ (0, π/2], and that r0 is increasing on the
interval (1 − π

2θ , x0 + ε) in the case when θ ∈ (π/2, π). Based on this and the
continuity of the function r0, when θ ∈ (0, π/2] we may deduce

r0(x0) > r0(0) = sin θ · (1 − κ) ≥ 0, (3.199)

granted that κ ∈ (0, 1]. On the other hand, when θ ∈ (π/2, π), we have

r0(x0) > r0

(
1 − π

2θ

)
= 1 − κπ

2θ
· sin θ > 0, (3.200)

as κ ∈ (0, 1] and when θ > π/2 one has π/2θ < 1. However, (3.199)–(3.200)
contradict (3.197) and this finishes the proof of the statement made at the
beginning of Case 3.

Case 4. If z is as in (3.130) then

κ(z − 1) · sin θ �= − sin[θ(z − 1)], (3.201)

i.e., Eq. (3.107) is not satisfied.
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Assume again by contradiction that the claim made above is false, i.e.,

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞)
such that (3.107) holds. (3.202)

Taking the real and imaginary parts in (3.107) we obtain that

κ(x0 − 1) · sin θ = − sin[θ(x0 − 1)] · cosh(θy0), (3.203)
κy0 · sin θ = − cos[(θ(x0 − 1)] · sinh(θy0). (3.204)

However θ ∈ (0, π) and x0 ∈ (0, 1) imply that θ(x0 − 1) ∈ (−π, 0) and thus
sin[θ(x0 −1)] < 0. This violates (3.203), as its left-hand side is negative while
the right-hand side is positive. Consequently the claim made at the beginning
of this case holds and this finishes Case 4 and the proof of the lemma. �

Lemma 3.8. Fix θ ∈ (0, π) and κ ∈ (0, 1] and recall θo from (1.23) (see also
(1.26)). Then the following hold.

(i) The equation

κ(x − 1) · sin θ = sin[(2π − θ)(x − 1)] (3.205)

has a unique solution in the interval (0, 1), and denoting this by x1(θ, κ) there
holds

x1(θ, κ) ∈
(

π − θ

2π − θ
,
1
2

)

. (3.206)

(ii) If κ ∈ (0, 1), the equation

κ(x − 1) · sin θ = − sin[(2π − θ)(x − 1)] (3.207)

has a unique solution in the interval (0, 1), and denoting this by x2(θ, κ) there
holds

x2(θ, κ) ∈
(

0,
π − θ

2π − θ

)

. (3.208)

If κ = 1 and θ ∈ (0, θo), Eq. (3.207) has a unique solution in the interval
(0, 1), and denoting this by x2(θ, 1) there holds

x2(θ, 1) ∈
(

0,
π − θ

2π − θ

)

. (3.209)

Finally, if κ = 1 and θ ∈ [θo, π) Eq. (3.207) has no solution in the interval
(0, 1).

(iii) The equations

κ(x − 1) · sin θ = sin[θ(x − 1)], (3.210)
κ(x − 1) · sin θ = − sin[θ(x − 1)], (3.211)

have no solutions in the interval (0, 1).

Proof. We begin by examining Eq. (3.205) and we claim that

x ∈ (0, 1)
and

κ(x − 1) · sin θ = sin[(2π − θ)(x − 1)]

⎫
⎬

⎭
=⇒ x ∈ I1, (3.212)
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where

I1 :=
(

π − θ

2π − θ
, 1
)

. (3.213)

Indeed, if x ∈ (0, 1) then κ(x−1) · sin θ < 0 and thus sin[(2π − θ)(x−1)] < 0.
This, together with the fact that θ ∈ (0, π) and x ∈ (0, 1) guarantees that
(2π−θ)(x−1) ∈ (−2π, 0). This further implies that (2π−θ)(x−1) ∈ (−π, 0)
and thus x ∈ I1 as desired. In particular, based on (3.212) we may deduce
that

Equation (3.205) has no solution in the interval
(

0,
π − θ

2π − θ

]

. (3.214)

We also find it useful to record that

x ∈ I1 =⇒ sin[(2π − θ)(x − 1)] < 0, (3.215)

as x ∈ I1 immediately implies that (2π − θ)(x − 1) ∈ (−π, 0).
Going further, consider the function T : [0, 1] → R given by

T (x) := κ(x − 1) · sin θ − sin[(2π − θ)(x − 1)], (3.216)

and first note that T (1) = 0. Second,

T ′(x) = κ · sin θ − cos[(2π − θ)(x − 1)] · (2π − θ), ∀x ∈ [0, 1], (3.217)

and

T ′′(x) = sin[(2π − θ)(x − 1)] · (2π − θ)2, ∀x ∈ [0, 1]. (3.218)

Using (3.215) we may deduce that T ′′(x) < 0 whenever x ∈ I1. Therefore the
function T ′ is decreasing on the interval I1. In addition,

T ′( π−θ
2π−θ

)
= κ · sin θ + (2π − θ) > 0 and

T ′(1) = κ · sin θ − (2π − θ) < 0,
(3.219)

where the last inequality follows from the fact that κ ∈ (0, 1] and sin θ < 2π−θ
for θ ∈ (0, π). Combining (3.219) with the monotonicity of T ′ on the interval
I1 and the fact that this function is continuous on [0, 1] we obtain that

there exists a unique x0 ∈ I1 such that T ′(x0) = 0, (3.220)

and in addition T ′ > 0 on the interval
(

π−θ
2π−θ , x0) and T ′ < 0 on the interval

(x0, 1). In particular,

T is increasing on the interval
(

π−θ
2π−θ , x0)

and decreasing on the interval (x0, 1).
(3.221)

Next, note that if θ ∈ (0, π) then 0 < π−θ
2π−θ < 1

2 and consequently 1
2 ∈ I1.

Evaluating the function T at the points π−θ
2π−θ and 1

2 gives

T

(
π − θ

2π − θ

)

= − πκ

2π − θ
· sin θ < 0, (3.222)

and

T (1/2) = −κ · sin θ

2
+ sin

(θ

2

)
= sin

(θ

2

)
·
(
1 − κ · cos

(θ

2

))
> 0, (3.223)
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where the first inequality above is obvious and the second one follows from the
fact that sin( θ

2 ) > 0 on (0, π) and κ cos( θ
2 ) < 1 when κ ∈ (0, 1]. In particular,

by the intermediate value theorem

∃ x1(θ, κ) ∈
( π − θ

2π − θ
,
1
2

)
such that T (x1(θ, κ)) = 0, (3.224)

and property (3.221) guarantees that x1(θ, κ) as above is unique. Thus

(3.205) has a unique solution in the interval
(

π−θ
2π−θ , 1

2

)
. (3.225)

Going further, using (3.222) and (3.221) in concert with the fact T (1) = 0 we
conclude that the function T does not vanish on [12 , 1) and as such (3.205)
has no solution in [12 , 1). This together with (3.214) and (3.225) completes
the proof of (i).

