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Abstract. It is known that the famous Feigenbaum-Coullet-Tresser period
doubling universality has a counterpart for area-preserving maps of R

2. A
renormalization approach has been used in (Eckmann et al 1982) and (Eckmann
et al 1984) in a computer-assisted proof of existence of a “universal” area-
preserving map F∗ — a map with orbits of all binary periods 2k , k ∈ N. In
this paper, we consider infinitely renormalizable maps — maps on the renor-
malization stable manifold in some neighborhood of F∗ — and study their
dynamics.

For all such infinitely renormalizable maps in a neighborhood of the fixed
point F∗ we prove the existence of a “stable” invariant set C∞

F
such that the

maximal Lyapunov exponent of F |C∞

F
is zero, and whose Hausdorff dimension

satisfies
dimH(C∞

F
) ≤ 0.836.

We also show that there exists a submanifold, Wω , of finite codimension
in the renormalization local stable manifold, such that for all F ∈ Wω the
set C∞

F
is “weakly rigid”: the dynamics of any two maps in this submanifold,

restricted to the stable set C∞

F
, is conjugated by a bi-Lipschitz transformation

that preserves the Hausdorff dimension.
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1. Introduction

Universality — independence of the quantifiers of the geometry of orbits and
bifurcation cascades in families of maps of the choice of a particular family — has
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been abundantly observed in area-preserving maps, both as the period-doubling
universality (Derrida and Pomeau 1980, Helleman 1980, Benettin et al 1980, Collet
et al 1981, Eckmann et al 1982, Eckmann et al 1984, Gaidashev and Koch 2008)
and as the universality associated with the break-up of invariant surfaces (Shenker
and Kadanoff 1982, MacKay 1982, MacKay 1983, Mehr and Escande 1984), and
in Hamiltonian flows (Escande and Doveil 1981, Abad et al 2000, Abad et al 1998,
Koch 2002, Koch 2004, Koch 2004, Gaidashev and Koch 2004, Gaidashev 2005,
Kocić 2005).

To prove universality one usually introduces a renormalization operator on a
functional space, and demonstrates that this operator has a hyperbolic fixed point.
The renormalization approach to universality has been very successful in one-
dimensional dynamics, and has led to explanation of universality in unimodal maps
(Epstein 1986, Epstein 1989, Lyubich 1999), critical circle maps (de Faria 1992, de
Faria 1999, Yampolsky 2002, Yampolsky 2003) and holomorphic maps with a Siegel
disk (McMullen 1998, Yampolsky 2007, Gaidashev and Yampolsky 2007). There is,
however, at present no deep understanding of universality in conservative systems,
other than in the “trivial” case of the universality for systems “near integrability”
(Koch 2002, Koch 2004, Gaidashev 2005, Kocić 2005, Khanin et al 2007).

It is worth noting that universality in conservative systems seems to be com-
pletely different from that in one-dimensional and dissipative maps. As it has been
shown in (Collet et al 1980, de Carvalho et al 2005, Lyubich and Martens 2008),
the case of very dissipative systems is largely reducible to the one-dimensional
Feigenbaum-Coullet-Tresser universality.

For families of area-preserving maps a universal infinite period-doubling cas-
cade was observed by several authors in the early 80’s (Derrida and Pomeau 1980,
Helleman 1980, Benettin et al 1980, Bountis 1981, Collet et al 1981). The existence
of a hyperbolic fixed point for the period-doubling renormalization operator has
been proved with computer-assistance in (Eckmann et al 1984).

In (Gaidashev and Johnson 2009) we used the method of covering relations (see,
e.g. (Zgliczyński 1997, Zgliczyński and Gidea 2004, Kokubu et al 2007, Zgliczyński
2009, CAPD 2009)) in rigorous computations to construct hyperbolic sets for all
maps in some neighborhood of the fixed point of the renormalization operator. The
Hausdorff dimension of these hyperbolic sets has been estimated with the help of
the Duarte Distortion Theorem (see, e.g. (Duarte 2000)) which enables one to use
the distortion of a Cantor set to find bounds on its dimension.

In this paper, we prove that infinitely renormalizable maps in a neighborhood
of existence of the hyperbolic sets also admit a “stable” set. This set is a bounded
invariant set, such that the maximal Lyapunov exponent at any point of this set
is zero. Together with our result from (Gaidashev and Johnson 2009), this demon-
strates that for all reversible area-preserving infinitely renormalizable maps in some
neighborhood of the renormalization fixed point, there are coexisting hyperbolic and
stable sets.

We also address the issues of rigidity of the stable set and invariance of its
Hausdorff dimension. Similar issues have been investigated in (de Carvalho et
al 2005) for attractors of very dissipative two-dimensional maps, where it has been
shown that the regularity of conjugacy of attractors for two infinitely renormalizable
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maps F and F̃ has a definite upper bound

(1) α ≤ 1

2

(

1 + min

{

log Jac(F )

log Jac(F̃ )
,

log Jac(F̃ )

log Jac(F )

})

,

where Jac(F) is the “average” Jacobian of the map F . The authors of (de Carvalho
et al 2005) put forward two questions: 1) whether the Hausdorff dimension of the
attractor of an infinitely renormalizable map depends only on its average Jacobian,
and 2) how regular is the conjugacy when Jac(F ) = Jac(F̃ ). In this regard, we
obtain a partial result along similar lines in the “extreme” case of area-preserving
maps (constant Jacobian equal to one): we prove that there exists a subset of
infinitely renormalizable maps such the actions of any two maps from this subset on
their stable sets are conjugate by a bi-Lipschitz map which preserves the Hausdorff
dimension.

Finally, we provide an upper bound on the Hausdorff dimension of the stable set
for all infinitely renormalizable maps.

2. Renormalization for area-preserving reversible maps

An “area-preserving map” will mean an exact symplectic diffeomorphism of a
subset of R2 onto its image.

Recall, that an area-preserving map can be uniquely specified by its generating
function S:

(2)

(

x

−S1(x, y)

) F

7→

(

y

S2(x, y)

)

, Si ≡ ∂iS.

Furthermore, we will assume that F is reversible, that is

(3) T ◦ F ◦ T = F−1, where T (x, u) = (x,−u).

For such maps it follows from (2) that

S1(y, x) = S2(x, y) ≡ s(x, y),

and

(4)

(

x

−s(y, x)

) F
7→

(

y

s(x, y)

)

.

It is this “little” s that will be referred to below as “the generating function”.
If the equation −s(y, x) = u has a unique differentiable solution y = y(x, u), then
the derivative of such a map F is given by the following formula:

(5) DF (x, u) =

[

− s2(y(x,u),x)
s1(y(x,u),x) − 1

s1(y(x,u),x)

s1(x, y(x, u)) − s2(x, y(x, u)) s2(y(x,u),x)
s1(y(x,u),x) − s2(x,y(x,u))

s1(y(x,u),x)

]

.

The period-doubling phenomenon can be illustrated with the area-preserving
Hénon family (cf. (Bountis 1981)) :

Ha(x, u) = (−u + 1 − ax2, x).

Maps Ha have a fixed point ((−1 +
√

1 + a)/a, (−1 +
√

1 + a)/a) which is stable
for −1 < a < 3. When a1 = 3 this fixed point becomes unstable, at the same time
an orbit of period two is born with Ha(x±, x∓) = (x∓, x±), x± = (1 ±

√
a − 3)/a.

This orbit, in turn, becomes unstable at a2 = 4, giving birth to a period 4 stable
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pk

p′k

ck
dk

Figure 1. The geometry of the period doubling. pk is the further
elliptic point that has bifurcated from the hyperbolic point p′k.

orbit. Generally, there exists a sequence of parameter values ak, at which the orbit
of period 2k−1 turns unstable, while at the same time a stable orbit of period 2k is
born. The parameter values ak accumulate on some a∞. The crucial observation
is that the accumulation rate

(6) lim
k→∞

ak − ak−1

ak+1 − ak
= 8.721...

is universal for a large class of families, not necessarily Hénon.
Furthermore, the 2k periodic orbits scale asymptotically with two scaling pa-

rameters

(7) λ = −0.249 . . . , µ = 0.061 . . .

To explain how orbits scale with λ and µ we will follow (Bountis 1981). Consider
an interval (ak, ak+1) of parameter values in a “typical” family Fa. For any value
α ∈ (ak, ak+1) the map Fα possesses a stable periodic orbit of period 2k+1. We
fix some αk within the interval (ak, ak+1) in some consistent way; for instance, by

requiring that the restriction of F 2k+1

αk
to a neighborhood of a stable periodic point

in the 2k+1-periodic orbit is conjugate, via a diffeomorphism Hk, to a rotation with
some fixed rotation number r. Let p′k be some unstable periodic point in the 2k-
periodic orbit, and let pk be the further of the two stable 2k+1-periodic points that
bifurcated from p′k. Denote with dk = |p′k − pk|, the distance between pk and p′k.
The new elliptic point pk is surrounded by invariant ellipses; let ck be the distance
between pk and p′k in the direction of the minor semi-axis of an invariant ellipse
surrounding pk, see Figure 1. Then,

1

λ
= − lim

k→∞

dk

dk+1
,

λ

µ
= − lim

k→∞

ρk

ρk+1
,

1

λ2
= lim

k→∞

ck

ck+1
,

where ρk is the ratio of the smaller and larger eigenvalues of DHk(pk).
This universality can be explained rigorously if one shows that the renormaliza-

tion operator

(8) R[F ] = Λ−1
F ◦ F ◦ F ◦ ΛF ,

where ΛF is some F -dependent coordinate transformation, has a fixed point, and
the derivative of this operator is hyperbolic at this fixed point.

