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Abstract. Lorenz maps are maps of the unit interval with one critical point of order ρ > 1,
and a discontinuity at that point. They appear as return maps of sections of the geometric
Lorenz flow.

We construct real a priori bounds for renormalizable Lorenz maps with long monotone
combinatorics, and use these bounds to show existence of periodic points of renormalization,
as well as existence of Cantor attractors for dynamics of infinitely renormalizable Lorenz maps.

1. Introduction

E. N. Lorenz in [8] demonstrated numerically the existence of certain three-dimensional flows
that have a complicated behaviour. The Lorenz flow has a saddle fixed point with a one-
dimensional unstable manifold and an infinite set of periodic orbits whose closure constitutes
a global attractor of the flow.

As it is often done in dynamics, one can attempt to understand the behaviour of a three-
dimensional flow by looking at the first return map to an appropriately chosen two-dimensional
section. In the case of the Lorenz flow, it is convenient to chose the section as a plane
transversal to the local stable manifold, and ,therefore, intersecting it along a curve γ. The
first return map is discontinuous at γ.

The geometric Lorenz flow has been introduced in [9]: a Lorenz flow with an extra condition
that the return map preserves a one-dimensional foliation in the section, and contracts
distances between points in the leafs of this foliation at a geometric rate. Since the return
maps is contracting in the leafs, its dynamics is asymptotically one-dimensional, and can be
understood in terms of a map acting on the space of leafs (an interval). This interval map
has a discontinuity at the point of the interval corresponding to γ, and is commonly called
the Lorenz map.

We will start by defining what is known as the standard Lorenz family. Our work is a
continuation of the study started in [11], and we will, therefore, make a conscientious effort
to use the notation of [11] so that it would be easier for the reader to compare the approach
of this paper with that of [11].
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Definition 1. Let u ∈ [0, 1], v ∈ [0, 1], c ∈ (0, 1) and ρ > 0. The standard Lorenz family
(u, v, c) 7→ Q(x) is the family of maps Q : [0, 1] \ {c} 7→ [0, 1] with a single critical point at
which the map is discontinuous:

Q(x) =

{
u
(
1−

(
c−x
c

)ρ)
, x ∈ [0, c),

1 + v
(
−1 +

(
x−c
1−c

)ρ)
, x ∈ (c, 1],

Remark 2. In the definition above, u is the length of Q([0, c)), v is that of Q((c, 1]), while u
and 1− v are the critical values. To emphasise that a critical point c corresponds to a map f ,
we will use the notation c(f). The difference 1− c will be denoted as µ:

µ ≡ 1− c.

More generally,

Definition 3. A Ck-Lorenz map f : [0, 1] \ {c} 7→ [0, 1] is defined as

f(x) =

{
f0(x) ≡ φ(Q(x)), x ∈ [0, c),
f1(x) ≡ ψ(Q(x)), x ∈ (c, 1],

where φ and ψ are Ck orientation preserving diffeomorphisms of [0, 1] (this space will be
denoted by Dk).

We will refer to the diffeomorphisms φ and psi as coefficients of the Lorenz map.
The set of Ck-Lorenz maps will be denoted Lk. Since a Lorenz map (3) can be identified

with a quintuple (u, v, c, φ, ψ), the space Lk is isomorphic to [0, 1]2×(0, 1)×Dk×Dk. LS ⊂ L3

will denote the subset of maps with the negative Schwarzian derivative Sf ,

Sf(x) =
f ′′′(x)

f ′(x)
−

3

2

(
f ′′(x)

f ′(x)

)2

= N ′
f (x)−

1

2
Nf (x)

2. (1.1)

We will denote the Ck-norm by | · |k. The subsets of D3 of diffeomorphisms with a negative
Schwarzian will be denoted DS.

Guckenheimer and Williams have proved in [4] that there is an open set of three-dimensional
vector fields, that generate a geometric Lorenz flow with a smooth Lorenz map of ρ < 1.
However, one can use the arguments of [4] to construct open sets of vector fields with Lorenz
maps of ρ ≥ 1. Similarly to the unimodal family, Lorenz maps with ρ > 1 have a richer
dynamics that combines contraction with expansion.

For any x ∈ [0, 1]\{c} such that fn(x) 6= c for all n ∈ N, define the itinerary ω(x) ∈ {0, 1}N

of x as the sequence {ω0(x), ω1(x), . . .}, such that

ωi =

{
0, f i(x) < c,

1, f i(x) > c.
(1.2)

If one imposes the usual order 0 < 1, then for any two ω and ω̃ in {0, 1}N, we say that ω < ω̃
iff there exists r ≥ 0 such that ωi = ω̃i for all i < r and ωr < ω̃r.

The limits
ω(x+) ≡ lim

y↓x
ω(y), ω(x−) ≡ lim

y↑x−
ω(y)
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Figure 1. a) A Lorenz map f of renormalization type (01, 1000) with the critical exponent ρ = 2; b) R[f ]

exists for all x ∈ [0, 1].
The kneading invariant K(f) of f is the pair (K−(f), K+(f)) = (ω(c−), ω(c+)). Hubbard

and Sparrow have found in [5] a condition on the kneading invariant of topologically expansive
Lorenz maps. Kneading invariants for a general Lorenz map, not necessarily expansive, satisfy
the following condition:

K−
0 = 0, K+

0 = 1, σ(K+) ≤ σn(K±) ≤ σ(K−), n ∈ N,

here σ is the shift in {0, 1}N. Conversely, any sequence as above is a kneading sequence for
some Lorenz map.

A Lorenz map has two critical values

c−1 = lim
x↑c

f(x), c+1 = lim
x↓c

f(x).

We will use the notation c±1 (f) whenever we want to emphasise that that critical value
corresponds to a function f .

A Lorenz map f with c+1 < c < c−1 is called nontrivial, otherwise f has a globally attracting
fixed point. In general, c±k will denote points in the orbit of the critical values:

c±i = f i−1(c±1 ), i ≥ 1.

Definition 4. A Lorenz map f is called renormalizable if there exist p and q, 0 < p < c <
q < 1, such that the first return map (fn, fm), n > 1, m > 1, of C = [p, q] is affinely conjugate
to a nontrivial Lorenz map. Choose C such that it is maximal. The rescaled first return map
of such C \ {c} is called the renormalization of f and denoted R[f ].

We will denote

L = [p, c), R = (c, q],
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while the first return map will be denoted P[f ] and referred to as the prerenormalization. If
f is renormalizable, then there exist minimal positive integers n and m such that

P[f ](x) =

{
fn+1(x), x ∈ L,

fm+1(x), x ∈ R,

Then, explicitly,

R[f ] = A−1 ◦ P[f ] ◦ A, (1.3)

where A is the affine orientation preserving rescaling of [0, 1] onto C. We will also use the

notation f̃ for the renormalization of f .
The intervals f i(L), 1 ≤ i ≤ n, are pairwise disjoint, and disjoint from C. So are the

intervals, f i(R), 1 ≤ i ≤ m. Since these intervals do not contain c, we can associate a finite
sequence of 0 and 1 to each of these two sequences of intervals:

ω−={K−
0 , . . . , K

−
n }, ω

+={K+
0 , . . . , K

+
m}, ω = (ω−, ω+) ∈ {0, 1}n+1 × {0, 1}m+1,

which will be called the type of renormalization. The subset of maps (3) which are
renormalizable of type (ω−, ω+) is referred to as the domain of renormalization Dω (cf. [7]).