We now turn our attention to (ii). A quick inspection of the signs of
the left- and right-hand sides of (3.207) shows that a necessary condition for
x ∈ (0, 1) to be a solution of (3.207) is that sin[(2π − θ)(x − 1)] > 0. In
particular

x ∈ (0, 1) is a solution of (3.207) =⇒ x ∈ I2 :=
(

0,
π − θ

2π − θ

)

, (3.226)

and consequently

Equation (3.207) has no solution in the interval
[ π − θ

2π − θ
, 1
)
. (3.227)

Also it is useful to record that, as simple manipulations show,

x ∈ I2 =⇒ sin[(2π − θ)(x − 1)] > 0. (3.228)

Going further, consider the function U : [0, 1] −→ R given by

U(x) := κ(x − 1) · sin θ + sin[(2π − θ)(x − 1)], (3.229)

and observe that

U ′(x) = κ · sin θ + cos[(2π − θ)(x − 1)] · (2π − θ), ∀x ∈ [0, 1], (3.230)
U ′′(x) = − sin[(2π − θ)(x − 1)] · (2π − θ)2, ∀x ∈ [0, 1]. (3.231)

Thus, using (3.228) we obtain that

U ′′ < 0 on the interval I2 (3.232)

and hence
the function U ′ is decreasing on I2. (3.233)

We shall analyze first the case when κ ∈ (0, 1). In this scenario

U(0) = −κ · sin θ − sin(2π − θ) = sin θ · (−κ + 1
)

> 0, (3.234)

since κ ∈ (0, 1) and sin θ > 0. At the right endpoint of the interval I2 we
compute

U

(
π − θ

2π − θ

)

= − πκ

2π − θ
· sin θ < 0, (3.235)
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and as before, for θ ∈ (0, π),

U ′
(

π − θ

2π − θ

)

= κ · sin θ − (2π − θ) < 0. (3.236)

Keeping in mind that U ′′ < 0 on I2, there are two possible scenarios. One is
that U ′(x) < 0 whenever x ∈ I2. In this case U is monotonically decreasing on
this interval and by (3.234) and (3.235) and the intermediate value theorem
we conclude that

∃ x2(θ, κ) ∈
(
0,

π − θ

2π − θ

)
such that U(x2(θ, κ)) = 0. (3.237)

Moreover, since U ′ < 0 on I2, we can conclude that x2(θ, κ) as above is
unique, and thus

(3.207) has a unique solution in the interval
(
0, π−θ

2π−θ

)
. (3.238)

The second alternative is that there exists a unique number x3 ∈ I2 such that
U ′(x) > 0 on (0, x3), U ′(x3) = 0, and U ′(x) < 0 on

(
x3,

π−θ
2π−θ

)
. However, this

case yields the same conclusions (3.237) and (3.238). This completes the proof
of (ii) when κ ∈ (0, 1).

Moving on, let κ = 1 in (3.207), and recall the conclusions (3.226) and
(3.227). With the function U as introduced in (3.229), now with κ = 1, i.e.

U : [0, 1] −→ R, U(x) := (x − 1) · sin θ + sin[(2π − θ)(x − 1)], (3.239)

we have that (3.232) and (3.233) hold. In this case, as compared to (3.234),
we have

U(0) = 0, (3.240)
as well as the following inequalities, corresponding to (3.235) and (3.236)
when κ = 1,

U

(
π − θ

2π − θ

)

= − π

2π − θ
· sin θ < 0,

U ′
(

π − θ

2π − θ

)

= sin θ − (2π − θ) < 0.
(3.241)

Also
U ′(0) = sin θ + (2π − θ) · cos θ. (3.242)

At this point we recall the angle θo from (1.23). By (1.25) it immediately
follows that

U ′(0) > 0 whenever θ ∈ (0, θo) and U ′(0) ≤ 0 whenever θ ∈ [θo, π). (3.243)

Keeping in mind that U ′′ < 0 on I2 and using (3.243) we may deduce that
when θ ∈ [θo, π) the function U ′ is strictly negative on the interval I2. Com-
bining this with (3.240), we obtain that the function U has no zeroes in I2,
and therefore, by (3.227), in (0, 1). Also, when θ ∈ (0, θo) we obtain that
there exists a unique x2(θ, 1) ∈ I2 such that U(x2(θ, 1)) = 0. This finishes
the analysis of (ii) when κ = 1, and completes its proof.

Next we focus on the statement (iii). A necessary condition for the
identity (3.210) to hold is that

sin[θ(x − 1)] < 0. (3.244)
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Introduce V : [0, 1] −→ R,

V (x) := κ(x − 1) · sin θ − sin[θ(x − 1)], (3.245)

so that

V ′(x) = κ · sin θ − cos[θ(x − 1)] · θ, ∀x ∈ [0, 1], (3.246)
V ′′(x) = sin[θ(x − 1)] · θ2, ∀x ∈ [0, 1]. (3.247)

Note that, due to (3.244) one has V ′′ < 0 and consequently V ′(x) is mono-
tonically decreasing on (0, 1). For each κ ∈ (0, 1] and θ ∈ (0, π) we have

V (0) =
(−κ + 1) · sin θ ≥ 0, (3.248)

and
V (1) = 0, (3.249)

which, due to the concavity property of V , guarantees that V > 0 for all
x ∈ (0, 1). Thus (3.210) has no solutions for the values of the parameters
involved as stated in the hypotheses.

Finally, we consider (3.211). A simple inspection shows that the left-
hand side of the equation is always negative while the right-hand side is
always positive. Thus (3.211) has no solutions. �

The following result describes the roots of the Eqs. (3.205)–(3.211) in
the case κ = 0. Its proof is immediate and we omit it.

Lemma 3.9. Fix θ ∈ (0, π). Then the following hold.
(i) The equation

sin[(2π − θ)(x − 1)] = 0, (3.250)

has a unique solution in the interval (0, 1), and denoting this by x1(θ) there
holds

x1(θ) =
π − θ

2π − θ
∈
(

0,
1
2

)

. (3.251)

(ii) The equation

sin[θ(x − 1)] = 0, (3.252)

has no solution in the interval (0, 1).