It has been argued in (Collet et al 1981) that ΛF is a diagonal linear transforma-
tion. Furthermore, such ΛF has been used in (Eckmann et al 1982) and (Eckmann
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et al 1984) in a computer assisted proof of existence of a reversible renormalization
fixed point F∗ and hyperbolicity of the operator R.

We will now derive an equation for the generating function of the renormalized
map Λ−1

F ◦ F ◦ F ◦ ΛF .
Applying a reversible F twice we get

(

x′

−s(z′, x′)

) F
7→

(

z′

s(x′, z′)

)

=

(

z′

−s(y′, z′)

) F
7→

(

y′

s(z′, y′)

)

.

According to (Collet et al 1981) ΛF can be chosen to be a linear diagonal trans-
formation:

ΛF (x, u) = (λx, µu).

We, therefore, set (x′, y′) = (λx, λy), z′(λx, λy) = z(x, y) to obtain:

(9)

(

x

− 1
µs(z, λx)

)

ΛF

7→

(

λx

−s(z, λx)

) F ◦ F
7→

(

λy

s(z, λy)

) Λ
−1

F

7→

(

y
1
µs(z, λy)

)

,

where z(x, y) solves

(10) s(λx, z(x, y)) + s(λy, z(x, y)) = 0.

If the solution of (10) is unique, then z(x, y) = z(y, x), and it follows from (9)
that the generating function of the renormalized F is given by

(11) s̃(x, y) = µ−1s(z(x, y), λy).

One can fix a set of normalization conditions for s̃ and z which serve to determine
scalings λ and µ as functions of s. For example, the normalization s(1, 0) = 0 is
reproduced for s̃ as long as z(1, 0) = z(0, 1) = 1. In particular, this implies that
s(λ, 1) + s(0, 1) = 0. Furthermore, the condition ∂1s(1, 0) = 1 is reproduced as long
as µ = ∂1z(1, 0).

We will now summarize the above discussion in the following definition of the
renormalization operator acting on generating functions originally due to the au-
thors of (Eckmann et al 1982) and (Eckmann et al 1984):

Definition 2.1.

REKW [s](x, y) = µ−1s(z(x, y), λy),(12)

where

0 = s(λx, z(x, y)) + s(λy, z(x, y)),(13)

0 = s(λ, 1) + s(0, 1) and µ = ∂1z(1, 0).(14)

Definition 2.2. The Banach space of functions s(x, y) =
∑∞

i,j=0 cijx
iyj, analytic

on a bi-disk
|x − 0.5| < ρ, |y − 0.5| < ρ,

for which the norm

‖s‖ρ =

∞
∑

i,j=0

|cij |ρi+j
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is finite, will be referred to as A(ρ).

As we have already mentioned, the following has been proved with the help of a
computer in (Eckmann et al 1982) and (Eckmann et al 1984):

Theorem 1. There exist a polynomial sa ∈ A(ρ) and a ball Br(sa) ⊂ A(ρ), r =
6.0 × 10−7, ρ = 1.6, such that the operator REKW is well-defined and analytic on
Br(sa).

Furthermore, its derivative DREKW |Br(sa) is a compact linear operator, and has
exactly two eigenvalues δ1 and δ2 of modulus larger than 1, while

spec(DREKW |Br(sa)) \ {δ1, δ2} ⊂ {z ∈ C : |z| ≤ ν},
where

(15) ν ≡ 0.55.

Finally, there is an s∗ ∈ Br(sa) such that

REKW [s∗] = s∗.

The scalings λ∗ and µ∗ corresponding to the fixed point s∗ satisfy

λ∗ ∈ [−0.24887681,−0.24887376],(16)

µ∗ ∈ [0.061107811, 0.061112465].(17)

The interval enclosures of λ∗ and µ∗ will be denoted

λ∗ ≡ [λ−, λ+]; λ− = −0.24887681, λ+ = −0.24887376,(18)

µ∗ ≡ [µ−, µ+]; µ− = 0.061107811, µ+ = 0.061112465.(19)

The corresponding interval enclosure for the linear map Λ∗ will be denoted Λ∗;
if (x, u) ∈ C2, then

(20) Λ∗(x, u) ≡
{

(λx, µu) ∈ C
2 : λ ∈ λ∗, µ ∈ µ∗

}

.

The bound on the fixed point generating function s∗ will be called s∗:

(21) s∗ ≡
{

s ∈ A(ρ) : ‖s − sa‖ρ ≤ r = 6.0 × 10−7
}

,

while the bound on the renormalization fixed point F∗ will be referred to as F∗:

(22) F∗ ≡ {F : (x,−s(y, x)) 7→ (y, s(x, y)) : s ∈ s∗} ,

the third iterate of this bound will be referred to as G∗.
It follows from Theorem 1, that there exists a codimension 2 local stable manifold

W s
loc(s

∗) ⊂ Br(sa).

Definition 2.3. A reversible map F of the form (4) such that s ∈ W s
loc(s

∗) is called
infinitely renormalizable. The set of all reversible infinitely renormalizable maps is
denoted by W.

Definition 2.4. The set of reversible maps F of the form (4) with s ∈ B̺(s∗) will
be referred to as F∗(̺). Denote,

W(̺) ≡ W ∩ F∗(̺).

Naturally, W(̺) is invariant under renormalization.
Compactness of DREKW |Br(sa) implies that for any ω ≤ ν there exists a subman-

ifold Wω ⊂ W (of finite codimension in W) such that ‖Rk[F ] − F∗‖ρ ≤ const ωk

for all F ∈ Wω.
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Definition 2.5. Define
Wω(̺) = W(̺) ∩Wω.

3. Hyperbolic sets for maps in F∗

In this Section we will recall some of our results from the satellite paper (Gaidashev
and Johnson 2009).

We will start by introducing several classical definitions which will be helpful in
understanding our Theorem 2 below.

Definition 3.1. Let M be a smooth manifold, and let F be a diffeomorphism of
an open subset U ⊂ M onto its image.

A set C is called hyperbolic for the map F if there is a Riemannian metric on a
neighborhood U of C, and β < 1 < δ, such that for any p ∈ C and n ∈ N the tangent
space TF n(p)U admits a decomposition in two invariant subspaces:

TF n(p)M = E+
n ⊕ E−

n , DF (Fn(p))E±
n = E±

n+1,

on which the sequence of differentials is hyperbolic:

‖DF (Fn(p))|E−

n
‖ < β, ‖DF−1(Fn(p))|E+

n+1

‖ < δ−1.

The hyperbolic set C is called locally maximal, if there is a neighborhood V of C
such that C = ∩n∈ZFn(V̄).

Definition 3.2. Let {0, 1, . . . , N −1}Z be the space of all two-sided sequences of N
symbols:

{0, 1, . . . , N − 1}Z = {ω = (. . . , ω−1, ω0, ω1, . . .) : ωi = {0, 1, . . . , N − 1}, i ∈ Z},
Define the Bernoulli shift on {0, 1, . . . , N − 1}Z as

σN (ω) = ω′, ω′
n = ωn+1.

Definition 3.3. Let X be a metric space. If A ⊂ X , and d ∈ [0,∞). Suppose that
B = {Bi} is some cover of A whose elements are open sets. We will denote

(23) Cd[B] ≡
∑

i

diam(Bi)
d.

The d-dimensional Hausdorff content of A is defined as

(24) CH
d [A] = inf {Cd[B] : B is a cover of A} .

The Hausdorff dimension of A is defined as

(25) dimH(A) = inf
{

d ≥ 0 : CH
d [A] = 0

}

.

In (Gaidashev and Johnson 2009) we have demonstrated that all maps in a
neighborhood of the fixed point admit a hyperbolic set in their domain of analyticity.
These are the maps studied in the present paper.

Theorem 2. The following holds for all F ∈ F∗.

i) There exist connected open sets D ⊂ C2 and D3 ⊂ C2 such that the maps F and
G ≡ F ◦ F ◦ F are analytic on D and D3, respectively.

ii) The map F possesses a hyperbolic fixed point p0 = p0(F ) ∈ D, such that
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1) Pxp0 ∈ (0.57761843, 0.57761989), and Pup0 = 0, where Px,u are projections
on the x and u coordinates;

2) DF (p0) has two negative eigenvalues.

e+ ∈ (−2.05763559,−2.05759928),

e− ∈ (−0.48601715,−0.48598084).

iii) The map G admits a locally maximal invariant hyperbolic set CG:

CG =
⋂

n∈Z

G−n(∆),

and

G|CG

≈
homeo

σ2|{0,1}Z ,

where ∆ = ∆0 ∪ ∆1 and ∆0 ⊂ D3, ∆1 ⊂ D3 are compact sets, diffeomorphic to
rectangles, with non-empty interior, that constitute a Markov partition for G|CG

.
Furthermore, the Hausdorff dimension of CG satisfies:

0.76594 ≥ dimH(CG) ≥ ε,

where ε ≈ 0.00089 e−1772 is strictly positive.

iv) The local stable manifold Ws
loc(p0)∩∆0 is a graph over the x-axis with the angle

of the slope bounded away from 0 and π/2.

