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Abstract

A benchmark database of very high-precision numerical and validated initial conditions of periodic orbits for the Lorenz
model is presented. This database is a “computational challenge” and it provides the initial conditions of all periodic
orbits of the Lorenz model up to multiplicity 10 and guarantees their existence via computer-assisted proofs methods.
The orbits are computed using high-precision arithmetic and mixing several techniques resulting in 1000 digits of precision
on the initial conditions of the periodic orbits, and intervals of size 10−100 that prove the existence of each orbit.
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1. Introduction

In computational physics and dynamics new develop-
ments in numerical techniques appear continuously. As a
consequence, there is a need to validate the correctness
and effectiveness of these new methods. Therefore, it is
advisable to have a top level numerical database that may
serve as a common benchmark for all these new studies.
A general belief is that it is not possible to perform a re-
liable numerical simulation on a chaotic system, but this
is clearly a misunderstanding. In fact, using suitable tech-
niques and sufficiently high precision, it is possible to per-
form a very precise simulation for deterministic dynamical
systems. So, a top and real challenge is to state correct
and useful numerical data that may be used by everybody.
Thus, this paper focuses on answering and providing re-
sults on the following question: is it possible to provide
useful data for very high-precision simulations of deter-
ministic chaotic systems? The answer is yes, and the most
suitable set of data corresponds to information about some
invariants of the system; in our case the set of unstable pe-
riodic orbits. This set has several advantages: first, it is
clear how to use these data as a test of accuracy – simply
try to follow one or several periodic orbits. In addition to
this, during the construction of the set of benchmarks, we
have reconfirmed some previous results on the proposed
model, the Lorenz model.

The Lorenz model [1] is the most classical and paradig-
matic low-dimensional chaotic problem since it is one of
the first models with the presence of chaotic behavior and
chaotic attractors. This nonlinear model has been ana-
lyzed by a large number of researchers, but it is still an
important dynamical system to be studied. Based on a
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more complicated model by Saltzman [2], Lorenz achieved
his famous equations:

ẋ = σ(y − x), ẏ = −x z + r x− y, ż = x y − b z, (1)

where σ (the Prandtl number), r (the relative Rayleigh
number) and b are three dimensionless control parame-
ters. It is well known that a good knowledge of the set of
periodic orbits (POs) of the Lorenz model (unstable peri-
odic orbits, UPOs, foliated to the attractor) provides some
more general information about the system, and gives crit-
ical information in chaotic regions [3–10]. Therefore, hav-
ing complete information of all UPOs of low-medium mul-
tiplicity is highly desirable. Some partial data have been
already published in literature, but we focus on completing
the references, giving at the same time a useful benchmark
for analytical and numerical techniques in both dynamical
systems analysis of low-dimensional chaotic systems, and
in high-precision numerical methods for ODEs.

The location of UPOs has been an important and a well
studied problem by physicists [11–15] and mathematicians
using a vast number of numerical algorithms. Obtaining
accurate information of UPOs is thus a very interesting
task. Another interesting point is related to the question
of computability of chaotic systems. As commented above,
deterministic chaotic systems can be accurately numeri-
cally integrated, given sufficiently high precision; yet this
is scarcely done in the literature. Moreover, some very re-
cent publications state as a “computational challenge” the
task of obtaining numerical solutions of the Lorenz sys-
tem in some “long” time intervals [16–18]. The reported
methods are extremely expensive, e.g. high-order implicit
methods or very naive implementations of the Taylor se-
ries method. As such they require thousands of CPU-
hours on massive parallel computers for a problem that
with suitable techniques needs only a few hours on a stan-
dard laptop computer. Let us remark that this issue –
high-precision numerical solutions of ODEs – nowadays is
handled without any problem by several freely available
softwares, such as TIDES1 [19] that uses a highly opti-
mized Taylor-series method [20]. As an example, using
this software, a periodic orbit (with 500 digits of preci-
sion) of the Lorenz system was shown in [21]. Of course,
locating the initial conditions of the UPOs, and proving
their existence with high precision becomes a much more
complex problem. In this paper we have used a fast and
accurate algorithm for the correction of approximate pe-
riodic orbits [22] that allows us to locate UPOs for any
dynamical system up to any arbitrary precision and, in
particular, to compute UPOs with 1000 precision digits
for low-dimensional problems such as the Lorenz model.
To our knowledge this is the only available algorithm and
software (TIDES) capable of reaching arbitrary high pre-
cision (for instance 1000 digits) for ordinary differential
equations (ODEs).