3.2. Proof the Main Result

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let p ∈ (1,∞) and κ ∈ (0, 1). Using Lemma 3.2, after
the identification of (∂Ω)j with R+ for each j ∈ {1, 2}, the operator ∂τSLamé

is invertible on Lp(∂Ω) if and only if the integral operator T given by

T �f(s) :=
∫ ∞

0

k̃(s, t) · �f(t) dt, a.e. s ∈ R+ and ∀ �f ∈ [Lp(R+)
]4

,

(3.253)
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with integral kernel k̃ as in (3.43)–(3.47) is invertible on
[
Lp(R+)

]4. Accord-
ing to Lemma 3.3, and using that C1 > 0, the operator T satisfies the hypoth-
esis of Corollary 2.4. As such, the operator T is invertible on

[
Lp(R+)

]4 if
and only if

Mk̃(·, 1)(1/p + iξ) �= 0 ∀ ξ ∈ R. (3.254)

We invoke next Corollary 3.6 and Lemma 3.7 to conclude that T is not
invertible on

[
Lp(R+)

]4 if and only if one of the following equalities hold

κ( 1
p − 1) sin θ = sin[(2π − θ)( 1

p − 1)], (3.255)

κ( 1
p − 1) sin θ = − sin[(2π − θ)( 1

p − 1)], (3.256)

κ( 1
p − 1) sin θ = sin[θ( 1

p − 1)], (3.257)

κ( 1
p − 1) sin θ = − sin[θ( 1

p − 1)]. (3.258)

Note that if θ = π the left-hand sides in Eqs. (3.255)–(3.258) are equal
to zero while the right-hand sides are different from zero (here we use that
p ∈ (1,∞) and as such 1 − 1

p ∈ (0, 1)). In conclusion the operator ∂τSLamé is
invertible on Lp(∂Ω) for each p ∈ (1,∞) when θ = π. Combining this with
(2.9) gives (1.19), proving (C.1) in the statement of the theorem.

We turn our attention to the statement made in part (A.1). Consider
first the case when θ ∈ (0, π). A direct application of Lemma 3.8 yields
that Eq. (3.255) has a unique solution denoted by p1(θ, κ) and this satisfies
p1(θ, κ) ∈

(
2, 2π−θ

π−θ

)
. Furthermore, Eq. (3.256) has a unique solution denoted

by p2(θ, κ) and this satisfies p2(θ, κ) ∈
(

2π−θ
π−θ ,∞

)
while Eqs. (3.257)–(3.258)

have no solutions for p ∈ (1,∞). In conclusion, the operator

∂τSLamé is invertible on Lp(∂Ω)
for each p ∈ (1,∞)\{p1(θ, κ), p2(θ, κ)} when θ ∈ (0, π). (3.259)

Using (3.259) and (2.9) the statement (1.10) in Theorem 1.1 immediately
follows.

Next, let θ ∈ (π, 2π) and let γ := 2π − θ ∈ (0, π). In this notation,
Eqs. (3.255) and (3.256) become

κ( 1
p − 1) sin γ = ∓ sin[γ( 1

p − 1)], (3.260)

and by Lemma 3.8 they have no solutions for p ∈ (1,∞). Going further,
(3.257) gives

κ( 1
p − 1) sin γ = − sin[(2π − γ)( 1

p − 1)]. (3.261)

Using Lemma 3.8 the Eq. (3.261) has a unique solution

p3(θ, κ) ∈
(2π − γ

π − γ
,∞
)

=
( θ

θ − π
,∞
)
. (3.262)

Similarly, Eq. (3.258) becomes

κ( 1
p − 1) sin γ = sin[(2π − γ)( 1

p − 1)], (3.263)
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and appealing one last time to Lemma 3.8 this has a unique solution

p4(θ, κ) ∈
(
2,

2π − γ

π − γ

)
=
(
2,

θ

θ − π

)
. (3.264)

As such, the operator

∂τSLamé is invertible on Lp(∂Ω)
for each p ∈ (1,∞)\{p3(θ, κ), p4(θ, κ)} when θ ∈ (π, 2π). (3.265)

As before, (3.265) and (2.9) imply the statement made in (1.11). This finishes
the proof of (A.1).

The statement in (B.1) (corresponding to κ = 0) is treated similarly,
this time appealing to Lemma 3.9.

Moving on, the statements made in (A.2), (B.2) and (C.2) follow from
(A.1), (B.1) and (C.1), (2.9), duality, and the two dimensional identity proved
in [2] to the effect that
(
∂τSLamé

)2 =
(

1
2I + (KLamé

Ψ )∗) ◦ (− 1
2I + (KLamé

Ψ )∗) on Lp(∂Ω),
for each integrability index p ∈ (1,∞),

(3.266)

where (KLamé
Ψ )∗ denotes the dual of the operator KLamé

Ψ .
Finally, the statements (A.3), (B.3) and (C.3) are a consequence of

(A.2), (B.2) and (C.2), respectively, duality, (A.1), (B.1) and (C.1), and the
operator identity (valid in all dimensions)

∂νΨDLamé
Ψ ◦ S =

(
1
2I + (KLamé

Ψ )∗) ◦ (− 1
2I + (KLamé

Ψ )∗) on L̇p
1(∂Ω),

for each integrability index p ∈ (1,∞).
(3.267)

This completes the proof of the theorem. �

4. The Case of the Stokes System

In this section, we discuss the invertibility of hydrostatic layer potentials. To
this end, consider the linearized, homogeneous, time independent Navier–
Stokes equations, i.e., the Stokes system

{��u = �p,
div �u = 0,

(4.1)

in an open set in R
2, where �u is the velocity field and p is the pressure

function. If we define the matrix A = A(r) := (ak

ij (r))i,j,k,
∈{1,2} by

ak

ij = ak


ij (r) := δijδk
 + r δi
δjk, for r ∈ R, (4.2)

then ak

ij ∂i∂ju
 = �uk + r∂k(div �u). Hence, any solution �u, p of the Stokes

system (4.1) satisfies

ak

ij ∂i∂ju
 = ∂kp.

As before, let Ω ⊂ R
2 be an infinite angle of aperture θ ∈ (0, 2π) and let

ν = (ν1, ν2) be the outward unit normal vector defined at each point on ∂Ω
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with the exception of the vertex. The conormal derivative associated with
the tensor of coefficients A(r) := (ak


ij (r))i,j,k,
∈{1,2}, for r ∈ R, is defined as
(

∂

∂νA(r)
{�u,p}

)j

:= νia
j

ik(r)∂ku
 − νjp, where j = 1, 2. (4.3)

The special choice r := 1 gives rise to the so-called stress conormal derivative
(see also, e.g., [7,25]). This derivative has a physical interpretation and it
is known as the slip condition when imposed at the boundary and we shall
denote this for the remaining part of the presentation by ∂νΨ . Thus

∂νΨ :=
∂

∂νA(1)

. (4.4)

Parenthetically we note that

1 = lim
λ→∞

μ(λ + μ)
3μ + λ

∣
∣
∣
μ=1

. (4.5)

Going further, denote by GStokes = (GStokes
ij )i,j∈{1,2} the Kelvin matrix-

valued, radially symmetric fundamental solution for the system of hydrostat-
ics in R