Remark 3.4. The bounds on the rectangles ∆0 and ∆1 of the Markov partition
for CG are given in Table 1.

One can construct a convergent sequence of approximations of the hyperbolic
sets CG in a straightforward way. Define recursively:

(26) U1
G ≡ G(∆) ∩ G−1(∆) and Uk

G ≡ G(Uk−1
G ) ∩ G−1(Uk−1

G ).

Each of the sets Uk
G contains 2 · 4k components Uk,n

G , n = 1..2 · 4k. The following
Lemma has been proved in (Gaidashev and Johnson 2009).

Lemma 3. Let

ρk,n = supBρ⊂Uk,n

G

(ρ),

and set ρk = minn{ρk,n}. There exist constants C > 0 and c > 0 such that

diam
(

Uk,n
G

)

≤ Cκk
+, ρk ≥ c κk

−,

where κ− = 0.0371 and κ+ = 0.1642.

In this paper we will complement the above results, and show that the third
iterate of F also supports a stable set in its domain of analyticity.
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Component Centre “Stable” Scale “Unstable” Scale

∆′
0

(0.670198, 0.0) 0.083 0.083
∆′

1
(−0.441811, 0.0) 0.0655 0.0655

Table 1. The rectangles that approximate the Markov partition
for the horseshoe of G. The rectangles are spanned by vectors
es
0 = (0.788578889012330,−0.614933602760558), eu

0 = T (es
0) and

es
1 = (0.750925931392967773, 0.660386436536671957), eu

1 = T (es
1),

respectively. The length of the sides of the rectangles ∆′
0 and ∆′

1

is 2 · stable/unstable scale · |eu,s
0,1 |.

4. Statement of results

We will now state our main theorem. Recall, that a map H : X → Y between
two metric spaces X and Y is called bi-Lipschitz, if there is a constant C ≥ 1, such
that for any two points p and q in X

(27)
1

C
distX (p, q) ≤ distY(H(p),H(q)) ≤ C distX (p, q),

i.e. if distX (p, q) and distY(H(p),H(q)) are commensurate.
A classical result from analysis states that such maps preserve the Hausdorff

dimension.

Main Theorem 1. There exists ̺ > 0 such that any F ∈ W(̺) admits a “stable”
set C∞

G ⊂ D3 for G ≡ F ◦ F ◦ F — that is the set on which the maximal Lyapunov
exponent is equal to zero — whose Hausdorff dimension satisfies

dimH(C∞
G ) ≤ 0.836.

Furthermore, there exists 0 < ω < 0.00205 such that for all F and F̃ in Wω(̺)

dimH(C∞
G ) = dimH(C∞

G̃
),

and

G|C∞

G

≈
H G̃|C∞

G̃
,

where H is bi-Lipschitz map.

5. Some notation and definitions

We will use the following notation for the sup norm of a function h and a trans-
formation H defined on some set S ⊂ R2 or C2:

|h|S ≡ sup
(x,u)∈S

{|h|},(28)

|H |S ≡ max{ sup
(x,u)∈S

{|PxH |}, sup
(x,u)∈S

{|PuH |}},(29)

where Px and Pu are projections on the corresponding components. We will also
use the notation | · | for the l2 norm for vectors in R2.

With DG∗ : p 7→ DG∗(p) we denote an interval matrix valued function such
that

[DG(p)]ij ∈ [DG∗(p)]ij , for all G ∈ G∗, p ∈ D3,
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where D3 is the domain of G∗, and the bound on the operator norm of DG for
G = F ◦ F ◦ F , F ∈ F∗ on a set S will be denoted

‖DG∗‖S ≡ sup
F∈F∗

{‖D(F ◦ F ◦ F )‖S} .

We will also use the following abbreviations for maps, transformations and scal-
ings

Gj ≡ Rj [G],(30)

Λk,G ≡ ΛG ◦ ΛR[G] ◦ . . . ΛRk−1[G] = ΛG0
◦ ΛG1

◦ . . . ◦ ΛGk−1
,(31)

λk,G ≡ λG0
λG1

. . . λGk−1
,(32)

µk,G ≡ µG0
µG1

. . . µGk−1
.(33)

6. A stable invariant set

According to Theorem 2 the fixed point F∗ possesses a hyperbolic set for its
third iterate. By the stability property of such sets, there exists a neighborhood
Br′(s∗) ⊂ Br(sa) such that all maps F of the form (4) with s ∈ Br′(s∗) also have
a hyperbolic set CG for G ≡ F ◦ F ◦ F , and the action of G on CG is topologically
conjugate to that of G∗ ≡ F∗ ◦ F∗ ◦ F∗ on C∗:

G ◦ HG = HG ◦ G∗|C∗
.

In what follows, we consider maps F ∈ W(̺) (see Definition 2.4) where

̺ ≤ min{r′, r − ‖s∗ − sa‖ρ}.

The following holds on Λk
∗(C∗) for all F ∈ W(̺):

Λk,G ◦ HGk
◦ Λ−k

∗ = Λk,G ◦ G−1
k ◦ HGk

◦ G∗ ◦ Λ−k
∗

= Λk,G ◦ G−1
k ◦ Λ−1

k,G ◦ Λk,G ◦ HGk
◦ Λ−k

∗ ◦ Λk
∗ ◦ G∗ ◦ Λ−k

∗

= G−2k ◦ Λk,G ◦ HGk
◦ Λ−k

∗ ◦ G2k

∗ .

Therefore, the transformation

Hk,G = Λk,G ◦ HGk
◦ Λ−k

∗

is a topological conjugacy of iterates G2k

and G2k

∗ on Λk
∗(C∗):

Define

0Hk,G ≡ Hk,G, iHk,G ≡ Gi ◦ 0Hk,G ◦ G−i
∗ , 1 ≤ i ≤ 2k − 1.

Clearly,

(34) G2k ◦ iHk,G = iHk,G ◦ G2k

∗ and G ◦ iHk,G = i+1Hk,G ◦ G∗.

on Gi
∗(Λk

∗(C∗)). Also, define the following sequence of sets
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Ck
G ≡

2k−1
⋃

i=0

Gi(Hk,G(Λk
∗(C∗)))(35)

=

2k−1
⋃

i=0

Gi(Λk,G(HGk
(C∗)))

=

2k−1
⋃

i=0

Gi(Λk,G(CGk
))

=
2k−1
⋃

i=0

iHk,G(Gi
∗(Λk

∗(C∗))),

and their covers Vk
G ⊃ Ck

G:

Vk
G ≡

2k−1
⋃

i=1

Vk,i
G ,

where

Vk,0
G ≡ Λk,G(Uk

Gk
),

Uk
G is as in (26), and

Vk,i
G ≡ Gi(Λk,G(Uk

Gk
)) ∩ Gi−2k

(Λk,G(Uk
Gk

)).

Clearly, the map Hk,G defined as

Hk,G|Ck,i
∗

≡ iHk,G,

is a conjugacy of G and G∗ on Ck
∗ :

(36) G ◦ Hk,G|Ck
∗

= Hk,G ◦ G∗|Ck
∗

.

In the rest of this Section we will be studying the sequence of sets Ck
G. We will

demonstrate that the limit set C∞
G exists, is stable, in the sense that the maximal

Lyapunov exponent on C∞
G is zero, bounded, closed and invariant under G. We will

also show that there exists an ω > 0 such that for any F ∈ Wω(̺) the sets C∞
G are

weakly rigid: there exists a bi-Lipschitz (see (27)) conjugacy HG between C∞
∗ and

C∞
G . We start with boundedness.

Given a set S ⊂ D3 on which an iterate Gi for all G ∈ G∗ is defined, we use the
notation G∗

i(S) as a shorthand for any set S̃, such that
⋂

G∈G∗

Gi(S) ⊆ S̃ ⊆
⋃

G∈G∗

Gi(S)

Notations Λ∗
n(S) and Tn(S) are used in a similar sense.

Lemma 6.1. For all F ∈ W(̺), the sets Ck
G are bounded, in particular, Ck

G ⊂ E
for all k ≥ 1, where

E ≡
4
⋃

i=1

Ei,
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Figure 2. a) Sets E1 (red), E3 (blue), Λ∗(E1) (green) and Λ∗(E3)
(magenta). The two components of the Markov partition, rescaled
by Λ∗, are drawn in black. b) Sets E2 (red), E4 (magenta) and
G∗(E3) (blue).

and

E1 = {(x, u) ∈ R
2 :

(x + 0.0328)2

0.1692
+

u2

0.0106831532
< 1},

E2 ≡ G∗(E1), E3 ≡ Λ∗(E2 ∪ E4), E4 ≡ T (G∗(E1)).