1http://cody.unizar.es/software.html

Another important application of the Taylor method
is that it can be made to use interval arithmetic, which
allows us to obtain validated numerical methods for dif-
ferential equations. This is a corned stone of Computer-
Assisted Proofs for proving the existence of periodic orbits.
Therefore, using interval methods, we give rigor to the nu-
merically obtained high-precision results. In other words,
the results rigorously enclose the exact invariants in small
sets. And therefore, we have not only some numerical re-
sults but, we will have a rigorous result that states the
skeleton of UPOs of the system. This kind of informa-
tion is an important complement to numerical studies as
it provides rigor to some simulations [23, 24].

As a concrete benchmark, the values of the coordi-
nates of nine periodic orbits (one per multiplicity) along
their complete period – at fixed output times – are pro-
vided with 1000 precision digits for comparison purposes
for computational dynamics tests.

The work reported here gives a complete database of
high-precision and validated numerical data. We hope that
this data can act as a serious benchmark for new numeri-
cal and analytical techniques aimed at dissipative chaotic
systems.

The paper is organized as follows. In Section 2, we
present the low-precision location of unstable periodic or-
bits in chaotic systems. In order to improve these, we
explain in Section 3 the computation of high-precision ini-
tial conditions of the periodic orbits applied to the chaotic
Lorenz system. Moreover, in this section we show the re-
sults of some numerical tests that illustrate good behavior
of the method for the Lorenz model. Another important
point that we deal with in Section 4 is the rigorous location
of unstable periodic orbits in chaotic systems. In Section 5,
we detail the contents of the developed database, which is
available to the scientific community. Finally, we present
the conclusions of this work, and in the AppendixA we
show an example of the files of the database.

2. Low-precision location of unstable periodic or-
bits in chaotic systems

In this section, we describe how to locate low-precision
unstable UPOs in the Lorenz model, for details see [25, 26].

The Lorenz system (1) is well understood in terms of
geometric models [27]. It has been shown to be chaotic in
the topological sense for the non-classical [28] and classi-
cal [29] parameter values. The existence of the Lorenz at-
tractor has been verified using Computer-Assisted Proofs
techniques in [4].

Given the Lorenz model (1), let x(0) = y be the initial
conditions and

x = x(t;y), t ∈ R, x,y ∈ R3, (2)

the solution of the above autonomous differential system.
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A periodic orbit, which is characterized by the vector
y of initial conditions and its period T , verifies the perio-
dicity condition

x(T ;y)− y = 0. (3)

Figure 1: The Lorenz attractor and the symbolic notation.

The chaotic attractor of the Lorenz model is illustrated
in Fig. 1. Here the classical Saltzman parameter val-
ues, b = 8/3, σ = 10, r = 28 are used. The Lorenz
system has three equilibria: one of them is the origin
P0 = (0, 0, 0), and the other two are symmetric: P+ and
P−, with coordinates (±

√
b(r − 1),±

√
b(r − 1), r − 1) ≈

(±8.485,±8.485, 27) [25]. In order to classify the orbits
densely filling the chaotic attractor, we use symbolic dy-
namics notation [27]. Every time a trajectory passes through
the left side of the attractor the letter L is assigned to the
trajectory. Likewise, if the trajectory passes through the
right side, the letter R is assigned. It is known that any
such infinite string of symbols uniquely characterizes each
periodic orbit. Periodic orbits repeat indefinitely the fi-
nite sequence of symbols of its period, and can therefore
be characterized by a finite number of symbols. For ex-
ample, the LR periodic orbit does a loop on the left and
another one on the right. If a trajectory does two consec-
utive loops on the left, one on the right, another one on
the left and finally one on the right, it corresponds to the
notation LLRLR. Note that for the Saltzman parameter
values, two symbols are enough to describe the orbits as
the first return map is unimodal [27].