2 given by

GStokes
ij (X) := C1δij log |X|2 − C2

XiXj

|X|2 , ∀X = (X1,X2) ∈ R
2\{0}, (4.6)

where i, j ∈ {1, 2}, and

C1 :=
1
8π

, and C2 :=
1
4π

, (4.7)

(see e.g., [33, formula (10.7.2) in Chapter 10]). Note that the constants C1, C2

in (4.7) satisfy

C1 = lim
λ→∞

3μ + λ

8μ(2μ + λ)π

∣
∣
∣
μ=1

and C2 = lim
λ→∞

μ + λ

4μ(2μ + λ)π

∣
∣
∣
μ=1

. (4.8)

Consider next the pressure vector �q : R2\{0} −→ R
2 given by

�q(X) = (q1(X),q2(X)) := − 1
2π

X

|X|2 , ∀X ∈ R
2\{0}. (4.9)

Then, for each i, j ∈ {1, 2} there holds

ΔGStokes
ij = ΔGStokes

ji = ∂iqj = ∂jqi on R
2\{0}. (4.10)

Moving on, the boundary-to-domain single layer potential operator is
introduced as

SStokes �f(X) :=
∫

∂Ω

GStokes(X − Y ) · �f(Y ) dσ(Y ), X ∈ R
2\∂Ω, (4.11)

and the boundary-to-boundary single layer hydrostatic operator SStokes is
given by

SStokes �f(X) :=
∫

∂Ω

GStokes(X − Y ) · �f(Y ) dσ(Y ), X ∈ ∂Ω. (4.12)

We shall also introduce the double layer potential operators associated with
the system (4.1). Specifically, if r ∈ R is fixed and the tensor of coefficients
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A(r) = (ak

ij (r))i,j,k,
∈{1,2} is as in (4.2), then the double layer potential opera-

tor associated with A(r) is denoted by DStokes
A(r) and its action on a vector-valued

function �f : ∂Ω −→ R
2 with �f =

( f1

f2

)
is defined by setting

DStokes
A(r)

�f(X) :=
∫

∂Ω

[
∂

∂νA(r)
{GStokes, �q}(X − ·)

]t

(Q) · �f(Q) dσ(Q)

for each point X ∈ R
2\∂Ω,

(4.13)

where
∂

∂νA(r)
{GStokes, �q} is defined as the matrix obtained by applying the

conormal derivative from (4.3) to each pair consisting of the j-th column of
the fundamental solution GStokes from (4.6) and the j-th component of the
vector �q. Also, the superscript t stands for transposition of matrices. In the
sequel we shall use the notation

DStokes
Ψ := DStokes

A(1) , (4.14)

to denote the slip double boundary-to-domain double layer potential opera-
tor. For each r ∈ R, the boundary version of DStokes

A(r) is the operator KStokes
A(r)

whose action on �f as above is defined by setting

KStokes
A(r)

�f(X) = p.v.

∫

∂Ω

[
∂

∂νA(r)
{GStokes, �q}(X − ·)

]t

(Q) · �f(Q) dσ(Q)

for σ − a.e. X ∈ ∂Ω,
(4.15)

where p.v. denotes principle value. We set

KStokes
Ψ := KStokes

A(1) . (4.16)

For each r ∈ R, the formal adjoint of the operator KStokes
A(r) is denoted by

(
KStokes

A(r)

)∗
and (KStokes

Ψ )∗ denotes the adjoint of KStokes
Ψ . A similar result to

Proposition 3.1 holds in the case of the layer potentials associated with the
Stokes system (this follows again from the work in [5]). Concretely we have
the following result.

Proposition 4.1. Assume that Ω is a graph Lipschitz domain in R
2, and fix

r ∈ R. Recall the tensor of coefficients A(r) = (ak

ij (r))i,j,k,
∈{1,2} from (4.2).

Set Ω+ := Ω and Ω− := R
2 \ Ω. Then, for each p ∈ (1,∞),

(1) There holds

SStokes : Lp(∂Ω) → Lp
1(∂Ω) is a linear and bounded operator, (4.17)

KStokes
A(r) : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator, (4.18)

(
KStokes

A(r)

)∗ : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator,

(4.19)

where
(
KStokes

A(r)

)∗ denotes the adjoint of the operator KStokes
A(r) .
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(2) For each �f ∈ Lp(∂Ω) there holds M
(DStokes

A(r)
�f
) ∈ Lp(∂Ω). Moreover

there exists a finite constant C > 0 depending only on the Lipschitz character
of Ω such that

‖M
(DStokes

A(r)
�f
)‖Lp(∂Ω) ≤ C‖�f‖Lp(∂Ω). (4.20)

(3) For every �f ∈ Lp(∂Ω) there holds

DStokes
A(r)

�f
∣
∣
∣
∂Ω±

(P ) = (± 1
2I + KStokes

A(r) )�f(P ), σ − a.e. P ∈ ∂Ω. (4.21)

(4) For every �f ∈ Lp(∂Ω) one has M
(
∇SStokes �f

)
∈ Lp(∂Ω). Moreover

there exists a finite constant C > 0 depending only on the Lipschitz character
of Ω such that

‖M
(
∇SStokes �f

)
‖Lp(∂Ω) ≤ C‖�f‖Lp(∂Ω). (4.22)

(5) For each �f ∈ Lp(∂Ω), the single layer satisfies

SStokes �f |∂Ω+ = SStokes �f |∂Ω− = SStokes �f, (4.23)

and

∂τSStokes �f
∣
∣
∣
∂Ω+

= ∂τSStokes �f
∣
∣
∣
∂Ω−

= ∂τSStokes �f. (4.24)

Moreover, if (∂τSStokes)∗ is the formal adjoint of ∂τSStokes, then

(
∂τSStokes

)∗ = −SStokes∂τ . (4.25)

In light of the observation made in (4.8), the computations carried out
in Sect. 3 for the Mellin symbol of the operator ∂τSLamé for the Lamé system
of elastostatics can now be reworked in the case of the Stokes system by
changing the values of C1 and C2 as in (4.7). This immediately yields the
following results.