Proof. Let i < 2k for some k ∈ N. We write i in its binary representation:

i = α020 + α121 + . . . + αk−12k−1, αj = 0, 1.

Let {jl}m
l=1, be the index set such that αjl

6= 0:

(37) i = 2j1 + 2j2 + . . . + 2jm , jm ≤ k − 1, m ≤ k.

Consider Gi on a subset of D3 where this iterate is defined:

Gi = G2j1 ◦ G2j2 ◦ . . . ◦ G2jm

= Λj1,G ◦
[

Λ−1
j1,G ◦ G2j1 ◦ Λj1,G

]

◦ Λ−1
j1,G ◦ Λj2,G

◦
[

Λ−1
j2,G ◦ G2j2 ◦ Λj2,G

]

◦ Λ−1
j2,G ◦ . . . ◦ Λjm,G

◦
[

Λ−1
jm,G ◦ G2jm ◦ Λjm,G

]

◦ Λ−1
jm,G

= Λj1,G ◦ Gj1 ◦ Λ−1
j1,G ◦ Λj2,G ◦ Gj2 ◦ . . . ◦ Λ−1

jm−1,G ◦ Λjm,G ◦ Gjm
◦ Λ−1

jm,G.

For convenience, we will denote

(38) Tn,m,G = Λ−1
m,G ◦ Λn,G ◦ Gn, Tn = Λn

∗ ◦ G∗, Tn ≡ Λ∗
n ◦ G∗,

and also use the following notation for compositions of these maps:

T[i]lq,G = Tjq,jq−1,G ◦ Tjq+1,jq,G ◦ . . . ◦ Tjl,jl−1,G,(39)

T[i]lq
= Tjq−jq−1

◦ Tjq+1−jq
◦ . . . ◦ Tjl−jl−1

,(40)

T[i]lq
= Tjq−jq−1

◦ Tjq+1−jq
◦ . . . ◦ Tjl−jl−1

,(41)

T[i],G = T[i]m
1

,G, T[i] = T[i]m
1

, T[i] = T[i]m
1

.(42)
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E1 E2

E3 E4

Λ

Λ

Λ
Λ

G

G

Figure 3. Invariance of the set E under the action of Tn.

In this notation, the iterate Gi can be written as

(43) Gi = T[i],G ◦ Λ−1
jm,G.

We apply the formula (43) to write the action of Gi on Hk,G(Λk
∗(C∗)):

Gi(Hk,G(Λk
∗(C∗))) = T[i],G ◦ Λ−1

jm,G(Λk,G(HGk
(C∗))) ⊂ T[i] ◦ Λ∗

k−jm(HGk
(C∗)).

The set E1 has been chosen so that Λ∗(HGk
(C∗)) ⊂ E1 and Λ∗(E1) ⊂ E1,. There-

fore,

Gi(Hk,G(Λk
∗(C∗))) ⊂ T[i](E1).

Now, to demonstrate the invariance of the set E , we verify that

Λ∗(E1) ⋐ E1, Λ∗(E3) ⋐ E1, G∗(E3) ⋐ E4

(see (Progs 2009) for programs used in this verification).
These containments imply (see Figure 3) that for any sequence {jn}l

q, 0 ≤ jq <
jq+1 < . . . < jl ≤ k − 1, the set T[i]lq

(E1) is compactly contained in E . The set E is

depicted in Figure 2.
�

Remark 6.2. We have computed (see (Progs 2009)) the upper and lower bounds
on the norms of ‖DT1v‖ and ‖D(G∗ ◦ Λ∗)‖ to be as follows:

‖DT1‖E1
≤ 0.764 ≡ A1, ‖DT1‖E3

≤ 0.344 ≡ A3,(44)

‖D (G∗ ◦ Λ∗) ‖E ≤ 0.585 ≡ a, inf
v∈R,‖v‖=1

‖DT1v‖E1∪E3
≥ 0.034 ≡ b,(45)

We will also denote

A = max{A1, A2}.

The next Lemma, albeit straightforward, will be important in our proofs of
convergence of sets Ck

G and existence of a bi-Lipschitz conjugacy between the limit
sets.

Lemma 6.3. There exist ̺ > 0 and a function C(̺) with the property

lim
̺→0

C(̺) = 0,

such that for any F ∈ W(̺)
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|Px

(

Hk,G − Λk,G ◦ Λ−k
∗

)

|Λk
∗
(C∗) ≤ C(̺) |λk,G| νk,(46)

|Pu

(

Hk,G − Λk,G ◦ Λ−k
∗

)

|Λk
∗
(C∗) ≤ C(̺) µk,G νk.(47)

Furthermore, if F ∈ Wω(̺) then

|Px

(

Hk,G − Λk,G ◦ Λ−k
∗

)

|Λk
∗
(C∗) ≤ C(̺) |λk,G|ωk,(48)

|Pu

(

Hk,G − Λk,G ◦ Λ−k
∗

)

|Λk
∗
(C∗) ≤ C(̺) µk,G ωk.(49)

Proof. By the strong structural stability property of the hyperbolic sets (see e.g.

Theorem 18.1.3 and 18.2.1 in (Katok and Hasselblatt 1995)), ‖Gk − G∗‖D3

k→∞−→ 0
implies

(50) |HGk
− Id|C∗

k→∞−→ 0,

and, in fact, if ̺ is sufficiently small then there exists a constant C′ such that for
all F ∈ W(̺)

|HGk
− Id|C∗

< C′ ‖Gk − G∗‖D3
.

Now, for all F ∈ W(̺)

‖Gk − G∗‖D3
≤ C′′(̺) νk,

where the “constant” C′′(̺) decreases to zero with the size of the local manifold
W(̺), therefore,

(51) |HGk
− Id|C∗

≤ C(̺) νk

for some function C(̺) with the property lim̺→0 C(̺) = 0. In a similar way, if
F ∈ Wω(̺), then

(52) |HGk
− Id|C∗

≤ C(̺) ωk.

Finally,

|Px(HGk
− Id)|C∗

= |Px(Λ−1
k,G ◦ Hk,G ◦ Λk

∗ − Λ−k
∗ ◦ Λk

∗)|C∗

= |λk,G|−1|Px(Hk,G − Λk,G ◦ Λ−k
∗ )|Λk

∗
(C∗),(53)

and similarly for Pu(HGk
− Id). The claim follows. �

In several following propositions and theorems we will have to use a number of
“constants” ci(̺) all of which have the property

lim
̺→0

ci(̺) = 0.

Proposition 6.4. There exists ̺ > 0 such that for all F ∈ W(̺) the sets Vk
G and

Ck
G converge in the Hausdorff metric, specifically:

dH(Vk
G,Vk+1

G ) ≤ const θk, dH(Ck
G, Ck+1

G ) ≤ const θk,

where θ = 0.436.
Furthermore, for any fixed i, there is K > 0, such that for all k ≥ K

(54) dH(Vk,i
G , Gi(0)) ≤ const θk,

the limit set is closed, and satisfies

C∞
G =

⋃

i∈Z

Gi(0).
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Proof. Clearly,

dH(Vk,0
G ,Vk+1,0

G ) = dH(Λk,G(Uk
Gk

), Λk+1,G(Uk+1
Gk+1

)) ≤ const |λ−|k.

Let the binary expansion of i < 2k be as in (37). Recall, that according to
Lemma 6.1

Gi(Λk,G(Uk
Gk

)) ⊂ T[i] ◦ Λ∗
k−jm (Uk

Gk
),

Gi(Λk+1,G(Uk+1
Gk+1

)) ⊂ T[i] ◦ Λ∗
k+1−jm (Uk+1

Gk+1
),

where T[i] is as in (42).

Let sk ≡ Λk,G(s) ∈ Vk,0
G and pk+1 ≡ Λk+1,G(p) ∈ Vk+1,0

G be any two points in

the corresponding sets. Since jm ≤ k − 1, both Λ∗
k−jm (s) ⊂ Λ∗

k−jm (Uk
Gk

) and

Λ∗
k+1−jm(p) ⊂ Λ∗

k+1−jm (Uk+1
Gk+1

) are contained in E1. According to Lemma 6.1

the sequences

T[i]m
m−l+1

◦ Λ∗
k−jm (s) and T[i]m

m−l+1
◦ Λ∗

k+1−jm(p), 1 ≤ l < m,

land in E1 if jm−l+1 − jm−l > 1, and in E3 if jm−l+1 − jm−l = 1. Suppose, out of m
differences jn − jn−1, n = 1, . . . , m, q are larger than 1 and m− q equal to 1. Then,

|Gi(sk) − Gi(pk+1)| ≤
∣

∣

∣
T[i] ◦ Λ∗

k−jm (s) − T[i] ◦ Λ∗
k+1−jm(p)

∣

∣

∣

≤ |λ−|k−m‖DT1‖q
E1
‖DT1‖m−q

E3
|s − Λ∗(p)|.(55)

The more often ‖DG∗‖in ‖DT1‖ has to be evaluated on E1, that is, the more
often the bound A1 (see Remark 6.2) appears in the product in (55), the worse the
resultant bound. Recall that m ≤ k and jm ≤ k − 1. Therefore, if m ≤

[

k
2

]

, then
all differences jn − jn−1 may be larger than 1 (q = m), and

|Gi(sk) − Gi(pk+1)| < |λ−|k−mAm
1 |s − Λ∗(p)| < const |λ−|[

k
2 ]A

[ k
2 ]

1 .