Now we describe the numerical techniques to obtain a
low precision location of the periodic orbits. Let us define a
two-dimensional section Σ – which is a rectangular subset
of the plane z = r−1. We define the Poincaré map P : Σ→
Σ as the planar map P (x) = ϕ(TΣ(x); x), where ϕ denotes
the flow, and TΣ(x) is the return time, i.e., the time it takes
for the trajectory starting at x ∈ Σ to intersect the section
Σ. Note that a periodic orbit of the flow corresponds to a
periodic orbit of the discrete map P . Our goal here is to
find all periodic orbits of P up to multiplicity 10.

For the parameter values we are considering, all peri-
odic orbits of the Lorenz equations are unstable. There-
fore, we cannot rely upon any simple contraction principle

for the direct flow. Instead, we use a variant of Newton’s
method which brings contraction into play. More precisely,
we will consider the global Poincaré map F : Σm → Σm

defined by

Fk(z) = x(k+1 mod m) − P (xk), k = 1, . . . ,m (4)

where z = (x1, . . . ,xm) ∈ Σm (xk ∈ Σ). Note that a zero
of F corresponds to a multiplicity m (or period-m) orbit
of P . Applying Newton’s method on F makes the simple
zeros of F super-attracting, and thus numerically stable.

In order to make our numerical computations rigorous,
we use set-valued methods (sometimes known as interval
analysis, see [30, 31]). In this framework, the interval New-
ton method becomes

N([z]) = ž − [DF ([z])]−1F (ž), (5)

where [z] = ([x1], . . . , [xm]) is an interval vector, and ž is
the midpoint of [z]. If N([z]) ⊂ [z] then F has a unique
zero in [z], and therefore P has a unique orbit of multiplic-
ity m, with each iterate xk inside the rectangle [xk] ⊂ Σ.

In order to find good candidate enclosures [z] contain-
ing true periodic orbits, we use the fact that – for the
Lorenz system – the periodic orbits are uniquely charac-
terized by their symbolic dynamics. In effect, this means
that we know exactly how many low-period orbits to ex-
pect, and roughly where to find them. Using a very long
trajectory, we can search amongst its iterates for a best-
approximate match for any particular periodic orbit. Ap-
plying Newton’s method to this approximation, followed
by a small inflation into a set produces the desired candi-
date enclosure [z]. For details, see [26].

3. High-precision location of unstable periodic or-
bits in chaotic systems

This section reviews briefly the numerical algorithm
that permits to compute periodic orbits with very high-
precision.

In order to compute the roots of Eq. (3), equivalently,
to find the initial conditions of a periodic orbit with high-
precision, we use an iterative corrector of UPOs based on
some modifications of the Newton method and the key use
of an ODE solver able to solve differential systems with
arbitrary precision. The Newton method begins with a
set of approximated initial conditions (y0, T0), obtained in
the previous section, being (yi, Ti) at step i of the iterative
process. Our aim is improve them, in such a way that

||x(Ti + ∆Ti;yi + ∆yi)− (yi + ∆yi)|| < ||x(Ti;yi)− yi||.

For this purpose, we calculate the approximate corrections
(∆xi,∆Ti), which are obtained by expanding

x(Ti + ∆Ti;yi + ∆yi)− (yi + ∆yi) = 0,

in a multi-variable Taylor series up to the first order

x(Ti;yi)− yi +

(
∂x

∂y
− I
)

∆yi +
∂x

∂t
∆Ti = 0, (6)
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where I is the identity matrix of order 3. The 3×3 matrix
∂x/∂y is the fundamental matrix, i.e. the solution of the
variational equations. This matrix evaluated at (yi, Ti) is
an approximation Mi of the monodromy matrix M . And,
∂x/∂t represents the derivative of the solution with respect
to the time, i.e., ẋ = f(x). This vector, evaluated at the
corrected initial conditions (yi, Ti), corresponds to f(yTi)
where yTi

= x(Ti,yi).
In order to compute new values, the correction algo-

rithm imposes an orthogonal displacement

(f(yi))
T ∆yi = 0. (7)

In this way, the next (n + 1) × (n + 1) linear system is
obtained Mi − I f(yTi)

(f(yi))
T 0

( ∆yi

∆Ti

)
=

(
yi − yTi

0

)
. (8)

The linear system (8) is solved using singular value de-
composition (SVD) techniques which provide a stable nu-
merical method [22], and this gives us the corrected initial
conditions.