Lemma 4.2. Let Ω ⊂ R
2 be an infinite sector of aperture θ ∈ (0, 2π). Consider

X = (X1,X2), Q = (Q1, Q2) ∈ ∂Ω and recall GStokes = (GStokes
ij )i,j∈{1,2} from

(4.6). The kernel of the operator ∂Stokes
τ S is the matrix

k(X,Q) =

(
∂τ(X)G

Stokes
11 (X − Q) ∂τ(X)G

Stokes
12 (X − Q)

∂τ(X)G
Stokes
21 (X − Q) ∂τ(X)G

Stokes
22 (X − Q)

)

, (4.26)
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where

∂τ(X)G
Stokes
11 (X − Q) = −ν2(X)(X1 − Q1)

2π|X − Q|2
{

−1
2

+
(X1 − Q1)2

|X − Q|2
}

+
ν1(X)(X2 − Q2)

2π|X − Q|2
{

1
2

+
(X1 − Q1)2

|X − Q|2
}

, (4.27)

∂τ(X)G
Stokes
12 (X − Q) = −ν2(X)(X2 − Q2)

2π|X − Q|2
{

−1
2

+
(X1 − Q1)2

|X − Q|2
}

+
ν1(X)(X1 − Q1)

2π|X − Q|2
{

−1
2

+
(X1 − Q1)2

|X − Q|2
}

, (4.28)

∂τ(X)G
Stokes
21 (X − Q) = −ν2(X)(X2 − Q2)

2π|X − Q|2
{

−1
2

+
(X1 − Q1)2

|X − Q|2
}

+
ν1(X)(X1 − Q1)

2π|X − Q|2
{

−1
2

+
(X2 − Q2)2

|X − Q|2
}

, (4.29)

and

∂τ(X)G
Stokes
22 (X − Q) = −ν2(X)(X1 − Q1)

2π|X − Q|2
{

1
2

+
(X2 − Q2)2

|X − Q|4
}

+
ν1(X)(X2 − Q2)

2π|X − Q|2
{

−1
2

+
(X2 − Q2)2

|X − Q|2
}

.

(4.30)

Going further, recall the identification of (∂Ω)j ≡ R+ for each j ∈
{1, 2} and the manner in which the kernel k̃ in (3.43) was associated with k

from (3.32)–(3.35). Following this recipe from Sect. 3, denote by k̃ the kernel
associated with k from (4.26)–(4.30). We then have the following result.

Lemma 4.3. Let Ω ⊂ R
2 be the domain consisting of the interior of an infinite

sector of aperture θ ∈ (0, 2π) and k̃ be as in the preamble of this result. Then,
for any z ∈ C with Re z ∈ (0, 1), there holds

Mk̃(·, 1)(z) =

⎛

⎜
⎜
⎝

−v(z) 0 −a(z) b(z)
0 −v(z) b(z) −c(z)

a(z) b(z) v(z) 0
b(z) c(z) 0 v(z)

⎞

⎟
⎟
⎠ (4.31)

where, with γ := π − θ,

v(z) := −1
4

· cos(πz)
sin(πz)

, (4.32)

a(z) := − 1
4 sin(πz)

cos(γz + θ) +
(z − 1) sin θ

4 sin(πz)
sin(γz + θ), (4.33)

b(z) := − (z − 1) sin θ

4 sin(πz)
cos(γz + θ), (4.34)

c(z) := − 1
4 sin(πz)

cos(γz + θ) − (z − 1) sin θ

4 sin(πz)
sin(γz + θ). (4.35)
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Lemma 4.4. Let Ω ⊂ R
2 be the domain consisting of the interior of an infinite

sector of aperture θ ∈ (0, 2π) and let k̃ be as in the preamble of Lemma 4.3.
Then det Mk̃(·, 1)(z) = 0 for some z ∈ C with Re z ∈ (0, 1), if and only if
one of the following equalities holds

(z − 1) sin θ = sin[(2π − θ)(z − 1)], (4.36)
(z − 1) sin θ = − sin[(2π − θ)(z − 1)], (4.37)
(z − 1) sin θ = sin[θ(z − 1)], (4.38)
(z − 1) sin θ = − sin[θ(z − 1)]. (4.39)

Furthermore, if any one of the identities (4.36), (4.37), (4.38) or (4.39) hold
for some θ ∈ (0, 2π) and z = x + iy, with x ∈ (0, 1) and y ∈ R, then y = 0.

Proof. The proof of the if and only if statement follows immediately from
Corollary 3.6 where, in the case of the Stokes system of hydrostatics, we have
that κ = C2/(2C1) = 1. The proof that if z ∈ C with Re z ∈ (0, 1) satisfies
one of the Eqs. (4.36)–(4.39) than z must be a real number is treated in
Lemma 3.7 in the case κ = 1. �

With these tools in hand the proof of Theorem 1.2 follows in a similar
fashion to that of Theorem 1.1, making use this time of the following operator
identities (see again [2])

(
∂τSStokes

)2 =
(

1
2I + (KStokes

Ψ )∗) ◦ (− 1
2I + (KStokes

Ψ )∗)

on Lp(∂Ω), for each integrability index p ∈ (1,∞),
(4.40)

valid in two dimensions and
∂νΨDStokes

Ψ ◦ S =
(

1
2I + (KStokes

Ψ )∗) ◦ (− 1
2I + (KStokes

Ψ )∗)

on L̇p
1(∂Ω), for each integrability index p ∈ (1,∞),

(4.41)

valid in all dimensions.

5. On the Critical Indices via Computer Aided Proofs

In this section, we focus on the behavior of the critical indices pi(θ, κ) for
i ∈ {1, . . . , 4} from Theorem 1.1 by analyzing their dependence on the angle
θ and the parameter κ.

Our main goal is to prove Theorem 1.3. Recalling Lemma 3.8, the first
step is to show that each of the two Eqs. (3.205) and (3.207) implicitly defines
a surface x = x(θ, κ) that is monotone with respect to its parameters θ and
κ; see Fig. 1.

Proposition 5.1. Let ε = 10−6 and δ = 10−4. Then the following hold,
(1) Equation (3.205) implicitly defines a surface x1 = x1(θ, κ) whenever

(θ, κ) ∈ [ε, π − ε] × [0, 1 − δ] which is decreasing in θ (when κ is fixed)
and increasing in κ (when θ is fixed).

(2) Equation (3.207) implicitly defines a surface x2 = x2(θ, κ) whenever
(θ, κ) ∈ [ε, π − ε] × [0, 1 − δ] which is decreasing in θ (when κ is fixed)
and decreasing in κ (when θ is fixed).
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Figure 1. The implicit surfaces for Eq. (3.205) (left) and
Eq. (3.207) (right)

Proof. We start with the proof of the statement made in item (1) and intro-
duce the function f : (0, π) × [0, 1] × [0, 1] −→ R given by

f(θ, κ, x) := κ(x − 1) sin θ − sin[(2π − θ)(x − 1)]. (5.1)

In this notation (3.205) becomes

f(θ, κ, x) = 0. (5.2)

Employing Lemma 3.8 (and Lemma 3.9 for the case κ = 0), the Eq. (5.2) has
exactly one solution x1 = x1(θ, κ) for each pair (θ, κ) ∈ (0, π) × [0, 1]. The
goal is to use the implicit function theorem for the function f with respect to
its dependence in the variable x. Since f is real analytic, matters reduce to
proving that ∂f

∂x is bounded and does not vanish at the points (θ, κ, x1(θ, κ)).
Then, by the implicit function theorem, the function

[ε, π − ε] × [0, 1 − δ] � (θ, κ) �→ x1(θ, κ) (5.3)

is well-defined and as regular as f . With this in hand and using implicit
differentiation in (5.2) we obtain

∂x1

∂θ
(θ, κ) = −

∂f

∂θ
(θ, κ, x1(θ, κ))

∂f

∂x
(θ, κ, x1(θ, κ))

,

∂x1

∂κ
(θ, κ) = −

∂f

∂κ
(θ, κ, x1(θ, κ))

∂f

∂x
(θ, κ, x1(θ, κ))

.