If m >
[

k
2

]

then there are at most q = k−m differences jn− jn−1 that are larger
than 1:

|Gi(sk) − Gi(pk+1)| < |λ−|k−mAk−m
1 A

m−(k−m)
3 |s − Λ∗(p)|

=

[

A2
3

A1|λ−|

]m [ |λ−|A1

A3

]k

|s − Λ∗(p)|,

and since A2
3/|λ−|A1 < 1 we get in this case

|Gi(sk) − Gi(pk+1)| < const

[

A2
3

A1|λ−|

][ k
2 ] [ |λ−|A1

A3

]k

= const
[

|λ−|1/2A
1/2
1

]k

.

Since |λ−|1/2A
1/2
1 < 0.436 < 1, we get

|Gi(sk) − Gi(pk+1)| ≤ const 0.436k, 1 ≤ i ≤ 2k − 1.

Any point in Vk,i
G can be represented as Gi(sk) for some sk ∈ Vk,0

G , and any point

in Vk+1,i
G can be represented as Gi(pk+1) for some pk+1 ∈ Vk+1,0

G , therefore

dH(Vk,i
G ,Vk+1,i

G ) ≤ const 0.436k, i ≤ 2k − 1.

A similar computation holds for inverse iterates G−1 = T ◦ G ◦ T :

dH(Vk,2k−n
G ,Vk+1,2k+1−n

G ) ≤ const 0.436k, 1 ≤ n ≤ 2k − 1.
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This demonstrates that the Hausdorff distance between components Vk,i
G , on one

hand, and components Vk+1,i
G and Vk+1,2k+i

G , on the other, decreases with k at a
geometric rate.

An identical argument for sets Ck
G (rather than Vk

G) shows that these sets converge
in the Hausdorff metric at the same rate θ. We define the set C∞

G as the set of all
limit points of sequences {pk}, pk ∈ Ck

G. Such set is clearly closed.
Finally, to show (54), we again notice that if sk,i ∈ Vk,i, then there exists a

point sk ≡ Λk,G(s) ∈ Vk,0
G such that sk,i = Gi(sk). Therefore, if K ∈ Z is such that

2K > i then for any k > K

|sk,i − Gi(0)| = |Gi(sk) − Gi(0)| ≤ |λ−|k−m‖DT1‖q
E1
‖DT1‖m−q

E3
|s − 0| < const θk.

�

We will now show that the set C∞
G is invariant for G.

Lemma 6.5. For any F ∈ W(̺) the sets Ck
G are invariant under G. The same is

true about the set C∞
G .

Proof. This follows from a simple computation:

G2k

(Hk,G(Λk
∗(C∗))) = G2k

(Λk,G(Λ−1
k,G(Hk,G(Λk

∗(C∗)))))

= G2k

(Λk,G(HGk
(C∗)))

= Λk,G(Gk(HGk
(C∗)))

⊂ Λk,G(HGk
(C∗))

= Hk,G(Λk
∗(C∗).

By Proposition 6.4, a point p∞ ∈ C∞
G is a limit point of some sequence {pk},

pk ∈ Ck
G. Because of the invariance of Ck

G we have that G(pk) ∈ Ck
G for all k ∈ N.

Analyticity of the map G implies that {G(pk)} converges in C∞
G :

G(p∞) = G( lim
k→∞

(pk)) = lim
k→∞

G(pk) ∈ C∞
G .

�

We will now address the convergence properties of transformations iHk,G.

Proposition 6.6. There exists ̺ > 0 such that for all F ∈ W(̺) the following
holds.
1) The transformations Gi ◦ Λk,G ◦ Λ−k

∗ ◦ G−i
∗ are defined and analytic on Vk,i

∗ for
all k ∈ N and 1 ≤ i < 2k, and satisfy

| iHk,G − Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Gi
∗
(Λk

∗
(C∗)) ≤ C(̺) (ν θ)k,(56)

|Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ − Id |Vk,i
∗

≤ c1(̺),(57)

where C(̺) is as in Lemma 6.3, and c1(̺) is some function of ̺ independent of k,
i and G, and satisfying

lim
̺→0

c1(̺) = 0.

2) For any p ∈ Vk,i
∗ and s ∈ Vk+1,i

∗

(58) |Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ (p) − Gi ◦ Λk+1,G ◦ Λ−k−1
∗ ◦ G−i

∗ (s)| ≤ const θk.
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Figure 4. Approximations of sets C1
G (green), C2

G (blue) and C3
G (red)

Proof. 1) Notice that

Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ (Gi
∗(Vk,0

∗ )) = Gi(Λk,G(Uk
∗ )) ⊂ Gi(Λ∗

k(Uk
∗ )).

By Lemma 6.1 the iterate Gi, 1 ≤ i < 2k, is well-defined and analytic on Λ∗
k(Uk

∗ )
for all G ∈ G∗.

Proving (56) is similar to (55) and arguments that follow it:

| iHk,G − Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Gi
∗
(Λk

∗
(C∗))

= |Gi ◦ Hk,G − Gi ◦ Λk,G ◦ Λ−k
∗ |Λk

∗
(C∗)

≤
∣

∣

∣
T[i],G ◦ Λ−1

jm,G ◦ Λk,G ◦ Λ−1
k,G ◦ Hk,G − T[i],G ◦ Λ−1

jm,G ◦ Λk,G ◦ Λ−k
∗

∣

∣

∣

Λk
∗
(C∗)

≤ θk
∣

∣

∣
Λ−1

k,G ◦ Hk,G ◦ Λk
∗ − Id

∣

∣

∣

C∗

≤ C(̺) (ν θ)k,

where the function C(̺) is as in Lemma 6.3.
We will now demonstrate (57) in two steps.

Step (1). Write

(59) Gi ◦Λk,G◦Λ−k
∗ ◦G−i

∗ = JG,m,i ◦
{

Gjm
◦ Λ−1

jm,G ◦ Λk,G ◦ Λjm−k
∗ ◦ G−1

∗

}

◦J−1
G∗,m,i,

where we have denoted for all 1 ≤ q ≤ m:

JG,q,i ≡ T[i]q−1

1
,G ◦ Λ−1

jq−1,G ◦ Λjq,G = Gi ◦ Λjm,G ◦ T−1
[i]mq+1

,G ◦ G−1
jq

.

The image of Vk,i
∗ under the inverse of this map is contained in E2 ∪ E4 for all

1 ≤ q ≤ m:

(60) J−1
G∗,q,i(Vk,i

∗ ) = G∗◦T[i]mq+1
◦Λk−jm

∗ (Uk
∗ ) ⊂ G∗◦T[i]mq+1

◦Λ∗
k−jm (Uk

∗ ) ⋐ E2∪E4,

while

(61) G−1
∗ (J −1

G,q,i(Vk,i
∗ )) ⋐ E1 ∪ E3.
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Since |λGn
− λ∗| ≤ c2(̺) νn and |µGn

− µ∗| ≤ c2(̺) νn, we get

(62) |Λ−1
jm,G ◦ Λk,G ◦ Λjm−k

∗ − Id|G−1
∗ (J−1

G∗,m,i
(Vk,i

∗ )) ≤ c3(̺) νjm .

Since containment of G−1
jq

(J −1
G,q,i(V

k,i
∗ )) in E1∪E3 is compact, it is possible to choose

̺ so that for all 1 ≤ q ≤ m

Λ−1
jq,G ◦ Λk,G ◦ Λ

jq−k
∗ (G−1

∗ (J −1
G∗,m,i(Vk,i

∗ ))) ⊂ E1 ∪ E3.

The map Gjm
is defined and analytic on E1 ∪ E3 and maps it into E2 ∪ E4, and

therefore Gjm
◦ Λ−1

jm,G ◦ Λk,G ◦ Λjm−k
∗ ◦ G−1

∗ is analytic on J−1
G∗,m,i(V

k,i
∗ ) and maps

it into E2 ∪ E4. Because of (62) we also have for any n > jq:

|Id − Gjq
◦ Λ−1

jq,G ◦ Λn,G ◦ Λ
jq−n
∗ ◦ G−1

∗ |J−1

G∗,q,i
(Vk,i

∗ )

≤ |Gjq
◦ Λ−1

jq,G ◦ Λn,G ◦ Λ
jq−n
∗ ◦ G−1

∗ − Gjq
◦ G−1

∗ |J−1

G∗,q,i
(Vk,i

∗ )

+ |Gjq
◦ G−1

∗ − Id|J−1

G∗,q,i
(Vk,i

∗ )

≤ Ac3(̺) νjq + c4(̺) νjq = c5(̺)(1 + A)νjq = c6(̺)νjq ,(63)

where c4(̺) is another constant decreasing to zero together with ̺, and c5(̺) is the
maximum of c3(̺) and c4(̺).