Let

ω̄ = (ω0, ω1, . . .) ∈
∏

i∈N

⊗(
{0, 1}ni+1 × {0, 1}mi+1

)
. (1.4)

If Ri[f ] is ωi-renormalizable for all i ∈ N, then f is called infinitely renormalizable of
combinatorial type ω̄. The set of ω-renormalizable maps will be denoted Lω, the set of maps
f such that Ri[f ] is ωi-renormalizable will be called Lω̄, ω̄ = (ω0, ω1, ..., ωn), with n finite or
infinite. If ω̄ is such that |ω±

i | < B, i = 0, 1, . . ., for some 0 < B < ∞, we say that ω̄ is of
bounded type.

We would like to draw the attention of the reader to position of the indices in our notation:
ωi ∈ {0, 1}N ×{0, 1}N is a pair of two words, while ωi is an integer 0 or 1 in a single word (cf.
(1.2)).

The combinatorics

ω = (0

n
︷ ︸︸ ︷

1 . . .1, 1

m
︷ ︸︸ ︷

0 . . . 0) (1.5)

will be called monotone. The set of all monotone combinatorial types will be denoted M,
while LM will denote all Lorenz maps which are ω-renormalizable with ω ∈ M.

Given an integer N > 1, the subset of M of all ω’s such that the length of words in ω
satisfies N ≤ |ω−| and N ≤ |ω+|, will be denoted MN .

Given a subset A ⊆ M, LM will denote all Lorenz maps which are ω-renormalizable with
ω ∈ A. We will also use the notation LSA = LS ∩ LA.

The main results of our paper are the following proposition and theorems.

Main Proposition 1. (A priori bounds). For every ρ > 2 there exist an integer N > 1, and
a relatively compact subset K of L0 such that R[LSMN

∩ K] ⊂ K.
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Figure 2. Monotone combinatorics (01, 1000) for a map with the critical exponent ρ = 2. The two halves of the central interval
are given in red and blue, their images under the map in semi-transparent red and blue.

At this point we were able to prove a priori bounds only for ρ > 2. The somewhat technical
reasons for that will become clear in the proof of the invariance of bounds on the critical
point in Proposition 20. Proposition 1 is used to obtain the existence of the periodic points
of renormalization:

Main Theorem 1. (Renormalization periodic points). For every ρ > 2 and every ω̄ =
(ω0, . . . , ωk−1) ∈ Mk

N , where N is as in in the Main Proposition 1, the renormalization
operator (1.3) has a periodic point in LSMN

∩ K of type ω̄.

The proof of the next Main Theorem 2 will not be given here since it practically identical to
the proof of a similar result in [11], after on establishes a priori bounds. We, however, chose
to state this as separate main result since the existence of a Cantor attractor for the dynamics
merits a special emphasis.

Main Theorem 2. (Cantor attractors). Let ρ > 2, and suppose that ω̄ = (ω0, . . . , ωk−1 . . .) ∈
MN

N , where N is as in in the Main Proportion 1, is of bounded type.
Consider f ∈ LSω̄ ∩ K, and let Λ be the closure of the orbits of the critical values.
Then,

1) Λ is a Cantor set of a Hausdorff dimension strictly inside (0, 1);

2) Λ is uniquely ergodic;

3) the complement of the basin of attraction of Λ in [0, 1] has zero Lebesgue measure.
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The study of renormalizable Lorenz maps was initiated by Tresser et al. (see e.g. [1]).
A more recent work of Martens and de Melo [7] produced a series of important results,
specifically about the domains of renormalization and the structure of the parameter plane
for two-dimensional Lorenz families.

The work [10] presented a computer assisted proof of existence of a renormalization fixed
point for the renormalization operator of type ({0, 1}, {1, 0, 0}). The renormalization operator
of this particular type has been later shown to have a fixed point in the class of maps analytic
on a neighbourhood of the unit interval using only complex analytic techniques in [3].

In a more general setting, issues of existence of renormalization periodic points and
hyperbolicity have been addressed in [11], where it is proved that the limit set of
renormalization, restricted to monotone combinatorics with the return time of one branch
being large and much larger than the return time for the other branch, is a Cantor set, and
that each point in the limit set has a two-dimensional unstable manifold. Specifically, [11]
proves equivalents of our Main Proposition 1 and Main Theorem 1 for monotone combinatorial
types with the following return times:

[ρ] ≤ |ω−| − 1 ≤ [2ρ− 1], n− ≤ |ω+| − 1 ≤ n+, (1.6)

where n− is sufficiently large, and n+ depends on the choice of n−.
In comparison, our approach allows us to prove the a priori bounds for a different class of

combinatorial types. We are able to avoid the disparity of return times evident in (1.6), as
well as boundedness of return times from above. Nevertheless, we could not avoid a condition
of largeness of return times. We would like to emphasise, however, that the lower bounds
on the return times for which our results are valid can be expressed in terms of explicit but
very cumbersome functions of ρ. A careful computation of these bounds will result in definite
(and, likely, not too large) values of N . However, we have not performed these estimates in
the present paper.

2. Preliminaries

2.1. The Koebe Principle We will start by quoting the Koebe Principle which is of a
fundamental importance in real dynamics (see, ex. [6]). We will say that an interval V
is a τ -scaled neighbourhood of U ⊂ V , if both components of V \U have length at least τ ·U .

Theorem (Koebe Priniciple) 1. Let J ⊂ T be intervals, and f : T 7→ f(T ) be a C3-
diffeomorphism with Sf < 0. If f(T ) contains a τ -scaled neighbourhood of f(J), then

(
τ

1 + τ

)2

≤
Df(x)

Df(y)
≤

(
1 + τ

τ

)2

, x, y ∈ J.

2.2. Distortion and nonlinearity Let Ck(A;B) be the set of k-continuously differentiable maps
from A to B. We denote Dk(A;B) ⊂ Ck(A;B) the subset of orientation preserving
homeomorphisms whose inverse lie in Ck(A;B). We will use the notation Dk and Ck whenever
A = B = [0, 1].
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Definition 5. The nonlinearity operator N : D2(A;B) 7→ C0(A;R) is defined as

Nφ = D logDφ,

while

Nφ(x) =
φ′′(x)

φ′(x)

is the nonlinearity of φ at point x.

Definition 6. Given φ ∈ D1(A;B), the quantity

dist[φ] = max
x,y∈A

ln

(
Dφ(y)

Dφ(x)

)

is called the distortion of φ.

Notice, that
∫ y

x

Nφ(t)dt = ln
Dφ(y)

Dφ(x)
.

The following Lemma results from a straightforward computation.

Lemma 7. The nonlinearity operator N : D2(A;B) 7→ C0(A;R) is a bijection. In the case
A = B = [0, 1], the inverse is defined as

N−1
φ (x) =

∫ x

0
exp

{∫ r

0
φ(t)dt

}
dr

∫ 1

0
exp

{∫ r

0
φ(t)dt

}
dr
. (2.7)

One can turn D2(A;B) into a Banach space using the nonlinearity operator. Specifically,
for φ, ψ in D2(A;B) and a, b ∈ R, the linear structure and the norm are defined via

aφ+ bψ = N−1
aNφ+bNψ

, (2.8)

‖φ‖ = sup
x∈A

|Nφ(x)| . (2.9)

Finally, we give a list of useful bounds on derivatives and distortion in D2(A;B) in terms
on the nonlinearity (see [11] or [6] for the proofs).

Lemma 8. If φ, ψ ∈ D2(A;B) then, for all x, y ∈ A,

e−|y−x|‖φ‖ ≤
Dφ(y)

Dφ(x)
≤ e|y−x|‖φ‖, (2.10)

|B|

|A|
e−‖φ‖ ≤ Dφ(x) ≤

|B|

|A|
e‖φ‖, (2.11)

e−‖φ−ψ‖ ≤
Dφ(x)

Dψ(x)
≤ e‖φ−ψ‖. (2.12)
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Notice, that the set of uniformly bounded homeomorphisms in D2 is relatively compact.
Indeed, consider U = {φ ∈ D2 : ‖φ‖ ≤ K}. Because of (2.11) such maps have a uniformly
bounded derivative, and therefore are equicontinous. By Arzelà-Ascoli theorem, U is relatively
compact in C0.