(5.4)

Monotonicity now follows by verifying that ∂f
∂θ and ∂f

∂κ in (5.4) do not vanish.
Summarizing, item (1) follows as soon as we prove that all partial deriva-

tives of f (that is ∂f
∂θ , ∂f

∂κ , and ∂f
∂x ) are bounded and non-zero on the solution

set A of (5.2), where

A :=
{

(θ, κ, x) ∈ [ε, π − ε] × [0, 1 − δ] × [0, 1/2] : f(θ, κ, x) = 0
}

. (5.5)
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A comment is in order here, vis-a-vis the third component of A, namely [0, 1
2 ].

For each (θ, κ) ∈ (0, π) × [0, 1] Lemma 3.8 provides bounds for the function
x1(θ, κ) := 1

p(θ,κ) via (3.206). In particular x1(θ, κ) ∈ [0, 1
2 ].

One obstacle to overcome is that Lemma 3.8 provides only a crude
bound on A that is not sufficient for our needs. To address this, since A is a
two-dimensional subset of the product of the domains of θ, κ and x, we will
enclose it by a finite union of closed, axis-parallel parallelepipes, referred to
as boxes. Specifically,

A ⊂ B =
N⋃

i=1

Bi. (5.6)

The computer-aided part of the proof will produce this finite enclosure by an
adaptive bisection procedure and—once we have a sufficiently tight enclosure
of A—prove that all partial derivatives of f are bounded and non-zero on a
neighbourhood of A.

As an initial step, consider the interval extension F of the function
f from (5.1); see Sect. 5.3 for an introduction to set-valued numerics. For
computational reasons we will find it useful to revisit parts of the proof of
Lemma 3.8, and we shall do this in a sequence of four steps.

Step 1. Here our goal is to generate a finite set of boxes

Bi := Ii×[0, 1−δ]×[0, 1
2 ] ⊆ [ε, π−ε]×[0, 1−δ]×[0, 1

2 ], i = 1, . . . , N, (5.7)

with the property that Ii := [θi, θi], for each i ∈ {1, . . . , N}, have disjoint
interiors,

N⋃

i=1

Ii = [ε, π − ε], (5.8)

and, for each i ∈ {1, . . . , N},

the intervals F (Ii × [0, 1 − δ] × {0}) and F (Ii × [0, 1 − δ] × { 1
2})

reside on opposite sides of the origin.
(5.9)

The construction of the family of boxes {Bi}i=1,...,N is the result of a
computer program which also rigorously verifies that the function f has
opposite signs on the two surfaces S− = [ε, π − ε] × [0, 1 − δ] × {0} and
S+ = [ε, π − ε] × [0, 1 − δ] × {1

2}. All remaining computations will be per-
formed on the family of boxes {Bi}i=1,...,N .

Step 2. In this step we implement an algorithm whose goal is to tighten
the enclosure of the solution set A obtained as a result of the algorithm in
Step 1. This is done by performing a rigorous line search (as described in
Sect. 5.3) along each of the four vertical edges of every box Bi. For each
i ∈ {1, . . . , N}, the vertical edges are given by

�i,1 = {θi} × {0} × [0, 1
2 ]

�i,2 = {θi} × {0} × [0, 1
2 ]

�i,3 = {θi} × {1 − δ} × [0, 1
2 ]

�i,4 = {θi} × {1 − δ} × [0, 1
2 ].

(5.10)

We will use interval-bisection in the x-coordinate (the third) to enclose the
zeros of the function f along each edge �i,j . The result of this procedure is
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Figure 2. The effect of Step 2 in the proof. The white (full
height) boxes are from Step 1, where only the θ-domain is
subdivided. The gray, contracted boxes are the results of the
bisection in Step 2. Projecting the implicit surface shows that
the contraction is near-optimal. Equation (3.205) appears in
the left, and Eq. (3.207) in the right

that each vertical edge �i,j is shrunk to a very small set �̃i,j which contains
the unique zero of f restricted to �i,j ,

�̃i,1 = {θi} × {0} × [xi,1, xi,1]
�̃i,2 = {θi} × {0} × [xi,2, xi,2]
�̃i,3 = {θi} × {1 − δ} × [xi,3, xi,3]
�̃i,4 = {θi} × {1 − δ} × [xi,4, xi,4],

(5.11)

where, for each j ∈ {1, . . . , 4} we have 0 ≤ xi,j < xi,j ≤ 1/2. Next, for
each i ∈ {1, . . . , N} consider the box formed by taking the hull of the four
contracted vertical edges �̃i,j , j ∈ {1, . . . , 4},

B̃i = [θi, θi] × [0, 1 − δ] × [mi,Mi],
where mi := min

j∈{1,...,4}
xi,j and Mi := max

j∈{1,...,4}
xi,j .

(5.12)

Under the additional assumption that the mapping

[ε, π − ε] × [0, 1 − δ] � (θ, κ) �→ x1(θ, κ)
is monotone in the variables θ and κ,

(5.13)

for each i ∈ {1, . . . , N} we have

Bi ∩ A ⊂ B̃i. (5.14)

Consequently, the family of boxes {B̃i}i∈{1,...,N} cover A. In Step 4 we will
describe how we verify that assumption (5.13) is indeed satisfied and as such,
the family {B̃i}i∈{1,...,N} obtained in this step is a tighter enclosure of A (as
compared to {Bi}i∈{1,...,N}).
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Step 3. The aim of this step is to ensure the applicability of the implicit
function theorem as discussed at the beginning of the proof. To achieve this
we implement an algorithm showing that ∂f

∂x is bounded and non-zero on
the enclosure B̃ :=

⋃N
i=1 B̃i obtained in the previous step. This reduces to

checking that for each i ∈ {1, . . . , N} we have that

diam
(∂F

∂x
(Bi)

)
is finite and 0 /∈ ∂F

∂x

(
B̃i

)
. (5.15)

As a consequence of (5.15), the implicit function theorem is applicable on B̃,
and thus the solution set A is a surface.