As the result of the above discussion, we have

(64) Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Vk,i
∗

= JG,m,i ◦ {Id + hjm
} ◦ J −1

G∗,m,i|Vk,i
∗

,

where hjm
is some function analytic on J−1

G∗,m,i(V
k,i
∗ ) and satisfying

(65) |hjm
|J−1

G∗,m,i
(Vk,i

∗ ) ≤ c6(̺)νjm .

Step (2). At the next step, to obtain the bound (57) we will use an inductive
argument.

Suppose that for q ≤ m

(66) Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Vk,i
∗

= JG,q,i ◦
{

Id + hjq

}

◦ J −1
G∗,q,i|Vk,i

∗

,

where hjq
is some function analytic on J−1

G∗,q,i(V
k,i
∗ ) and satisfying

|hjq
|J−1

G∗,q,i(V
k,i
∗ ) ≤ c6(̺)

[

m−q
∑

i=0

aiνjq+i−jq

]

νjq .

This is certainly satisfied for q = m (see (64) and (65)).
We prove that a representation similar to (66) holds for q − 1 with a similar

bound on hjq−1
. First,

Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Vk,i
∗

= JG,q−1,i ◦
{

Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq ,G ◦ (Id + hjq
)

◦ Λ
jq−1−jq

∗ ◦ G−1
∗

}

◦ J−1
G∗,q−1,i|Vk,i

∗

.(67)
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Again, consider the map in the brackets:

|Id − Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq,G ◦ (Id + hjq
) ◦ Λ

jq−1−jm

∗ ◦ G−1
∗ |J−1

G∗,m−1,i(V
k,i
∗ )

≤ |Id − Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq,G ◦ Λ
jq−1−jq

∗ ◦ G−1
∗ |J−1

G∗,q−1,i(V
k,i
∗ )

+ |Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq,G ◦ (Id + hjq
) ◦ Λ

jq−1−jq

∗ ◦ G−1
∗

− Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq,G ◦ Λ
jq−1−jq

∗ ◦ G−1
∗ |J−1

G∗,q−1,i
(Vk,i

∗ ).(68)

The first norm in (68) has been estimated in (63). To provide a bound on the
second norm we will use the fact that

Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq,G =
{

Gjq−1
◦ ΛGjq−1

}

◦
[

Λ−1
jq−1,G ◦ Λjq−1,G

]

,

and that if jq − 1 − jq−1 = 0 then

Λ−1
jq−1,G(Λjq−1,G(E2 ∪ E4)) = E2 ∪ E4,

if jq − 1 − jq−1 = 1 then

Λ−1
jq−1,G(Λjq−1,G(E2 ∪ E4)) ⊂ E3,

if jq − 1 − jq−1 ≥ 2 then

Λ−1
jq−1,G(Λjq−1,G(E2 ∪ E4)) ⊂ E1

Therefore,

|Id − Gjq−1
◦ Λ−1

jq−1,G ◦ Λjq ,G ◦ (Id + hjq
) ◦ Λ

jq−1−jm

∗ ◦ G−1
∗ |J−1

G∗,m−1,i
(Vk,i

∗ )

≤ c6(̺)νjq−1 + |λ−|jq−1−jq−1

∥

∥

∥
D
{

Gjq−1
◦ ΛGjq−1

}
∥

∥

∥

E
|hjq

|J−1

G∗,q,i
(Vk,i

∗ )

≤ c6(̺)νjq−1 + ac6(̺)

[

m−q
∑

i=0

aiνjq+i−jq

]

νjq

= c6(̺)

[

m−q+1
∑

i=0

aiνjq−1+i−jq−1

]

νjq−1 .

Therefore,

|Id − Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ |Vk,i
∗

= |Id − JG,1,i ◦ {Id + hj1} ◦ J −1
G∗,1,i|Vk,i

∗

= |Id−Λj1,G ◦{Id+hj1}◦ Λ−j1
∗ |Vk,i

∗

= |Id−Λj1,G ◦ Λ−j1
∗ |Vk,i

∗

+|Λj1,G ◦ hj1 |J−1

G∗,1,i(V
k,i
∗ )

≤ c3(̺) νj1 + |λj1
− |c6(̺)

[

m−1
∑

i=0

aiνj1+i−j1

]

νj1

≤ c3(̺) νj1 + c6(̺) |λ−ν|j1
[

k−1
∑

i=0

(aν)i

]

≤ c3(̺) + c6(̺)[1 − aν]−1 ≡ c1(̺),

the last equality being the definition of c1(̺).
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2) To demonstrate (58) we notice that G−i
∗ (p) and G−i

∗ (s) are in Vk,0
∗ , and according

to (62)
∣

∣Λk,G ◦ Λ−k
∗ (G−1

∗ (p)) − Λk+1,G ◦ Λ−k−1
∗ (G−1

∗ (s))
∣

∣ ≤ (1 + 2c3(̺)) diam(Vk,0
∗ ).

It follows from a computation similar to (55) that

|Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ (p) − Gi ◦ Λk+1,G ◦ Λ−k−1
∗ ◦ G−i

∗ (s)| < const (1 + 2c2(̺)) θk.

�

The above proposition implies, that if p is in the limit set C∞
∗ , then there exist

integers i and K, dependent on p, and a sequence of points pk,i ∈ Ck,i
∗ , k ≥ K, that

converge to p: limk→∞ pk,i = p. We have from (36)

G ◦ Hk,G(pk,i) = Hk,G ◦ G∗(pk,i).

Bounds (56)—(58) imply that the limit

(69) HG(p) ≡ lim
k→∞

Hk,G(pk,i) = lim
k→∞

Gi ◦ Λk,G ◦ Λ−k
∗ ◦ G−i

∗ (pk,i)

exists.
We will finally demonstrate that the limit set C∞

G is stable.
Recall, the definition of the upper Lyapunov exponent of (p, v) ∈ (D ∩ R2) ×R2

with respect to G:

χ(p, v; G) ≡ limi→∞
1

i
log
[

‖DGi(p)v‖
]

,

where ‖‖ is some norm in R2. The maximal Lyapunov exponent of p ∈ (D ∩ R2)
with respect to G is defined as

χ(p; G) ≡ sup
||v||=1

χ(p, v; G).

Lemma 6.7. For any F ∈ W(̺) and p ∈ Ck
G the maximal Lyapunov exponent

χ(p; G) satisfies

χ(p; G) ≤ C
1

2k
,

where C = C(G) is some constant independent of k.

Proof. Let i = q2k + n, n = 2j1 + 2j2 + . . . + 2jm < 2k and p ∈ Hk,G(Λk
∗(C∗)).

Denote

t ≡ Λ−1
k,G(p) ∈ CGk

, s ≡ Λk,G(Gq
k(t)) ∈ Λk,G(CGk

),

and

DGi(p) = DGn+q2k

(p) = DGn(Gq2k

(p)) · DGq2k

(p)

= DGn(Λk,G ◦ Gq
k ◦ Λ−1

k,G(p)) · Λk,G · DGq
k(Λ−1

k,G(p)) · Λ−1
k,G

= DGn(s) · Λk,G · DGq
k(t) · Λ−1

k,G

= D
(

T[n],G ◦ Λ−1
jm,G

)

(s) · Λk,G · DGq
k(t) · Λ−1

k,G

where we have used the representation (38). According to Lemma 6.1

T[n]m
l+1

,G ◦ Λ−1
jm,G(s) ∈ E1 ∪ E3.
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Denote Bk - an upper bound on the derivative norm of Gk on its invariant set
HGk

(C∗). Then

(70) ‖DGi(p)‖ ≤
(

A

|λ−|

)m( |λ−|
µ−

)jm

Bq
k

( |λ−|
µ−

)k

.

Finally,

χ(p; G) = limi→∞
1

i
log
[

‖DGi(p)‖
]

≤ lim
i→∞

1

i
log

[

(

A

|λ−|

)m

Bq
k

( |λ−|
µ−

)jm+k
]

≤ lim
i→∞

{

k

i
log

[

A

( |λ−|
µ2
−

)]

+
q

i
log Bk

}

≤ 1

2k
log Bk.

�

Clearly, the above result implies the stability of the limit set:

Corollary 6.8. For any F ∈ W(̺) and p ∈ C∞
G the maximal Lyapunov exponent

χ(p; G) is equal to zero.

7. “Weak” rigidity

In this Section we will demonstrate that the map HG is bi-Lipschitz for a subset
of infinitely renormalizable maps.

Proposition 7.1. There exist ̺ > 0 and ω, bµ−

A|λ−| > ω > 0, such that for all

F ∈ Wω(̺) the transformation HG is bi-Lipschitz with a constant L = L(̺), that

satisfies L(̺)
̺→0−→ 1.

Proof. Let i = 2j1 + . . . + 2jm and î = 2ĵ1 + . . . + 2ĵn be arbitrary but fixed.
Let {p∗k,i}∞k=max(jm,jn) and {s∗k,i}∞k=max(jm,jn) be any two sequences of points that

satisfy: p∗k,i ∈ Ck,i
∗ and s∗

k,̂i
∈ Ck,̂i

∗ , p∗k,i 6= s∗
k,̂i

.