We will introduce two subsets of Lorenz maps, defined via conditions on their distortion
and critical points.

Definition 9. Given a real constants π > 0, we set

Kπ ≡
{
f ∈ LS : dist[ψ] ≤ π, dist[φ] ≤ π

}
. (2.13)

Given real constants π > 0, ε > 0, set

Kπ
ε ≡

{
f ∈ Kπ ⊂ LS : c(f) ∈ [ε, 1− ε]

}
. (2.14)

The reason for the introduction of these sets is the following compactness result.

Corollary 10. Let π > 0 and ε > 0. Then the set Kπ
ε is relatively compact in L0.

Proof. Recall that L2 is isomorphic to [0, 1]2× (0, 1)×D2×D2. Since c is bounded away from
0 and 1 by a constant, it is, therefore, contained in a compact subset of (0, 1). Consider the
set

B =
{
(φ, ψ) ∈ D2 ×D2 : dist[φ] ≤ π, dist[ψ] ≤ π

}
.

Any sequence from B is equicontinous since |φ(y)−φ(x)| ≤ eπ|y−x|, and clearly, uniformly
bounded, therefore it has a convergent subsequence by the Arzelà-Ascoli theorem. ✷

2.3. Monotone combinatorics We will quote a lemma from [11] (Lemma 2.1.11) which gives the
formulae for the factors of a renormalization of a Lorenz map in LM. Let I be an interval
and gI be an orientation preserving diffeomorphism. We denote the affine transformation that
takes [0, 1] onto I as ξI . Define the zoom operator:

Z(g; I) = ξ−1
g(I) ◦ g ◦ ξI . (2.15)

Lemma 11. If f = (u, v, c, φ, ψ) is renormalizable of monotone combinatorics, then

R[f ] = (ũ, ṽ, c̃, φ̃, ψ̃)

is given by

ũ =
|Q(L)|

|U |
, ṽ =

|Q(L)|

|V |
, c̃ =

|L|

|C|
, (2.16)

φ̃ = Z(φ̄;U), ψ̃ = Z(ψ̄;V ), φ̄ = fn1 ◦ φ, ψ̄ = fm0 ◦ ψ, (2.17)

where U = φ−1 ◦ f−n
1 (C), V = ψ−1 ◦ f−m

0 (C).
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3. Estimates for Lorenz maps with monotone combinatorics

In this Section we will obtain bounds on the critical points, critical values and lengths
of the central subintervals L and R for Lorens maps with monotone combinatorics whose
diffeomorphic coefficients have bounded distortion.

Suppose that f ∈ L3 is ω-renormalizable, where

ω = (0 ω1 ω2 . . . ωn, 1 v1 v2 . . . vm).

Given, l ≥ k, denote

Ψ−1
ωk...ωl

≡ fωl ◦ . . . ◦ fωk , Ψωk...ωl = f−1
ωk

◦ . . . ◦ f−1
ωl
,

and

ω(k) ≡ ω1 . . . ωk, ω+(k) ≡ v1 . . . vk,

(note different notations here and in (1.4) and (1.2)), then the prerenormalization can be
written as

P[f ] = (Ψ−1
ω−(n) ◦ f0,Ψ

−1
ω+(m) ◦ f1).

Furthermore, we denote

Ψ−1
ω−(n) ◦ f0(L) ≡ I ≡ [p, c−n+1), Ψωk...ωn(I) = Ik,

Ψ−1
ω+(m) ◦ f1(R) ≡ J ≡ (c+m+1, q], Ψvk ...vm(J) = Jk.

Notice, that I1 = f0(L) and J1 = f1(R).
We will mention the following simple lemma (cf. [11] for a proof).

Lemma 12. Ψω−(n) and Ψω+(m) extend to neighbourhoods of (c+1 , 1) and (0, c−1 ), respectively,
as analytic maps.

We will continue with a sequence of lemmas which will prepare us for a construction of a
priori bounds — construction of a relatively compact set invariant under renormalization.

First of all, we will need simple bounds on the difference of f0 and f1 at two points of the
domain.

Lemma 13. Suppose that dist[φ] ≤ π, dist[ψ] ≤ π, then

e−πρc−1
c

(x− y)

(
c− x

c

)ρ−1

≤ f0(x)− f0(y) ≤
eπρc−1
c

(x− y)

(
c− y

c

)ρ−1

, (3.18)

for any x > y in [0, c), and

e−πρ(1− c+1 )

µ
(x− y)

(
y − c

µ

)ρ−1

≤ f1(x)− f1(y) ≤
eπρ(1− c+1 )

µ
(x− y)

(
x− c

µ

)ρ−1

, (3.19)

for any x > y in (c, 1].
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Proof. Notice, that the average derivative of φ on (0, u) is c+1 /u, therefore, the derivative φ
′(x)

at any point in (0, u) is bounded as

c−1
u
e−π ≤ φ′(x) ≤

c−1
u
eπ. (3.20)

Similarly, for x ∈ (1− v, 1).

1− c+1
v

e−π ≤ ψ′(x) ≤
1− c+1
v

eπ. (3.21)

Therefore, we get for x > y in [0, c)

f0(x)− f0(y) ≤
c−1
u
eπρ

u

c
(x− y)

(
c− y

c

)ρ−1

=
eπρc−1
c

(x− y)

(
c− y

c

)ρ−1

.

The lower bound is obtained as follows:

f0(x)− f0(y) ≥
c−1
u
e−πρ

u

c
(x− y)

(
c− x

c

)ρ−1

=
e−πρc−1

c
(x− y)

(
c− x

c

)ρ−1

.

Bounds on the difference of f1 can be obtained in a similar way. ✷

Let us introduce the following notation for the sake of brevity:

α ≡
e−π

ρ
, η ≡

e−πµ

(1− c+1 )ρ
, κ ≡

e−πc

c−1 ρ
, γ ≡

e2π

ρ
, ν ≡

µ

(1− c+1 )
1
ρ

, ξ ≡
c

(c−1 )
1
ρ

. (3.22)

Since R ⊂ fm+1(R), we have that f−1
0 (c) ∈ fm(R), and for monotone combinatorics

f−1
0 (c) > c+1 . Similarly, f−1

1 (c) < c−1 . The next lemma uses this fact, and provides a lower
bound on the length of the intervals [f−1

0 (c), p] and [q, f−1
1 (c)], which is also a lower bound on

the length of the intervals [c+1 , p] and [q, c−1 ].

Lemma 14. Let f ∈ Kπ ∩ Lω for some π > 0 and ω = (ω−, ω+) ∈ M with |ω−| = n + 1,
|ω+| = m+ 1. Then

|p− f−1
0 (c)| ≥

(

κ

(
c

c− c+1

)ρ−1 (

ν
ρ
ρ−1 e

−π
ρ−1

)
) ρn

ρn−1

≡ ∆, (3.23)

|q − f−1
1 (c)| ≥

(

η

(
µ

c−1 − c

)ρ−1 (

ξ
ρ
ρ−1 e

−π
ρ−1

)
) ρm

ρm−1

≡ Θ. (3.24)

Proof. We will first demonstrate that

f−n
1 (x) ≥ c+ ν

ρ
ρ−1 e

−π
ρ−1
(
x− c+1

) 1
ρn (3.25)

for all x > c+1 . To prove (3.25) we use the following expressions for the inverse branches of a
Lorenz map:

f−1
0 (x) = c− c

(
|φ−1([x, c−1 ])|

|φ−1([0, c−1 ])|

) 1
ρ

= c− c

(
u− φ−1(x)

u

) 1
ρ

, (3.26)

f−1
1 (x) = c+ µ

(

1−
|ψ−1([x, 1])|

|ψ−1([c+1 , 1])|

) 1
ρ

= c+ µ

(

1−
1− ψ−1(x)

v

) 1
ρ

, (3.27)
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and start with

f−1
1 (x) ≥ c+ µ

(

e−π
x− c+1
1− c+1

) 1
ρ

= c+ µ

(
e−π

1− c+1

) 1
ρ (
x− c+1

) 1
ρ ,

for x > c+1 , and use induction on this inequality to obtain

f−n
1 (x) ≥ c+

(

µ

(
e−π

1− c+1

) 1
ρ

)1+...ρ−(n−1)

(
x− c+1

) 1
ρn ≥ c+ ν

ρ
ρ−1 e

−π
ρ−1
(
x− c+1

) 1
ρn .