To be able to compute the correction we use an impor-
tant tool, TIDES [19]. This software computes simultane-
ously the solution and the partial derivatives of the solu-
tion of (3), in double or multiple precision (using the multi-
ple precision libraries gmp and mpfr [32]). The TIDES soft-
ware is a key technique for computing the database as this
is one of the few available softwares capable to solve ODEs
in arbitrary precision. In [33], due to the lack of arbitrary
precision numerical ODE solvers at that time, a much more
cumbersome approach (based on the Lindstedt-Poincaré
technique) is used to obtain high-precision periodic orbits.

The performance of the correction method can be seen
in Table 1. Each row, which corresponds to a periodic orbit
of multiplicity m (m = 2, . . . , 10), shows the CPU time in
seconds versus the number of digits of the computational
relative error (precision digits). All the numerical tests
have been carried out using a personal computer PC Intel
quad-core i7, CPU 860, 2.80 GHz under a 2.6.32-29-generic
SMP x86 64 Linux system.

The behavior of the method in the determination of the
periodic orbits of the Lorenz model is quite similar for all
of them, as we obtain our goal of 1000 digits of precision
in just 10 iterations. Therefore, we illustrate the process
in Fig. 2 just for the LR and LLRLR periodic orbits. As
expected, our algorithm is quadratically convergent since
it is mainly based on the Newton method.

Having a database of periodic orbits of the Lorenz
system has two important applications. The first one is
to serve as benchmark of high-precision numerical ODE
solvers. In the literature there are quite a few high-precision
numerical integrations of chaotic dynamical systems that

Precision digits
Orbit 50 100 500 1000

LR 0.04 0.22 22.29 251.49
LLR 0.08 0.31 33.32 372.27
LLLR 0.10 0.40 43.05 478.18
LLLLR 0.13 0.47 50.38 579.47
LLLLLR 0.14 0.54 59.10 666.32
LLLLLLR 0.17 0.63 66.95 760.35
LLLLLLLR 0.18 0.69 75.20 845.65
LLLLLLLLR 0.20 0.77 85.17 929.85
LLLLLLLLLR 0.21 0.83 90.16 1034.80

Table 1: CPU time (seconds) for the computation of some UPOs
depending on the precision digits.

1 2 3 4 5 6 7 8 910
0

10
1

10
2

10
3

 

 

number of iterations

−
lo

g 10
|E

rr
or

|

Lorenz model

Quadratic convergence

LR
LLRLR

Figure 2: Computational relative error vs. number of iterations in
the computation of high-precision initial conditions of periodic orbits.

can be use to that purpose. Therefore, it is quite use-
ful for that community to dispose of such an information,
as to have correct data of initial conditions of periodic
orbits permits to compare easily different numerical me-
thods. For instance, in Fig. 3 we show some comparisons
on the numerical integration of the LLRLR periodic or-
bit of the Lorenz model using the well established codes
dop853 (a Runge–Kutta code) and odex (an extrapolation
code) developed by Hairer and Wanner [34], and the Tay-
lor series method implemented on the TIDES code. We
observe that the RK code dop853 becomes the fastest op-
tion for low-precision requests. Nevertheless, in quadruple
precision the odex code is by far more efficient than the
RK code because it is a variable order code, as TIDES.
Finally, for very high-precision requests the Taylor series
method is the only reliable method amongst the standard
methods, and is capable to solve ODE systems up to thou-
sands of precision digits in a reasonable CPU time. Note
that the last few years some high-order implicit methods
and fixed step-size methods have been announced, aimed
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Figure 3: Precision vs. CPU time diagram (benchmark test) in double, quadruple and multiple precision for the numerical integration of the
LLRLR periodic orbit of the Lorenz model using a Runge–Kutta code (dop853), an extrapolation code (odex) and a Taylor series method
(TIDES code).

at “precise” numerical integrations of the Lorenz system –
but producing unreliable results and requiring extremely
high CPU times [16, 18]. In our benchmark test, Fig. 3 it
has been of great help to have as reference orbit the precise
initial conditions and period of several periodic orbits.