We would like to show, that there exist K ∈ N, ̺ > 0, ω < ν and L = L(̺) ,
such that if k > K and F ∈ Wω(̺) then the distances

| iHk,G(p∗k,i) − îHk,G(s∗
k,̂i

)| and |p∗k,i − s∗
k,̂i

|

are commensurate with a constant L(̺), independent of k and approaching 1 as
̺ → 0.

Commensurability, together with convergence property (69) implies that the
limit HG is a bi-Lipschitz transformation.

Define the following points:

pk,i = iHk,G(p∗k,i),

sk,̂i = îHk,G(s∗
k,̂i

),

p∗k = G−i
∗ (p∗k,i) ≡ Λk

∗(p∗),

s∗k = G−î
∗ (s∗

k,̂i
) ≡ Λk

∗(s∗),

pk,i ≡ Gi(Λk,G(p)) ≡ Gi(Λk,G(HGk
(p∗))),

sk,̂i ≡ Gî(Λk,G(s)) ≡ Gî(Λk,G(HGk
(s∗))),
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where the the last four lines are understood as definitions of points p, s ∈ CGk
and

p∗, s∗ ∈ C∗.
For any j < k and F ∈ Wω(̺) there exists c′7(̺) such that |λGj

| ≤ |λ∗|+c′7(̺)ωj ,
therefore

|Λ−1
j,G ◦ Λk,G(p) − Λk−j

∗ (p)| =





k−1
∏

n=j

(|λ∗| + c′7(̺)ωn) − |λ∗|k−j



 |p|

= |λ∗|k−j



exp







k−1
∑

n=j

ln

(

|1 + c′7(̺)
ωn

|λ∗|

)







− 1



 |p|

= |λ∗|k−j

[

exp

{

c′′7(̺)ωj 1 − ωk−j

1 − ω

}

− 1

]

|p|

≤ c7(̺) |λ∗|k−jωj|p|,(71)

where c′7(̺) and c′′7(̺) are some constants. This, together with (52) implies the
following bound for any p∗ in C∗ and p = HGk

(p∗) and all j < k

|Λ−1
j,G(Λk,G(p)) − Λk−j

∗ (p∗)| ≤ |λ∗|k−j |p − p∗| + c7(̺)ωj |λ∗|k−j |p|
≤ C(̺) |λ∗|k−jωk + c8(̺)ωj |λ∗|k−j ,

where c8(̺) = c7(̺)diam(CG).

Next, suppose that q is the smallest integer such that jq 6= ĵq and jl = ĵl, l < q.

For definitiveness, suppose ĵq > jq. We expand, as before,

(72) pk,i = T[i]q−1

1
,G ◦

(

Λ−1
jq−1,G ◦ Λjq,G

)

◦
[

Gjq
◦ T[i]mq+1

,G ◦ Λ−1
jm,G ◦ Λk,G

]

(p),

and similarly for Gî
∗. Our immediate goal will be to show that |pk,i − sk,̂i| and

|p∗k,i − s∗
k,̂i
| are commensurate. To this end we will show that the distances between

the images of points p,s and p∗,s∗ under the consecutive application of the three
maps T[i]q−1

1
,G, (. . .) and {. . .} in (72) stay commensurate. We will perform this in

three steps.

Step (1). Both

p̄q ≡
[

Gjq
◦ T[i]mq+1

,G ◦ Λ−1
jm,G ◦ Λk,G

]

(p) and p̄∗q ≡
[

G∗ ◦ T[i]mq+1
◦ Λk−jm

∗

]

(p∗)

lie in E2 ∪ E4. We use (72) in the following bound

|p̄q − p̄∗q | ≤
∣

∣

∣
G∗ ◦ T[i]mq+1

◦ Λ−1
jm,G ◦ Λk,G(p) − G∗ ◦ T[i]mq+1

◦ Λk−jm
∗ (p∗)

∣

∣

∣

+
∣

∣

∣
Gjq

◦ T[i]mq+1
,G ◦ Λ−1

jm,G ◦ Λk,G(p) − G∗ ◦ T[i]mq+1
◦ Λ−1

jm,G ◦ Λk,G(p)
∣

∣

∣

≤ ‖DG∗‖E1∪E3
Am−q|λ−|jm−jq+1−(m−q) ×

×
[

C(̺) |λ∗|k−jmωk + c8(̺)ωjm |λ∗|k−jm
]

+ c9(̺)ωjq

≤ c10(̺) ωjq .(73)

Similarly, s̄q and s̄∗q are in E2 ∪ E4, and |s̄q − s̄∗q | ≤ c10(̺) ωĵq .

Step (2). Next, denote,
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p̂q ≡ Λ−1
jq−1,G ◦ Λjq,G(p̄q), p̂∗q ≡ Λ

jq−jq−1

∗ (p̄∗q), p̃q ≡ Λ
jq−jq−1

∗ (p̄q),

ŝq ≡ Λ−1
jq−1,G ◦ Λĵq,G(s̄q), ŝ∗q ≡ Λ

ĵq−jq−1

∗ (s̄∗q), s̃q ≡ Λ
ĵq−jq−1

∗ (s̄q).

We have checked that dist(E2 ∪ E4, 0) is strictly positive, and that

|λ−| supx∈E2∪E4
|x| < 1.

Therefore,

|p̄q − Λ−1
jq,G ◦ Λĵq,G(s̄q)| ≥

(

1 − |λ−| supx∈E2∪E4
|x|
)

dist(E2 ∪ E4, 0) ≡ δ1.

Clearly, there is also a constant δ2, such that

δ2 > |p̄q − Λ−1
jq,G ◦ Λĵq,G(s̄q)|.

One can now use a computation similar to (71), to show that there exists a
c11(̺), such that

|p̂q − ŝq| =
∣

∣

∣
Λ−1

jq−1,G ◦ Λjq,G

(

p̄q − Λ−1
jq,G ◦ Λĵq,G(s̄q)

)∣

∣

∣

satisfies

(74) δ2(1 + c11(̺) ωjq−1 )|λ∗|jq−jq−1 ≥ |p̂q − ŝq| ≥ δ1(1 − c11(̺) ωjq−1 )|λ∗|jq−jq−1 ,

and similarly for |p̂∗q − ŝ∗q |. We use estimates (71) and (73) to compare these two
distances:

|p̂q − ŝq| ≤ |p̂∗q − ŝ∗q | + |p̂q − p̃q| + |p̃q−p̂∗q| + |ŝq − s̃q| + |s̃q − ŝ∗q |
≤ |p̂∗q − ŝ∗q | + c7(̺)|λ∗|jq−jq−1ωjq−1 |p̄q| + |λ∗|jq−jq−1 |p̄∗q − p̄q|
+ c7(̺)|λ∗|jq−jq−1ωjq−1 |s̄q| + |λ∗|jq−jq−1 |s̄∗q − s̄q|
≤ |p̂∗q − ŝ∗q | + c7(̺)|λ∗|jq−jq−1ωjq−1 (|p̄q| + |s̄q|)
+ 2 c10(̺)|λ∗|jq−jq−1ωjq

Therefore, there exists a c12(̺), such that

|p̂q − ŝq| ≤ |p̂∗q − ŝ∗q | + c12(̺)|λ∗|jq−jq−1 ωjq−1 ,

and ̺ can be chosen sufficiently small, so that, for instance,

c12(̺) < 1/2 · δ(1 − c11(̺) ωjq−1 ),

then
|p̂q − ŝq|
|p̂∗q − ŝ∗q |

≤ 1 +
c12(̺)|λ∗|jq−jq−1 ωjq−1

δ(1−c11(̺) ωjq−1 )|λ∗|jq−jq−1
≤ 3

2
.

One can use a similar argument to show that ̺ can be chosen sufficiently small,
so that |p̂∗q − ŝ∗q |/|p̂q − ŝq| is also bounded from above by a constant. In particular,
if q = 1, then |p̂∗q − ŝ∗q | = |p∗k,i − s∗

k,̂i
| and |p̂q − ŝq| = |pk,i − sk,̂i|, and

| iHk,G(p∗k,i) − îHk,G(s∗
k,̂i

)| = |pk,i − sk,̂i| ≍ |p∗k,i − s∗
k,̂i

|.