According to Lemma 13:

|f0(p)− c| ≤ κ−1|p− f−1
0 (c)|

(
c− f−1

0 (c)

c

)ρ−1

.

On the other hand, f0(p) = f−n
1 (p), and according to (3.25),

f−n
1 (p) ≥ c+ ν

ρ
ρ−1 e

−π
ρ−1
(
p− c+1

) 1
ρn . (3.28)

Therefore,

f0(p)− c = f−n
1 (p)− c ≥ ν

ρ
ρ−1 e

−π
ρ−1 |p− c+1 |

1
ρn ,

and

κ−1|p− f−1
0 (c)|

(
c− f−1

0 (c)

c

)ρ−1

≥ ν
ρ
ρ−1 e

−π
ρ−1 |p− c+1 |

1
ρn ≥ ν

ρ
ρ−1 e

−π
ρ−1 |p− f−1

0 (c)|
1
ρn , (3.29)

which results in the required bound (3.23).
The bound on |q − f−1

1 (c)| is obtained in a similar way. ✷

Lower bounds on the differences |p− f−1
0 (c)| and |f−1

1 (c)− q| can be used to bound c−1 and
1− c+1 from below.

Lemma 15. Let f ∈ Kπ ∩ Lω for some π > 0 and ω = (ω−, ω+) ∈ M with |ω−| = n + 1,
|ω+| = m+ 1. Then,

c+1 ≥
κm∆

1− κm
, 1− c−1 ≥

ηnΘ

1− ηn
. (3.30)

Proof. To get the lower bound on c+1 we notice that the derivatives of the inverse branches
of Q(x) (formulae (3.26) and (3.27) with φ = ψ = id) are increasing functions, while the
derivatives of φ and ψ are bounded as in 3.20 and (3.21). This can be used to get a
straightforward bound

Df−1
0 (x) ≥

e−πc

c−1 ρ
= κ,

for all 0 < x < c−1 . Therefore,

f−m(p) ≥
(
Df−1(0)

)m
p ≥ κmp,
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so

p ≥ c+1 +∆ ≥ κmp+∆ =⇒ p ≥
∆

1− κm
,

and

c+1 ≥
κm∆

1− κm
.

The lower bound on 1− c−1 is obtained in a similar way. ✷

We will now turn our attention to the bounds on L and R.

Lemma 16. Let f ∈ Kπ ∩ Lω where 0 < 2π < ln ρ and ω = (ω−, ω+) ∈ M with |ω−| = n+ 1,
|ω+| = m+ 1. Then there exist a constant K, such that

|L| ≤

(

(c−1 − c)
cρeπ

c−1

) 1
ρ+1
(
γ−1 − 1

γ−n − 1

) 1
ρ+1

, (3.31)

|L| ≤

(

µ2

∣
∣
∣
∣

µ

Θ+ |R|

∣
∣
∣
∣

ρ−1
γcρ

(1− c+1 )c
−
1

) 1

ρ+ 1
ρn−1

, (3.32)

|L| ≥

(
e−πcρ

c−1
ηn
) 1

ρ−1

exp

(

K
ηnΘ

µ(1− ηn)

n∑

k=1

(
e−2π

η

(Θ + |R|)ρ−1

µρ−1

)k−1
)

, (3.33)

and

|R| ≤

(

(c− c+1 )
µρeπ

(1− c+1 )

) 1
ρ+1
(
γ−1 − 1

γ−m − 1

) 1
ρ+1

, (3.34)

|R| ≤

(

c2
∣
∣
∣
∣

c

∆+ |L|

∣
∣
∣
∣

ρ−1
γµρ

(1− c+1 )c
−
1

) 1

ρ+ 1
ρm−1

, (3.35)

|R| ≥

(
e−πµρ

1− c+1
κn
) 1

ρ−1

exp

(

K
κn∆

c(1− κm)

m∑

k=1

(
e−2π

κ

(∆ + |L|)ρ−1

cρ−1

)k−1
)

. (3.36)

Proof. 1) Upper bounds. Denote pi = f i(p) and qi = f i(q) (notice, pn+1 = p and qm+1 = q),
and, as before, c±i = f i−1(c±1 ). Suppose, point x1 is in the interval I1, and denote points in
the orbit of x1 as xk: xk = fk−1

1 (x1). Then, according to (3.25),

pk ≡ f
−(n−k)
1 (xn) ≥ c+ ν

ρ
ρ−1 e

−π
ρ−1
(
xn − c+1

) 1

ρn−k ≡ p̃k,
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and one gets for all n + 1 > k > 0

Df−1
1 (xk+1) ≤

(
µeπ

ρ(1 − c+1 )

)(

e−π
xk+1 − c+1
1− c+1

) 1−ρ
ρ

≤
µeπ

ρ(1− c+1 )
(1− c+1 )

ρ−1
ρ

(
e−π(xk+1 − c)

) 1−ρ
ρ

≤
µeπ

ρ
(1− c+1 )

− 1
ρ



e−π

(

µ

(1− c+1 )
1
ρ

) ρ
ρ−1

e
−π
ρ−1 (xn − c+1 )

1

ρn−k−1





1−ρ
ρ

≤
e2π

ρ

(
xn − c+1

) 1−ρ

ρn−k = γ
(
xn − c+1

) 1−ρ

ρn−k ,

and

Df1(xk) =
(
Df−1

1 (xk+1)
)−1

≥ γ−1
(
xn − c+1

) ρ−1

ρn−k .

We can now see that

Df1(xk) ≥ γ−1
(
pn − c+1

) ρ−1

ρn−k

for all xk ∈ Ik. Therefore,

|c−k − pk| ≥ |p1 − c−1 |
k−1∏

i=1

min
x∈Ii

Df1(x) ≥ |p1 − c−1 |
k−1∏

i=1

γ−1
(
pn − c+1

) ρ−1

ρn−i

≥ |p1 − c1|γ
1−k
(
pn − c+1

) 1

ρn−k .

Notice, that for monotone combinatorics all images fk(L), 1 ≤ k ≤ n, are contained in the
interval (c, c−1 ), while the images fk(R), 1 ≤ k ≤ m, are all contained in (c+1 , c). Therefore,

c−1 −c >
n∑

k=1

|c−k −pk| ≥ |p1−c1|
n∑

k=1

γ1−k
(
pn − c+1

) 1

ρn−k ≥
c−1
eπ

(
|L|

c

)ρ n∑

k=1

γ1−k|L|
1

ρn−k . (3.37)

We can now use the fact that γ−1 = ρ/e2π > 1 for all π as in the hypothesis of the Lemma,
to simplify the above expression.

c−1 − c ≥
c−1
eπ

(
|L|

c

)ρ

γ1−n|L|
n−1∑

k=0

γk =
c−1
eπcρ

|L|ρ+1γ
1−n − γ

1− γ
.

and the upper bound (3.31) from the claim follows. The bound (3.34) on R is obtained in a
similar way.