Step 4. The goal of this step is to prove (5.13). This can be done by
verifying that

∂x1

∂θ
(·, ·) and

∂x1

∂κ
(·, ·) do not vanish on [ε, π − ε] × [0, 1 − δ]. (5.16)

With an eye towards proving (5.16) we justify the implicit differentiation in
(5.2) (here we use Step 3) which led to (5.4). As a consequence, for each
i ∈ {1, . . . , N}, the following inclusions hold:

∂x1

∂θ

∣
∣
∣
[θi,θi]×[0,1−δ]

⊆ −
∂F

∂θ

(
B̃i

)

∂F

∂x

(
B̃i

) , (5.17)

and

∂x1

∂κ

∣
∣
∣
[θi,θi]×[0,1−δ]

⊆ −
∂F

∂κ

(
B̃i

)

∂F

∂x

(
B̃i

) . (5.18)

Next, we appeal to the second part in (5.15) in Step 3 to ensure that for
each i ∈ {1, . . . , N} the right-hand sides of (5.17) and (5.18) are meaningful.
Since ∂f

∂κ (θ, κ, x) = (x − 1) sin θ < 0 on (0, π) × [0, 1] × [0, 1
2 ] we deduce that

∂x1
∂κ (·, ·) does not vanish on [ε, π−ε]× [0, 1−δ]. Matters are therefore reduced
to checking that, for each i ∈ {1, . . . , N} we have

0 �∈ ∂F

∂θ

(
B̃i

)
. (5.19)

We achieve this by implementing an algorithm that computes the intervals
∂F
∂θ (B̃i) for i ∈ {1, . . . , N} and check that they are bounded away from zero.
This establishes the monotonicity of the surface in (5.3) and, at the same
time, justifies the tightening process in Step 2.

This finishes the proof of item (1); item (2) follows from a similar treat-
ment, completing the proof of the proposition. �

Remark 5.2. We have hand-coded the partial derivatives of f needed in
(5.17). For more complicated functions, one may utilize automatic differentia-
tion, which only requires the explicit formula for f . For a concise introduction
to this technique, see [15]. Note also that, in Steps 1 and 2, we never subdi-
vide along the κ-component. For general functions f , however, this may have
to be done.
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Table 1. Computational information

Equations Boxes Time (ms)

(3.205) 16,458 4940
(3.207) 39,896 17,300

We are now ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. Items (1) and (2) are a direct consequence of Propo-
sition 5.1. The case of items (3) and (4), when θ ∈ [π + ε, 2π − ε], follows
immediately from (1.9) and Proposition 5.1. �

5.1. Computational Results

The actual verifications needed in the proof of Proposition 5.1 were carried
out on a single thread on an eight core Intel i7 processor running at 2.67GHz.
The operating system was Ubuntu 14.04 with the gcc compiler (version 4.8.2)
and the interval analysis package CXSC, version 2.5.4, see [16]. The total
computing time was roughly 23 seconds.

In Fig. 1, we illustrate the surfaces x1(·, ·) and x2(·, ·). Note how the
surface x2(·, ·) corresponding to Eq. (3.207) is very flat when (θ, κ) ≈ (π, 1).
Similarly, the surface x1(·, ·) corresponding to Eq. (3.205) is flat when (θ, κ) ≈
(0, 1). This makes all steps of the computer aided proof very hard to perform
near these regions, which is apparent in Fig. 2 where the partitions of the
domain are visible.

In Table 1, we present some computational information from the proof.
The first column indicates the equation under study. The second column lists
the number of boxes produced in Step 1 of the proof. The third column lists
the CPU time (in milliseconds) required to complete the entire proof.

5.2. Stokes System

As Proposition 5.1 does not treat the case κ = 1, we address this situation
in what follows. We are interested in the two equations

fσ(θ, x) = (x − 1) sin θ − σ sin [(2π − θ)(x − 1)] = 0, σ ∈ {−1,+1}.
(5.20)

We want to know if (5.20) implicitly defines a curve xσ = xσ(θ), and, if so, for
what domain. We are also intersted in monotonicity properties of the curve
(Fig. 3).

Proposition 5.3. The following hold:
1. Equation (5.20) with σ = +1 implicitly defines a curve x1 = x1(θ) for

θ ∈ [10−4, π) which is decreasing in θ.
2. Equation (5.20) with σ = −1 implicitly defines a curve x2 = x2(θ) for

θ ∈ (0, 1.78977], which is decreasing in θ.

The proof uses Lemma 3.8; more precisely, we use the fact that there is
at most one solution xσ(θ) to (5.20) for θ ∈ (0, π). Based on this, we start
by computing an approximation to the curve xσ at a finite number of grid
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Figure 3. An illustration of Proposition 5.3. The small
boxes are the maximal domains of interest (θ, x) ∈ (0, π) ×
(0, 1/2). When σ = +1, the implicit curve x(θ) (left) extends
over the entire domain. When σ = −1, the implicit curve
x(θ) (right) exits the domain at θ ≈ 1.78975

Figure 4. An illustration of the enclosing cover of the graph
of xσ(θ). The rectangles of the cover (blue) are centered on
the approximate graph (red), ensuring that the exact solu-
tion to (5.20) never comes close to the horizontal edges of the
rectangles. The case σ = +1 is presented in the left figure.
The case σ = −1 is presented in the right figure (color figure
online)

points θi, i = 1, . . . , N . Next, we cover the approximate curve with N − 1
rectangles as illustrated in Fig. 4. We construct the cover in such a way
that the approximate curve extends horizontally across each rectangle. We
verify that the partial derivatives of fσ are bounded and non-zero on each
rectangle; this allows us to invoke the implicit function theorem (and to prove
monotonicity). Finally, we verify that the function fσ assumes different signs
on the two horizontal edges of each rectangle. This ensures that the graph of
the implicit function xσ(θ) is well-defined and is enclosed by the cover.

In the computer-aided proof of Proposition 5.3, 500000 (2848598) rect-
angles were used in the cover. The computations took ca 780 (4400) ms for
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each case σ = −1 (or σ = 1). The reported bound 1.78977 in Proposition 5.3
is a lower estimate of the number θo introduced in (1.23). In fact, we can
enclose this number as accurately as we wish: it is simply a matter of using
sufficiently high precision in our computations.

Lemma 5.4. The equation sin θ + (2π − θ) · cos θ = 0 has a unique solution θo

in [0, π] which satisfies θo ∈ [1.78977584927052, 1.78977584927053].

The computer-assisted proof is based on the techniques and algorithms
described in Sect. 5.3.

5.3. Interval Analysis

The foundation of most computer-aided proofs dealing with continuous prob-
lems is the ability to compute with set-valued functions. This allows for all
rounding errors to be taken into account, and even more importantly, all dis-
cretization errors. Here, we will briefly describe the fundamentals of interval
analysis (for a concise reference on this topic, see e.g., [1,35,37]).