Step (3). Suppose that q > 1. We demonstrate that

|pk,i − sk,̂i| = |T[i]q−1

1
,G(p̂q) − T[̂i]q−1

1
,G(ŝq)|

and

|p∗k,i − s∗
k,̂i

| = |T[i]q−1

1

(p̂∗q) − T[̂i]q−1

1

(ŝ∗q)|
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are commensurate. First,

|T[i]q−1

1
,G(p̂q) − T[̂i]q−1

1
,G(ŝq)| ≤ (1 + c13(̺)ωj1 ) |T[i]q−1

1

(p̂q) − T[̂i]q−1

1

(ŝq)|
|T[i]q−1

1

(p̂q) − T[̂i]q−1

1

(ŝq)| ≤ (1 + c13(̺)ωj1 ) |T[i]q−1

1
,G(p̂q) − T[̂i]q−1

1
,G(ŝq)|,

and
|T[i]q−1

1

(p̂q) − T[̂i]q−1

1

(ŝq)| ≍ |pk,i − sk,̂i|.
We will now compare

I1 ≡ |T[i]q−1

1

(p̂∗q) − T[̂i]q−1

1

(ŝ∗q)|
and

I2 ≡ |T[i]q−1

1

(p̂q) − T[̂i]q−1

1

(ŝq)|.
Since T[i]q−1

1

= T[̂i]q−1

1

,

bq−1|µ−|jq−1−j1 |ŝ∗q − p̂∗q | ≤ I1 ≤ Aq−1|λ−|jq−1−j1 |ŝ∗q − p̂∗q |,
and

I2 ≤ I1 + |T[i]q−1

1

(p̂∗q) − T[i]q−1

1

(p̂q)| + |T[̂i]q−1

1

(ŝ∗q) − T[̂i]q−1

1

(ŝq)|
≤ I1 + Aq−1|λ∗|jq−1−j1

(

|p̂∗q − p̂q| + |ŝ∗q − ŝq)|
)

≤ I1 + c12(̺) Aq−1|λ∗|jq−j1 ωjq−1 .

These two estimates put together with the estimate (74) result in the following
bound:

I2

I1
≤ 1 + c12(̺)

Aq−1|λ∗|jq−j1 ωjq−1

bq−1|µ−|jq−1−j1 |p̂∗q − ŝ∗q |
ωjq−1

≤ 1 +
c12(̺)

δ1(1 − c11(̺) ωjq−1 )

Aq−1|λ∗|jq−j1

bq−1µ
jq−1−j1
− |λ∗|jq−jq−1

ωjq−1

≤ 1 +
c12(̺)

δ1(1 − c11(̺) ωjq−1 )

(

A

b

)q−1 [ |λ∗|
µ−

]jq−1−j1

ωjq−1

≤ 1 +
c12(̺)

δ1(1 − c11(̺) ωjq−1 )

[

ω
A|λ∗|
bµ−

]jq−1−j1

,

and similarly for I1/I2. Therefore, if

ω ≤ bµ−

A|λ∗|
,

then

| iHk,G(p∗k,i) − îHk,G(s∗
k,̂i

)| = |pk,i − sk,̂i| ≍ I2 ≍ I1 = |p∗k,i − s∗
k,̂i

|.
�

8. Upper bound on the Hausdorff dimension of the stable invariant

set

We will now derive bounds on the Hausdorff dimension of the set C∞
G .

Proposition 8.1. For all F ∈ W(̺), the Hausdorff dimension of the limit set C∞
G

admits the following upper bound:

(75) dimH(C∞
G ) ≤ 0.836.
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Proof. According to Theorem 6.4

diam(Gi(Λk,G(CGk
)) ∪ Gi(Λk+1,G(CGk+1

)) < const θk,

diam(Gi(Λk,G(CGk
)) ∪ Gi+2k

(Λk+1,G(CGk+1
)) < const θk,

and

dH(Ck
G, C∞

G ) < const
θk

1 − θ
.

This implies that for each k ∈ N there is a cover Bk of Ck
G with 2k open balls

Bk,i ⊃ Gi(Λk,G(CGk
)) of radius const θk/(1− θ) such that Bk ⊃ C∞

G . Therefore, for
every k ∈ N

CH
d (C∞

G ) ≤ const′ 2k θdk,

and the Hausdorff dimension of C∞
G is less than

d = − log(2)

log(θ)
< 0.8351.

�

9. Some concluding remarks

We have demonstrated that the Hausdorff dimension of the stable set for the
maps F in the subset Wω(̺) of the infinitely renormalizable maps is independent
of F . This is quite weaker than the corresponding result about the invariance of the
Hausdorff dimension of the Feigenbaum attractor for all infinitely renormalizable
unimodal maps (see (Pa luba 1989, Rand 1988, McMullen 1996, de Melo and Pinto
1999)). On the other hand, it does demonstrate that one should expect at least some
kind of rigidity of invariant sets for infinitely renormalizable maps in conservative
dynamics — rigidity which was completely absent in dissipative maps (see (de
Carvalho et al 2005)).

Our proof of the bi-Lipschitz property of the conjugacy between stable sets C∞
G

and C∞
G̃

balances two phenomena that, in a sense, work against each other: con-

vergence of renormalizations of maps G ∈ W(̺) versus expansion and contraction
of distances in different directions. A careful look at the proof shows that the
bi-Lipschitz property is achieved if the convergence rate ν is sufficiently small to
“counteract” the relative size of expansion to contraction. However, this is not
the case with the value of ν at hand. This brings about the need to choose a
submanifold Wω(̺) of W(̺) on which the convergence rate is smaller.

It would be very interesting to explore if the bi-Lipschitz property of conjugacies
and the invariance of the Hausdorff dimension of the stable set hold for all infinitely
renormalizable maps.

Another obvious issue for investigation is whether the conjugacy of the stable
sets extends to their neighborhood as a C1+ǫ map. Again, this is the case for the
conjugacies between attractors of the unimodal maps (see (Rand 1988, McMullen
1996, de Melo and Pinto 1999)), and it is not for very dissipative maps where, as
we have already mentioned, the regularity of the conjugacy of attractors for two
maps F and F̃ has a definite upper bound (1).
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but non-rigidity, J. Stat. Phys 121 (2005) 611–669.

P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on R
n,

J. Stat. Phys. 3D (1980).
P. Collet, J.-P. Eckmann and H. Koch, On universality for area-preserving maps of the plane ,

Physica 3D (1981) 457–467.
B. Derrida, Y. Pomeau, Feigenbaum’s ratios of two dimensional area preserving maps, Phys. Lett.

A80 (1980) 217–219.
P. Duarte, Persistent homoclinic tangencies for conservative maps near identity, Ergod. Th. &

Dynam. Sys. 20 (2000) 393–438.
J.-P. Eckmann, H. Koch and P. Wittwer, Existence of a fixed point of the doubling transformation

for area-preserving maps of the plane, Phys. Rev. A 26 (1982) # 1 720–722.
J.-P. Eckmann, H. Koch and P. Wittwer, A Computer-Assisted Proof of Universality for Area-

Preserving Maps, Memoirs of the American Mathematical Society 47 (1984), 1–121.
H. Epstein, New proofs of the existence of the Feigenbaum functions, Commun. Math. Phys. 106

(1986) 395–426.
H. Epstein, Fixed points of composition operators II, Nonlinearity 2 (1989) 305–310.
D. F. Escande, F. Doveil, Renormalization method for computing the threshold of the large scale

stochastic instability in two degree of freedom Hamiltonian systems, J .Stat. Phys. 26 (1981)
257–284.

E. de Faria, Proof of universality for critical circle mappings, Thesis, CUNY, 1992.
E. de Faria, Asymptotic rigidity of scaling ratios for critical circle mappings, Ergodic Theory

Dynam. Systems 19 (1999), no. 4, 995–1035.
M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat.

Phys. 19 (1978) 25–52.
M. J. Feigenbaum, Universal metric properties of non-linear transformations, J. Stat. Phys. 21

(1979) 669–706.
D. Gaidashev, Renormalization of isoenergetically degenerate Hamiltonian flows and associated

bifurcations of invariant tori, Discrete Contin. Dyn. Syst. 13 (2005), no. 1, 63–102.
D. Gaidashev, Cylinder renormalization for Siegel disks and a constructive Measurable Riemann

Mapping Theorem, Nonlinearity 20 (2007), no 3, 713–742.
D. Gaidashev, H. Koch, Renormalization and shearless invariant tori: numerical results, Nonlin-

earity 17 (2004), no. 5, 1713–1722.
D. Gaidashev, H. Koch, Period doubling in area-preserving maps: an associated one-dimenisonal

problem, e-print math.DS/0811.2588 at Arxiv.org.
D. Gaidashev, M. Yampolsky, Cylinder renormalization of Siegel disks, Exp. Math. 16:2 (2007).
D. Gaidashev, T. Johnson, Dynamics of the Universal Area-Preserving Map Associated with

Period Doubling: Hyperbolic Sets, e-print math.DS/0905.1390 at Arxiv.org.



DYNAMICS OF THE UNIVERSAL AREA-PRESERVING MAP: STABLE SETS 27

R. H. G. Helleman, Self-generated chaotic behavior in nonlinear mechanics, in ”Fundamental
problems in statistical mechanics”, Ed. by E. G. D. Cohen, North-Holland, Amsterdam, p.165,
(1980).

A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Cambridge
University Press, Cambridge (1995).

K. Khanin, J. Lopes Dias, J. Marklof, Multidimensional continued fractions, dynamic renormal-
ization and KAM theory, Comm. Math. Phys., 270 (2007), no. 1, 197–231.

H. Koch, On the renormalization of Hamiltonian flows, and critical invariant tori, Discrete Contin.
Dyn. Syst. 8 (2002), 633–646.

H. Koch, A renormalization group fixed point associated with the breakup of golden invariant
tori, Discrete Contin. Dyn. Syst. 11 (2004), no. 4, 881–909.

H. Koch, Existence of critical invariant tori, preprint mp arc 04--210 (2004)
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