To derive the upper bound (3.32), we return to (3.37), and notice that for monotone
combinatorics all images fk(L), 1 ≤ k ≤ n − 1, are contained in the interval (f−1

1 (c), c−1 ),
while the images fk(R), 1 ≤ k ≤ m− 1, are all contained in (c+1 , f

−1
0 (c)). Therefore,

c−1 − f−1
1 (c) ≥

c−1
eπ

(
|L|

c

)ρ n−2∑

k=0

γ1−k|L|
1

ρn−k =
c−1
eπcρ

|L|
ρ+ 1

ρn−1 , (3.38)
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while on the other hand, according to Lemma 13,

|c−2 − c| = |f1(c
−
1 )− c| ≥

e−πρ(1− c+1 )

µ
|c−1 − f−1

1 (c)|

∣
∣
∣
∣

f−1
1 (c)− c

µ

∣
∣
∣
∣

≥
e−πρ(1− c+1 )

µ
|c−1 − f−1

1 (c)|

∣
∣
∣
∣

Θ+ |R|

µ

∣
∣
∣
∣

ρ−1

=⇒

µ ≥
e−πρ(1− c+1 )

µ
|c−1 − f−1

1 (c)|

∣
∣
∣
∣

Θ+ |R|

µ

∣
∣
∣
∣

ρ−1

=⇒

|c−1 − f−1
1 (c)| ≤ µ2

∣
∣
∣
∣

µ

Θ+ |R|

∣
∣
∣
∣

ρ−1
eπ

ρ(1− c+1 )
,

which together with (3.38) results in

µ2
∣
∣
∣
µ

Θ

∣
∣
∣

ρ−1 eπ

ρ(1 − c+1 )
≥

c−1
eπcρ

|L|
ρ+ 1

ρn−1 ,

and the second upper bound (3.32) follows. The bound (3.35) is obtained in a similar way.

2) Lower bounds. We will use the fact that L ⊂ fn+1(L), or

|L| ≤ |fn1 (p1)− fn1 (c
−
1 )|.

Then, according to the previous Lemma,

|L| ≤ |f1(pn)− f1(c
−
n )| ≤

eπ(1− c+1 )ρ

µ

∣
∣pn − c−n

∣
∣

∣
∣
∣
∣

c−n − c

µ

∣
∣
∣
∣

ρ−1

≤ η−2
∣
∣pn−1 − c−n−1

∣
∣

∣
∣
∣
∣

c−n − c

µ

∣
∣
∣
∣

ρ−1 ∣∣
∣
∣

c−n−1 − c

µ

∣
∣
∣
∣

ρ−1

≤ η−n
∣
∣p1 − c−1

∣
∣

n∏

k=1

∣
∣
∣
∣

c−k − c

µ

∣
∣
∣
∣

ρ−1

≤ η−neπc−1

∣
∣
∣
∣

L

cρ

∣
∣
∣
∣

ρ n∏

k=1

∣
∣
∣
∣

c−k − c

µ

∣
∣
∣
∣

ρ−1

. (3.39)

We will now obtain an estimate on (c−k − c)/µ. To that end, first notice, that

Df1(x) ≥
e−π(1− c+1 )ρ

µ

(
x− c

µ

)ρ−1

≥
e−π(1− c+1 )ρ

µ

(
Θ+ |R|

µ

)ρ−1

,
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for all x ≥ f−1
1 (c), therefore,

c−k − c ≤ 1− min
x≥f−1

1 (c)
{Df1(x)} (1− c−1 )

≤ 1− c−

(

e−π(1− c+1 )ρ

µ

(
Θ+ |R|

µ

)ρ−1
)k−1

(1− c−1 )

≤ µ−

(

e−2π

η

(
Θ+ |R|

µ

)ρ−1
)k−1

ηnΘ

1− ηn
=⇒

c−k − c

µ
≤ 1−

(

e−2π

η

(
Θ+ |R|

µ

)ρ−1
)k−1

ηnΘ

µ(1− ηn)
=⇒

n∏

k=1

∣
∣
∣
∣

c−k − c

µ

∣
∣
∣
∣

ρ−1

≤
n∏

k=1



1−

(

e−2π

η

(
Θ+ |R|

µ

)ρ−1
)k−1

ηnΘ

µ(1− ηn)





ρ−1

≤ exp

(

−K(ρ− 1)
ηnΘ

µ(1− ηn)

n∑

k=1

(
e−2π

η

(Θ + |R|)ρ−1

µρ−1

)k−1
)

,

where K is some immaterial constant of order 1. Finally, (3.39) becomes

L ≤ η−neπc−1

∣
∣
∣
∣

L

cρ

∣
∣
∣
∣

ρ

exp

(

−K(ρ− 1)
ηnΘ

µ(1− ηn)

n∑

k=1

(
e−2π

η

(Θ + |R|)ρ−1

µρ−1

)k−1
)

.

which results in the required lower bound for L.
The lower bound for R is obtained in a similar way. ✷

4. A priori bounds

Recall that by Lemma 11, the diffeomorphic coefficients of the renormalized map are

φ̃ = ξ−1
C ◦ fn1 ◦ φ ◦ ξφ−1◦f−n1 (C), ψ̃ = ξ−1

C ◦ fm0 ◦ ψ ◦ ξψ−1◦f−m0 (C).

The next Proposition establishes the conditions for the invariance of the distortion of the
coefficients under renormalization.

Proposition 17. (Invariance of distortion). For every ρ > 1 and every 0 < π < 1/2 ln ρ,
there exist N = N(ρ, π) > 1, such that if f ∈ Kπ

ε ∩Lω where ω = (ω−, ω+) with |ω−| ≥ N and
|ω+| ≥ N , then

dist[φ̃] ≤ π, and dist[ψ̃] ≤ π.

Proof. We consider the exponential of the distortion of φ̃ on [0, 1]. For any x, y ∈ [0, 1],

Dφ̃(x)

Dφ̃(y)
=
D(fn1 ◦ φ)(ξφ−1◦f−n1 (C)(x)))

D(fn1 ◦ φ)(ξφ−1◦f−n1 (C)(y)))
. (4.40)
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Recall, that C = [p, q], and that, by Lemma 12, f−n
1 and f−m

0 are defined at least on (c+1 , 1)
and (0, c−1 ), respectively. By Koebe Principle 1

D (fn1 ◦ φ) (z)

D (fn1 ◦ φ) (w)
≤

(
1 + τ

τ

)2

,

where z, w ∈ φ−1(f−n
1 (C)), and

τ = max{τ1, τ2}, τ1 =
1− q

q − p
, τ2 =

p− c+1
q − p

.

Similarly, for z, w ∈ ψ−1(f−m
0 (C)),

D (fm0 ◦ ψ) (z)

D (fm0 ◦ ψ) (w)
≤

(
1 + ζ

ζ

)2

,

where

ζ = max{ζ1, ζ2}, ζ1 =
p

q − p
, ζ2 =

c−1 − q

q − p
.