We remark that these tests are also related to the com-
putability of a deterministic chaotic system using a given
precision (the round-off unit of the computations). The
Lyapunov exponent λ of a periodic orbit is defined as
log (m1)/T , where m1 is the magnitude of its leading char-
acteristic multiplier and T is its period. As an example,
for the orbit LR we have λ ' 0.99465. So, with this value
we may estimate the number of laps that we may follow
the periodic orbit with some precision. This total time
Ttotal, the Lyapunov time that reflects the limits of the
predictability of the system at a given precision, it is ob-
tained from exp(λTtotal) ' 1/u, with u the round-off unit
of the computations. If we take as example the LR orbit
with 1000 digits (u ≈ 3.8055× 10−1000 in mpfr) we obtain

Ttotal = − log u

λ
≈ 2313.74

that is, we can follow the periodic orbit bTtotal/T c = 1484
laps, approximately. Note that this is the limit of the
computability at the precision u of the orbit LR of the
Lorenz system, its Lyapunov time. The computability of
the Lorenz system itself is also obtained in the same way,
as it is already well known in dynamical systems literature.

Another application of having the database is to pro-
vide a computer-assisted verified topological template of
the Lorenz attractor, whose existence was established in
[4, 5]. Here, we just comment that, having a rigorous set
of UPOs embedded in the attractor, we can guarantee the
values of the linking matrix obtained considering the knots
formed by the UPOs of the chaotic attractor. The topo-
logical structure of the Lorenz attractor [6–8] is described
in terms of a paper-sheet model, called a template made
of “normal” and twisted, like a Möbius band, stripes. The
topological model can be quantified by a set of linking
numbers – the local torsions. The torsions are, locally, the

crossings number of the stripes in the template, i.e., the
number of twists of the layering graph between any two
unstable periodic orbits in the chaotic attractor. The lo-
cal torsions determine the linking matrices and hence the
template of the attractor. In practice, the template may
be derived using a Poincaré return map of trajectories in
the chaotic attractor, and by studying the unstable peri-
odic orbits of the attractor [35]. This information is briefly
summarized in Fig. 4. On the top we show the classical
topological “mask” [6–8, 36]. On the bottom we show the
unimodal FRM (First Return Map) for the attractor of the
Lorenz model (for the classical Saltzman values) defined
on successive local maxima, z(i). This is a unimodal map;
it has only one relative extremum. As a consequence, the
topological template has just two branches and therefore,
we need two symbols to describe all orbits. Moreover, the
Linking Matrix (LM), the Insertion Matrix and the topo-
logical template of the equivariant fundamental domain
(one wing) [37] are given to complete the information.
This information is checked with our rigorous database,
obtaining the same results.

This is just one example of the use of high-precision
validated data (apart from the use also as a benchmark
test of validated numerical ODE integrators).

4. Rigorous location of unstable periodic orbits in
chaotic systems

The rigorous computations needed to validate the high-
precision periodic orbits were carried out along the strat-
egy outlined in Section 2. All computations were per-
formed using the CAPD library, see [38], which uses gmp and
mpfr libraries for its multiple precision. Given a specific
high-precision approximation of the initial conditions at
the m different iterates of the Poincaré map of a periodic
orbit (x1, . . . ,xm), we begin by inflating the trajectory
into an interval vector [z] = ([xi], . . . , [xm]), each com-
ponent having width 10−100. This will be our candidate
enclosure for applying the interval Newton method for the
global Poincaré map, as described earlier.
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Figure 4: Top: Orbits on the Lorenz template [36] and its topological
mask. Bottom: FRM, linking matrix and the topological classical
template of the equivariant fundamental domain (one wing) of the
chaotic attractor for the Lorenz model.

The CAPD library can compute rigorous enclosures of
both the Poincaré map P and its partial derivatives DP
over a given initial set [z] ⊂ Σm. Looking at the struc-
ture of the global Poincaré map (4), this is all information
we need to form the Newton image of the enclosure set
[z] according to (5). For each enclosure, we verify that
N([z]) ⊂ [z], and thus validate the existence (and unique-
ness) of a multiplicity-m orbit within distance 10−100 of
its given high-precision approximation.