Let IR denote the set of closed intervals. For any element x ∈ IR, we
adopt the notation x = [x,x], where x,x ∈ R. If � is one of the operators
+,−,×,÷, we define the arithmetic on elements of IR by

x � y = {a � b : a ∈ x, b ∈ y},

except that x ÷ y is undefined if 0 ∈ y. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of
the operands:

x + y = [x + y,x + y],

x − y = [x − y,x − y],

x × y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)],

x ÷ y = x × [1/y, 1/y], if 0 /∈ y. (5.21)

Note that the identities (5.21) reduce to ordinary real arithmetic when the
intervals are thin, i.e., when x = x and y = y. When computing with finite
precision, however, directed rounding must also be taken into account, see
e.g., [35,36].

A key feature of interval arithmetic is that it is inclusion monotonic,
i.e., if x ⊆ x̂, and y ⊆ ŷ, then

x � y ⊆ x̂ � ŷ, (5.22)

where we demand that 0 /∈ ŷ for division.
One of the main reasons for passing to interval arithmetic is that this

approach provides a simple way of enclosing the range of real-valued ele-
mentary functions f over simple domains. In what follows, we will use the
notation range(f ;x) := {f(x) : x ∈ x}. Except for the most trivial cases,
classical mathematics provides few tools to accurately bound the range of a
function. To achieve this latter goal, we extend the real functions to interval
functions which take and return intervals rather than real numbers. Based
on (5.21) we extend a given representation of a real-valued rational func-
tion to its interval version by simply substituting all occurrences of the real
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variable x with the interval variable x (and the real arithmetic operators
with their interval counterparts). This produces a rational interval function
F : IR ∩ Df → IR, called the natural interval extension of f : Df → R, where
Df ⊆ R is the domain of the function f . As long as all interval arithmetic
operations are well-defined, we have the inclusion

range(f ;x) ⊆ F (x), (5.23)

by property (5.22). In fact, this type of range enclosure can be obtained for
any elementary function.

A higher-dimensional function f : Rn → R can be extended to an inter-
val function F : IRn → IR in a similar manner. The function argument is
then an interval-vector x = (x1, . . . ,xn), which we also refer to as a box.
There exist several open source programming packages for interval analysis
[16,26,40], as well as commercial products such as [13].

We will now illustrate the use of interval techniques, with a special
emphasis on non-linear equation solving. Given a real-valued continuous func-
tion f together with an interval domain x, we want to locate all zeros of f
restricted to x. We will do this by subdividing the domain into smaller inter-
vals:

x =
N⋃

i=1

xi. (5.24)

The contrapositive version of (5.23) gives

0 /∈ F (xi) =⇒ ∀x ∈ xi, f(x) �= 0. (5.25)

This is an effective criterion for discarding subsets of the domain that prov-
ably do not contain zeros of f . By continuity, the intermediate value theorem
provides a simple check for a subinterval to enclose (at least) one zero of f :
if f(xi) and f(xi) have opposite signs, then f(x) = 0 for some x ∈ xi. If
f is continously differentiable, and we also have 0 /∈ F ′(xi), then we know
that xi encloses a unique zero of f . In higher dimensions, the intermedi-
ate value theorem is replaced by more general statements such as Miranda’s
theorem [32].
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opérateur borné sur L2 pour les courbes lipschitziennes. Ann. Math. (2) 116(2),
361–387 (1982)

[6] Dahlberg, B.E.J., Kenig, C.E.: Lp estimates for the three-dimensional sys-
tems of elastostatics on Lipschitz domains. In: Analysis and Partial Differential
Equations, volume 122 of Lecture Notes in Pure and Appl. Math. pp. 621–634.
Dekker, New York (1990)

[7] Dahlberg, B.E.J., Kenig, C.E., Verchota, G.C.: Boundary value problems for
the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3), 795–818
(1988)

[8] Dahlberg, B.E.J., Kenig, C.E.: Hardy spaces and the Neumann problem in Lp

for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465
(1987)

[9] Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-
dimensional domains with corners. I. Linearized equations. SIAM J. Math.
Anal. 20(1), 74–97 (1989)

[10] Deuring, P.: The Stokes system in 3D-Lipschitz domains: a survey of recent
results. In: Progress in Partial Differential Equations: The Metz Surveys, 4,
volume 345 of Pitman Res. Notes Math. Ser., pp. 187–204. Longman, Harlow
(1996)

[11] Deuring, P.: Lp-theory for the Stokes system in 3D domains with conical bound-
ary points. Indiana Univ. Math. J. 47(1), 11–47 (1998)

[12] Fabes, E.B., Jodeit Jr., M., Lewis, J.E.: On the spectra of a Hardy kernel. J.
Funct. Anal. 21(2), 187–194 (1976)

[13] Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes
system on Lipschitz domains. Duke Math. J. 57(3), 769–793 (1988)

[14] Forte Developer 7. C++ Interval Arithmetic Programming Reference.
Sun Microsystems (2002). https://docs.oracle.com/cd/E19957-01/816-2465/
816-2465.pdf

[15] Griewank, A.: Evaluating Derivatives, volume 19 of Frontiers in Applied Math-
ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA (2000). Principles and Techniques of Algorithmic Differentiation

[16] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Sci-
entific Computing—Theory, Algorithms and Programs: Basic Numerical Prob-
lems. Springer, New York (1995)

[17] Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a
convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

[18] Kilty, J.: The Lp Dirichlet problem for the Stokes system on Lipschitz domains.
Indiana Univ. Math. J. 58(3), 1219–1234 (2009)

[19] Kohr, M., Wendland, W.L.: Variational boundary integral equations for the
Stokes system. Appl. Anal. 85(11), 1343–1372 (2006)

[20] Kozlov, V.A., Maz’ya, V.G.: Spectral properties of operator pencils generated
by elliptic boundary value problems in a cone. Funktsional. Anal. i Prilozhen.
22(2), 38–46, 96 (1988)

[21] Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral Problems Associated with
Corner Singularities of Solutions to Elliptic Equations, volume 85 of Mathemat-
ical Surveys and Monographs. American Mathematical Society, Providence, RI
(2001)

https://docs.oracle.com/cd/E19957-01/816-2465/816-2465.pdf
https://docs.oracle.com/cd/E19957-01/816-2465/816-2465.pdf


I. Mitrea et al.

[22] Kozlov, V.A., Maz’ya, V.G., Schwab, C.: On singularities of solutions to the
Dirichlet problem of hydrodynamics near the vertex of a cone. J. Reine Angew.
Math. 456, 65–97 (1994)

[23] Kupradze, V.D.: Potential methods in the theory of elasticity. Translated from
the Russian by H. Gutfreund. Translation edited by I. Meroz. Israel Program
for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York
(1965)

[24] Kupradze, V.D., Gegelia, T.G., Bashelĕı shvili, M.O., Burchuladze, T.V.:
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