Therefore,

max{dist[φ̃], dist[ψ̃]} ≤ max

{(
1 + τ2
τ2

)2

,

(
1 + ζ2
ζ2

)2
}

= max

{(
q − c+1
p− c+1

)2

,

(
c−1 − p

c−1 − q

)2
}

. (4.41)

Below we will demonstrate that (4.41) is less than eπ for sufficiently large n and m.
Recall, that ∆ from Lemma 14 serves as a lower bound on p − f−1

0 (c), while Θ is a lower
bound on q − f−1

1 (c). Then, using that p− f−1
0 (c) < p− c+1 , together with the upper bounds

on L and R from Lemma 16, we get

q − c+1
p− c+1

≤ 1 +
q − p

p− c+1
≤ 1 +

|C|

∆
≤ 1 +

|L|+ |R|

∆

≤ 1 +

((

(c−1 − c)
cρeπ

c−1

γ−1 − 1

γ−n − 1

) 1
ρ+1

+

(

(c− c+1 )
µρeπ

(1− c+1 )

γ−1 − 1

γ−m − 1

) 1
ρ+1

)

×

×





c−1 ρ

c

(

1−
c+1
c

)ρ−1

ν
ρ
ρ−1 e−π

ρ
ρ−1






ρn

ρn−1

≤ 1 +

((

µcρ−1eπ
γ−1 − 1

γ−n − 1

) 1
ρ+1

+

(

cµρ−1eπ
γ−1 − 1

γ−m − 1

) 1
ρ+1

)




c−1 ρ

c

(

1−
c+1
c

)ρ−1

ν
ρ
ρ−1 e−π

ρ
ρ−1






ρn

ρn−1

.
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Notice, that the function (1− x)xρ−1 assumes its maximum at x = (ρ− 1)/ρ, therefore,

µcρ−1 ≤

(

1−
ρ− 1

ρ

)(
ρ− 1

ρ

)ρ−1

≤
e−1

ρ− 1
,

and similarly for cµρ−1. Now, let s = min{n,m}, then

q − c+1
p− c+1

≤ 1 + 2

(
eπ−1

ρ− 1

γ−1 − 1

γ−s − 1

) 1
ρ+1





c−1 ρ

c

(

1−
c+1
c

)ρ−1

ν
ρ
ρ−1 e−π

ρ
ρ−1






ρn

ρn−1

≤ 1 + 2

(
eπ−1

ρ− 1

γ−1 − 1

γ−s − 1

) 1
ρ+1

(

ρ

(1− ε)ε
ρ
ρ−1 e−π

ρ
ρ−1

) ρn

ρn−1

.

where we have also used that the minimum if cµ
ρ
ρ−1 for c ∈ [ε, 1− ε], is (1− ε)ε

ρ
ρ−1 .

One can now see that if s sufficiently large, then the small factor 1/(γ−s − 1) dominates
other terms, and for every π as in the hypothesis, there exists a sufficiently large s, such that
(q− c+1 )/(p− c

+
1 ) is smaller than eπ/2 whenever the distortion of the coefficients of f is smaller

than π.
In a similar way (c−1 − p)/(c+1 − q) is less than eπ/2 for sufficiently large n and m. ✷

Recall the definition of the subset MN from the Introduction: this is the subset of M
(monotone types) of all ω’s such that the length of words in ω satisfies |ω−| ≥ N and |ω+| ≥ N .
Also, recall that according to Lemma 11, the critical point of a renormalized Lorenz map is
given by

c̃ =
|L|

|C|
. (4.42)

Proposition 18. (Invariance of the bounds on the critical point). Let π satisfy 0 < π <
1/2 ln ρ, and let ρ > 2. Then there exist ε > 0 such that if f ∈ Kπ

ε ∩LM then the critical point
c̃ of the renormalization satisfies

c̃ ∈ [ε, 1− ε].

Proof. Our immediate goal is to show, that for f as in the hypothesis of the Proposition, there
exists a positive ε, such that c̃ lies in [ε, 1− ε] whenever c does. We will start with the lower
bound on c̃.

According to (4.42), for c̃ to be larger or equal to some ǫ > 0 it is sufficient that

1

1 + max |R|
|L|

≥ ǫ⇔ 1 ≥ ǫ

(

1 + max
|R|

|L|

)

. (4.43)

The maximum of the ratio of the lengths of R and L can be estimated using bounds from
Lemma 16:

|R|

|L|
≤

(

(c− c+1 )
µρeπ

(1−c+1 )

) 1
ρ+1
(
γ−1−1
γ−m−1

) 1
ρ+1

(
e−πcρ

c−1
ηn
) 1
ρ−1

exp

(

K ηnΘ
µ(1−ηn)

∑n
k=1

(
e−2π

η
(Θ+|R|)ρ−1

µρ−1

)k−1
) . (4.44)
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We will identify the behaviour of the right hand side of the above inequality as µ → 0.

|R|

|L|
≤ A

µ
ρ
ρ+1

µ
n
ρ−1 exp

(

Bη1+
ρm

ρm−1µ−1−(ρ−1)(n−1)
(

Dη
ρm

ρm−1 + Pµ
ρ
ρ+1

)(ρ−1)(n−1)
)

≤ Aµ
ρ
ρ+1

− n
ρ−1 exp

(

−Kµ
ρm

ρm−1
− ρ−1
ρ+1

(n−1)
)

,

where A, B, D, P and K are some bounds that depend on n, m, ρ and π, but do not depend
on µ. Therefore, for (4.43) to hold whenever µ is small, its is sufficient that

ǫ+ Aǫµ
ρ
ρ+1

− n
ρ−1 exp

(

−Kµ
ρm

ρm−1
− ρ−1
ρ+1

(n−1)
)

≤ 1.

For sufficiently large n and m, the above inequality is of the form

ǫ+ Aǫµ−an exp
(
−Tµ−bn

)
≤ 1,

where a, b, A and T are some constants.
Since µ strictly less than 1, for sufficiently large n the small exponential dominates the

large factor in front of it, and there exists ǫ > 0 and a natural number N > 1, such that the
inequality holds for µ ≤ ǫ and all n,m > N .

We now turn to the case c→ 0. Here we will use the upper bound (3.35) on |R|:

|R|

|L|
≤

(

c2
∣
∣ c
∆

∣
∣ρ−1 γµρ

(1−c+1 )c−1

) 1

ρ+ 1
ρn−1

(
e−πcρ

c−1
ηn
) 1
ρ−1

exp

(

K ηnΘ
µ(1−ηn)

∑n
k=1

(
e−2π

η
(Θ+|R|)ρ−1

µρ−1

)k−1
) , (4.45)

and we isolate all powers of c and c−1 :

|R|

|L|
≤

(

c2
(
c
∆

)ρ−1 γµρ

(1−c+1 )c−1

) 1

ρ+ 1
ρn−1

(
e−πcρ

c−1
ηn
) 1
ρ−1

≤ A

(

c2

c−1

(

c

κ
ρn

ρn−1

)ρ−1
) 1

ρ+ 1
ρn−1

(
cρ

c−1

) 1
ρ−1

≤ A

(

c2

c−1

(

c1−
ρn

ρn−1 (c−1 )
ρn

ρn−1

)ρ−1
) 1

ρ+ 1
ρn−1

(
cρ

c−1

) 1
ρ−1

≤ Ac2
ρn−1

ρn+1
− ρ−1
ρn−1

ρn−1

ρn+1
− ρ
ρ−1 (c−1 )

(

ρn(ρ−1)
ρn−1

−1
)

ρn−1

ρn+1
+ 1
ρ−1

≤ Ac
(ρ−2)ρ2n+ρn(1−ρ2)+ρ

(ρ2n−1)(ρ2−ρ)
−1
(c−1 )

(ρ−1)ρn+ρ2n(ρ2−2ρ+2)−ρ

(ρ2n−1)(ρ2−ρ) ,

for all ρ > 1 the power of c−1 is positive, and we can bound it from above by 1, then the
condition

ǫ+ ǫmax

{
|R|

|L|

}

≤ 1
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is implied by

ǫ+ Aǫc
(ρ−2)ρ2n+ρn(1−ρ2)+ρ

(ρ2n−1)(ρ2−ρ)
−1

≤ 1,

and it is sufficient for all c ≤ ǫ that

ǫ+ Aǫ
(ρ−2)ρ2n+ρn(1−ρ2)+ρ

(ρ2n−1)(ρ2−ρ) ≤ 1. (4.46)

For all ρ > 2 and sufficiently large n the power of ǫ in the second term is positive, and we get
that the invariance condition is satisfied by a sufficiently small ǫ.