All in all, we validated all 116 periodic orbits with a
tolerance of 10−100. For this, we performed the compu-
tations with 400 bits of precision, and used a Taylor in-
tegration scheme of order 90. The CPU time varied be-
tween 35 seconds and 25 minutes per orbit for a single
thread running on a AMD Opteron 6274 @ 2.2GHz. The-
oretically, it should be possible to reduce the computation
time for a multiplicity-m orbit by a factor m by paral-
lelizing the component-bound computations. We did not
pursue this option; instead we parallelized over the or-
bits, and launched all 116 computations concurrently on
64 threads. The total computation time was less than 50
minutes.

As a final result, we conclude that all 116 files with
high-precision initial conditions include also a validated
periodic orbit; in this case the 100 first initial digits are
correct. In this sense, each file gives rise to a theorem. Be-
low we show one example using the data file lor 2 LR.txt

shown in the AppendixA.

Theorem 1. For the Lorenz system (1) with the Saltz-
man parameter values (b = 8/3, σ = 10, r = 28) there
exists a unique periodic orbit with symbolic notation LR

(multiplicity m = 2) whose initial conditions are

x0 = x̌0 ± 10−100,
y0 = y̌0 ± 10−100,
z0 = 27,

with

x̌0 = −2.147367631918116125647657994834426364
539183126377307270606358273648286122

240899658325767107886028868,
y̌0 = 2.078048211461249400317478579765812352

432481250078273367551283626639574888
006207392602813065110324916.

Note that the above result is a theorem; it is rigor-
ously proved via Computer-Assisted techniques. The 1000
digits in the files are very high-precision results checked
numerically with a carefully done numerical study (they
have been checked with more precision digits and we have
some “guarantee” on the correctness of the presented dig-
its, but all the digits have not proved theoretically). To
our knowledge this is, by far, the most precise rigorous
result on the location of periodic orbits in chaotic systems
in literature, and the most precise numerical results also.

5. The Lorenz database

The goal of this work is to develop a database that
consists of two kind of files. The complete database is
provided as a complementary folder of this paper. In the
first set of files, we provide the initial conditions of one
periodic orbit per file with 1000 precision digits and the
values of these coordinates validated with 100 digits that
proves the existence of the periodic orbit. Recall that in
all cases the z–coordinate has a fixed value, z = 27 (the
same as the equilibria P±).

m 2 3 4 5 6 7 8 9 10 TOTAL
nm 1 1 2 3 5 9 16 28 51 116

Table 2: Number of periodic orbits nm depending on their multi-
plicity m and total number of computed UPOs.

In total there are 116 files with initial conditions (all
the UPOs of the Lorenz attractor of multiplicity m ≤ 10)
as we show in Table 2, which specifies the number of
UPOs, nm, depending on their multiplicity, m, and the
total number of computed UPOs. These files are denoted
by lor m symb.txt where m is the multiplicity and symb

the symbolic sequence of the orbit. The format of these
files is shown in the AppendixA. First of all, the indi-
vidual number of the orbit (num) is specified; then the
multiplicity (orbit-mult), the number of the orbit among
all the orbits with the same multiplicity (num-same-mult)
and the symbolic sequence of the orbit (symb). After that
we find, with 1000 precision digits, the period T and the
initial conditions x and y of the orbit (z = 27 in all cases).
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Figure 5: Periodic orbits of the Lorenz model of multiplicities be-
tween 2 and 5.

Finally, the rigorous intervals for the same variables (x, y,
z) in high-precision are obtained just by taking the first
100 digits (these are the rigorously proved digits).

Besides, there are nine files with complete data of one
periodic orbit each, one per each multiplicity (2 ≤ m ≤
10), which are denoted symb orbit.txt. In these files, we
give with 1100 digits the values of the coordinates of the
orbit at fixed output times with time increment h = 0.01.
The format of the files is to give in each line one complete
point, that is, the values of ti, x(ti), y(ti), z(ti). Most of
the shown digits are most likely correct (the computations
have been done with an error tolerance of 10−1090 and each
data has been carefully checked for the first 1000 digits),
and again the first 100 digits are rigorously proved digits.

In Figure 5, we can see some of the orbits, of multiplic-
ities between 2 and 5, that have been computed and that
are included in the database. The LR and LLRR orbits
are symmetric, while the LLR, LLLR, LLLR, LLLRR and
LLRLR orbits are non-symmetric.