To summarise, denote the maximum of the upper bounds (4.44) and (4.45) by M(c) (we
suppress the dependence of M on ρ, π, c±1 , n and m in our notation), then we have shown
that there exists ǫ > 0 such that

1

1 +M(x)
≥ ǫ,

for all x ≤ ǫ, and that
1

1 +M(x)
≥ ǫ,

for all x ≥ 1 − ǫ. Since 1/(1 + M(x)) is clearly a continuous function of x, it achieves a
minimum ǫ1 on any interval [ǫ, 1 − ǫ]. We can now choose ε1 = min{ǫ1, ǫ} to be the lower
bound on c.

Existence of ε2 > 0 such that c̃ < 1 − ǫ2 is proved in a similar way by considering the
maximum of the ratio of the lengths of L and R. Finally, take ε = min{ε1, ε2}. ✷

Remark 19. One can now see that the reason for a somewhat restrictive condition ρ > 2 is
the positivity of the exponent in (4.46). One might hope that with more work, for example, a
better upper bound on c−1 , which would add to smallness in (4.46), one can relax this constraint.

The following results is an immediate corollary of Propositions 17 and 20.

Proposition 20. (A priori bounds). Let π satisfy 0 < π < 1/2 lnρ. Then, for every ρ > 2
there exists a natural N > 1 and ε > 0, such that R[Kπ

ε ∩ LMN
] ⊂ Kπ

ε .

5. Periodic points of renormalization

We consider a restriction Rω of the renormalization operator to some

ω = (0

n
︷ ︸︸ ︷

1 . . . 1, 1

m
︷ ︸︸ ︷

0 . . .0) ∈ M, n ≥ N, m ≥ N,

where N is as in Propositions 17 and 20.
In this Section we will demonstrate that Rω has a fixed point. We will generally follow

the approach of Section 3.3 from [11] (and we will make a conscientious attempt to keep the
notation in line with that work). One important difference with the case considered in [11],
however, is that we are looking at a different class of return times. This will introduce some



20 D. Gaidashev

extra difficulties, especially evident in the proof of Lemma (26), somewhat more involved than
its analogue from [11].

We will start by quoting several previously established results.

Definition 21. A branch I of fn is full if fn maps I onto the domain of f . I is trivial if
fn fixes both endpoints of I.

We will now quote several facts about Lorenz maps, established in [7].

Definition 22. A slice in the parameter plane is any set of the form

S = [0, 1]2 × {c} × {φ} × {ψ},

where c, φ and ψ are fixed. We will use the simplified notation (u, v) ∈ S.

A slice S induces a family of Lorenz maps

S ∋ (u, v) 7→ (u, v, c, φ, ψ) ⊂ L0.

any family induced by a slice is full, that is it contains maps of all possible combinatorics.
Specifically (see [7] for details),

Proposition 23. (Theorem A from [7]). Let (u, v) 7→ (u, v, c, φ, ψ) be a family induced by a
slice. Then this family intersects L0

ω̄ for every ω̄ (finite or infinite) such that L0
ω̄ 6= ∅.

Lemma 24. (Lemma 4.1 from [7]). Assume that f is renormalizable. Let (l, c) ⊃ L be the
branch of fn+1 and (c, r) ⊃ R be that of fm+1. Then

fn+1(l) ≤ l, fm+1(r) ≥ r.

Let π, ε and Kπ
ε be as in the previous Section. Consider the set

Y = LSω ∩ Kπ
ε . (5.47)

Proposition 25. The boundary of Y consists of three parts: f ∈ ∂Y iff at least one of the
following holds:

C1. the left and the right branches of R[f ] are full or trivial;

C2. dist[φ] = π or dist[ψ] = π;

C3. c(f) = ε, or c(f) = 1− ε.

Proof. Consider the boundary of L0
ω. If either branch of Rω[f ] is full or trivial, then there

exists an perturbation of f , however small, such that f is no longer renormalizable. Hence
C1 holds on ∂L0

ω. If f ∈ L0
ω does not satisfy C1 then, according to Lemma 24, all small

perturbations of it will be still renormalizable.
Conditions C2 and C3 are part of the boundary of Kπ

ε . By Proposition 23 these boundaries
intersect LSω, and hence C2 and C3 are also the boundary conditions for Y . ✷
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Fix c0 ∈ (ε, 1− ε), and let S = [0, 1]2×{c0}×{id}× {id}. Recall, that the linear structure
on the space D2 is defined via the nonlinearity operator:

αφ+ βψ = N−1

(αNφ+βNψ)
.

Introduce the deformation retract onto S as

πt(u, v, c, φ, ψ) ≡ (u, v, c+ t(c0 − c), φt, ψt)

= (u, v, c+ t(c0 − c), (1− t)φ+ t id, (1− t)ψ + t id). (5.48)

Let
Rt = πt ◦ R.

We will strengthen the conditions on the set Y and consider a smaller set

Yδ = Y ∩ {f ∈ LSω : c(R[f ]) ≥ δ}. (5.49)

The boundary of Yδ is given by conditions C1-C3 together with

C4. {f ∈ Y : c(R[f ]) = δ}.

Lemma 26. The exists a choice of c0 in (5.48) and δ ∈ (1 − ε, ε), such that R has a fixed
point in ∂Yδ iff Rt has a fixed point in ∂Yδ for some t ∈ [0, 1].

Proof. The direct statement is obvious since R ≡ R0.
Assume that f ∈ ∂Yδ with the coefficients (φ, ψ) is such that Rtf = f for some t ∈ (0, 1],

and assume that R has no fixed point on ∂Yδ. We will demonstrate that this is impossible.
Choose c0 close to 1−ε: c0 = 1−ε−ν for some small ν. By Proposition 20, c(R[f ]) ∈ [ε, 1−ε]

whenever c(f) is. Together with the condition c(R[f ]) ≥ δ this implies that

c(R[f ]) ∈ [δ, 1 − ε].

Since t > 0, by formula (5.48) c(Rt[f ]) is strictly in the interior of [δ, 1− ε] for all t ∈ (0, 1].
Therefore, neither C3 nor C4 can hold for f = Rt[f ] for t ∈ (0, 1].

The distortion of the coefficients of R[f ] is not greater than π by Proposition 17. For

t ∈ (0, 1] distortion of the diffeomorphic parts (φ̃t, ψ̃t) of Rt[f ] is strictly smaller than that of

(φ̃, ψ̃) (diffeomorphic coefficients for R[f ]). This can be seen from the following computation:

Dφ̃t(x)

Dφ̃t(y)
=

exp [
∫ y
0 (1−t)N

φ̃
(s)+tNid(s)ds]

∫ 1
0
exp [

∫ r

0
(1−t)N

φ̃
(s)+tNid(s)ds]dr

exp [
∫ x

0
(1−t)N

φ̃
(s)+tNid(s)ds]

∫ 1
0 exp [

∫ r
0 (1−t)N

φ̃
(s)+tNid(s)ds]dr

=
exp [

∫ y

0
(1− t)Nφ̃(s)ds]

exp [
∫ x

0
(1− t)Nφ̃(s)ds]

=

(

Dφ̃(y)

Dφ̃(x)

)1−t

< eπ.

Similarly for ψ̃t. Therefore, we have that C2 does not hold for f = Rt[f ] for t ∈ (0, 1].
The only possibility is that, if f = Rt[f ] ∈ ∂Yδ then it belongs to the part of the boundary

described by C1.
Suppose that either branch of R[f ] is full; for definitiveness, suppose c−1 (R[f ]) = 1. Since

φ fixes both end points of the unit interval, this implies that u(R[f ]) = 1, and since the
deformation retract does not change the value of u, u(Rt[f ]) = 1. Since φt fixes 1 as well, we
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get that c−1 (Rt[f ]) = 1, and therefore, the corresponding branch of Rt[f ] is full as well. This
shows that f can not be fixed by Rt since a renormalizable map can not have a full branch.
Therefore, one of the branches of R[f ] must be trivial.

Before we proceed with the last case of trivial branches, we will derive an upper bound on
φt(u) and a lower bound on ψt(1 − v). Recall, that φt = (1 − t)φ + t id where the linear
structure is given by (2.8). Then, on one hand,

φt(x) =

∫ x

0
(Dφ(r))1−t dr

∫ 1

0
(Dφ(r))1−t dr

= 1−

∫ 1

x
(Dφ(r))1−t dr

∫ 1

0
(Dφ(r))1−t dr

≤ 1−

∫ 1

x
(Dφ(r))1−t dr

(∫ 1

0
Dφ(r)dr

)1−t

= 1−

∫ 1

x

(Dφ(r))1−t dr =

∫ x

0

(Dφ(r))1−t dr ≤

∫ x

0

(
c−1
u
eπ
)1−t

dr ≤

(
c−1
u
eπ
)1−t

x,

and
φt(u) ≤ (c−1 )

1−tuteπ(1−t). (5.50)

On the other hand,

φt(x) ≤

∫ x

0

(Dφ(r))1−t dr ≤

∫ x

0

Dφ(r)dr sup
r∈(0,x)

(Dφ(r))−t ≤ φ(x)

(

eπ
x

φ(x)

)t

,

and
φt(u) ≤ (c−1 )

1−tuteπt. (5.51)

We can now take a linear combination of (5.50) and (5.51) as an upper bound on φt(u). A
particularly convenient choice is

φt(u) ≤ (c−1 )
1−tut

(
teπ(1−t) + (1− t)eπt

)
, (5.52)

which insures that φ0(u) ≤ c−1 and φ1(u) ≤ u. Notice, that the maximum of the function
(
teπ(1−t) + (1− t)eπt

)
is achieved at t = 1/2.

In a similar way,

ψt(1− v) ≥ (c+1 )
1−t(1− v)t

(
te−π(1−t) + (1− t)e−πt

)
. (5.53)

Suppose, the left branch is trivial: c(R[f ]) ≥ c−1 (R[f ]). Recall, that for a map
renormalizable with monotone combinatorics ω c−1 > f−1

1 (c), and according to Lemmas 16
and 14 the differences c−1 − c > |R| + Θ ≥ K and c − c+1 > |L| + ∆ ≥ J , where K and J
depend on ρ, π, ε, n and m, but do not depend on the particular form of the map. Suppose
ν is small: ν << K. Then, on one hand,

c−1 (Rt[f ])− c(Rt[f ]) ≤ (c−1 )
1−tut

(
teπ(1−t) + (1− t)eπt

)
− c(R[f ])− t(c0 − c(R[f ])).

Recall, that by Proposition 17, π can be chosen small if one considers large n and m. Since
c−1 (R[f ]) − c(R[f ]) < 0, the expression (c−1 )

1−tut
(
teπ(1−t) + (1− t)eπt

)
− c(R[f ]) < K − ν if

π is small. Then since c0 − c(R[f ]) is larger than −ν, we have that

(c−1 )
1−tut

(
teπ(1−t) + (1− t)eπt

)
− c(R[f ])− t(c0 − c(R[f ])) < K,
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and hence f = Rt[f ] is not renormalizable with the monotone combinatorics ω.
Now, suppose that the right branch is trivial. Then

c(Rt[f ])− c+1 (Rt[f ]) ≤ c(R[f ]) + t(c0 − c(R[f ]))− (c+1 )
1−t(1− v)t

(
te−π(1−t) + (1− t)e−πt

)
.

Since c(R[f ])− c+1 (R[f ]) < 0, we have that for a sufficiently small π,

c(R[f ])− (c+1 )
1−t(1− v)t

(
te−π(1−t) + (1− t)e−πt

)
<
J

2
,

while

c(R[f ])− (c+1 )
1−t(1− v)t

(
te−π(1−t) + (1− t)e−πt

)
+ t(c0 − c(R[f ])) ≤

J

2
+ (1− ε− ν − δ).

Therefore, the map Rt[f ] is not renormalizable with the monotone combinatorics ω for
t ∈ [0, 1], if we chose δ so that

1− ε− ν − δ < J/2. (5.54)

We now notice, that according to Lemmas 16 and 14

J = O

(
(

δ(1− δ)
ρ
ρ−1

) ρn

ρn−1

)

+O
(

δ
ρ
ρ−1 (1− δ)

n
ρ−1

)

exp
(

O
(

(1− δ)
ρm

ρm−1
− ρ−1
ρ+1

(n−1)
))

. (5.55)

If δ is small, then the above expression demonstrates that J = O
(

δ
ρn

ρ−1

)

, and the inequality

(5.54) is not satisfied. On the other hand, if δ is close to 1 − ε − ν, then the exponential in
(5.55) becomes large and dominates others terms, and (5.54) is easily satisfied. Therefore,
there exists δ ∈ (0, 1 − ε − ν), not necessarily very close to 1 − ε − ν, such that (5.54) holds
for all c > δ.

We conclude that f = Rt[f ] /∈ ∂Yδ which is a contradiction with the assumption in the
beginning of the proof.

✷

According to the Theorem B in [7] the intersection of S contains a connected component I
of the interior, called a full island, such that the family I ∋ (u, v) 7→ f is full.

Lemma 27. Any extension of R1|∂Yδ to Yδ has a fixed point.

Proof. Assume that R1 has no fixed point in ∂Yδ (otherwise the theorem is trivial).
Let S = [0, 1]2×{c0}×{id}×{id}, where c0 is as in the previous Lemma. This set contains

a full island I with ∂I ⊂ ∂Yδ.
Pick any R : I 7→ S such that R|∂I = R1|∂I . Define the displacement map d : ∂I 7→ T

1 by

d(x) =
x− R(x)

|x− R(x)|
,

which is well-defined since R does not have fixed points on ∂I ⊂ ∂Yδ. The degree of d is
non-zero since I is full. Therefore, R has a fixed point in I (otherwise d would extend to all
of I, and would have a degree zero). ✷
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To finish the proof of the existence of the fixed points we will require the following theorem
from [2]:

Theorem 5.1. Let X ⊂ Y where X is closed and Y is a normal topological space. If
f : X 7→ Y is homotopic to a map g : X 7→ Y with the property that every extension of
g|∂X to X has a fixed point in X, and if the homotopy ht has no fixed point on ∂X for every
t ∈ [0, 1], then f has a fixed point in X.

Proposition 28. Rω has a fixed point.

Proof. R1 either has a fixed point in ∂Yδ, or otherwise by Lemma 27 any of extensions of
R1|∂Yδ to Yδ has a fixed point. In the second case we can apply Theorem 5.1 to immediately
obtain the required result. ✷

Now we can finish the proof of the Main Theorem 1.

Proof of the Main Theorem 1. Suppose that N is as in Propositions 17 and 20. Pick a sequence
ω̄ = (ω0, ω1, . . . , ωk−1), ωj ∈ MN . One can useRωk−1

◦. . .◦Rω0 in place ofRω in the previous
Proposition to demonstrate that Rωk−1

◦ . . .◦Rω0 has a fixed point, which, hence, is a periodic
point of R of combinatorial type ω̄. ✷

The Main Theorem 2, now, is a direct consequence of the fact that the set Kπ
ε is

renormalization invariant, in particular, that the family {cRk[f ]} is relatively compact for
all f ∈ LSω̄ ∩ Kπ

ε . Its proof follows word by word that in [11], and will not be included here.
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