6. Conclusions

The goal of this paper is to present a high-precision
and validated database of periodic orbits useful to scien-
tific community. This consists on hundreds of approxi-
mated initial conditions (with 1000 digits of precision) of
all the periodic orbits of the Lorenz attractor with multi-
plicities between 2 and 10. To obtain this database, we
have combined two different methods: a corrector of peri-
odic orbits algorithm in arbitrary precision, which allows
us to obtain the initial conditions of UPOs of any dynam-
ical system with the required precision, and Computer-
Assisted techniques to prove the existence of these orbits
within a tolerance of 10−100. This database is a “com-
putational challenge” and it can be use as a benchmark

for checking new numerical and theoretical techniques in
computational physics and dynamics.
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AppendixA. File lor 2 LR.txt

================================================

Lorenz Database: High precision and

rigorous data file

File: lor_2_LR.txt

================================================

* Numerical data with 1000 precision digits ***

* (error < 10^(-1000)) ***

* The first 100 digits are rigorously proved ***

* via CAP techniques. They give a Theorem ***

* of existence of the Periodic Orbit. ***

************************************************

******************* FORMAT *******************

************************************************

***************** Data of the orbit ***********

* num | orbit-mult | num-same-mult | symb

1 2 1 LR

*********** Initial conditions (1000 digits) ***

T = 1.5586522107161747275678702092126960705284

805489972439358895215783190198756258880854

355851082660142374227874628676588925856759

114998565388913608713285011019327706322439

313214649374465282053245397773437382070265

038689003930946637574777949263393159437541

623011610884405671641950154306933323049096

162291405158398552430505472975477593892734

206854673172738936026993914663645933054022

189761784055859520883303114513251097516232

856917878431617597363720748783672257211325

662086758469406354756156487387177650044370

454248933780710742659716738020422549262291

333210964856082100412502113122061849916697

973523392695931523265206965940137017550539

699545689811043543162019034070112606824561

903563007526645593784918880438439263450120

625109594685133700759631857668509485055243

223996057006402060530026179463699015245595

033093872400297506789639255487515858437209

627081541412899445444256582441991078147467

765689395686384271173335081992134537066065

694742760880531107895985179385297145888797

830428111474345661639697827320258658080745

546645389940133286984072568999426750324798

267652782047614476776946084749296290153599

7



326908602

x = -2.1473676319181161256476579948344263645391

831263773072706063582736482861222408996583

257671078860288685519677370558563429547486

605895676290598523687812781098722230972187

262033850465367144898223380814452401981070

814342093623677105339157133941615290986783

571794270184327168026759931161103325194824

164227655414132873997507004053059711216356

574150375356858873365020048243430228835021

836513730479627166658184017565158130895088

274385428150842625062154742132607627769976

978976419805208327908486164289266143982923

606380647647044871033936630315467336826742

843458831192176096824455498673117655818315

383124497033769336819193724989102515222691

900292841071936008530072491470578952381790

051769917148434292675094735410259879438780

966758152308238848109127435975809636611429

188564166440038221628456041830667200064968

436090251373045854367659518877238474359199

744355074321354572981759029457060162234081

997571617253506903724889072866646150027113

706583673983028023296187777548562182909040

415036997238022952647202830517650784159493

114408580942249235770049714948136302482824

667603017160138684083311963774670685336801

763179293

y = 2.0780482114612494003174785797658123524324

812500782733675512836266395748880062073926

028130651103249169852108870521308699282559

469673015670838903747526759636485599294729

432463904901202551341628059576690377511330

638977113875846234568597404146956064096117

239797849362718721864237093464022138068085

394681323529698800475076250038669795767969

360955427915532896483014016015919944636236

662965349866267624234955157359579460952244

654359517991870154559448825863685819061560

961123926834254736653707830913133093954565

833197795039610240479117866798032368314397

223028690056106631450511033879996633563025

708806934614955550764097498856242201673401

712794022785983063271985029968280404584960

027801129335843498299100475726125323052835

943174177460023453331904583876396932802531

016431720506859782544800224853690666966327

941170192404700687891069617885714789404814

934098731781680300758236420856811954640014

979712396472715422991678177345324057959566

642779652752526027994483211072185288125184

730180543839514812217592209661253548414412

422934425190796386507711054645070627748184

823866114202952135376014293316533904495746

013910176

z = 27

===============================================
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