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The question of coexisting attractors for the Hénon map is studied numerically by performing an ex-
haustive search in the parameter space. As a result, several parameter values for which more than two
attractors coexist are found. Using tools from interval analysis, we show rigorously that the attractors
exist. In the case of periodic orbits we verify that they are stable, and thus proper sinks. Regions of
existence in parameter space of the found sinks are located using a continuation method; the basins of
attraction are found numerically.
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1. Introduction
The Hénon map [Hénon, 1976] ha,b : R2 7→ R2 is an invertible map defined by:

ha,b(x, y) = (1 + y − ax2, bx), (1)

The map depends on two parameters a and b, which in the classical case have values of a = 1.4 and b = 0.3.
Originally introduced as a model of a Poincaré map for a three-dimensional flow, the map displays a wide array of
dynamical behaviors as its parameters are varied, [Zhiping et al., 1991; Piacquadio et al., 2002].

In this study, we will concentrate on the dissipative, orientation-reversing case; more precisely, we will consider
a ∈ [0, 2] and b ∈ [0, 0.5]. This region contains the classical parameter values a = 1.4, b = 0.3 for which one observes
the so-called Hénon attractor (see Fig. 1). In the setting we are considering, it is known [Newhouse, 1979] that when
a saddle point generates a homoclinic intersection, a cascade of (periodic) sinks will occur. Furthermore, there will
be nearby parameter values for which the map has infinitely many coexisting sinks. Nevertheless, coexisting sinks
for the Hénon map appear to be very elusive; due to the dissipative nature of the map, the regions in parameter space
for which sinks appear simultaneously are extremely small. In this work, we report some results of the numerical
search for parameter values for which there exist more than two attractors.

It is known [Benedicks & Carleson, 1991] that there is a set of parameters (near b = 0) with positive Lebesgue
measure for which the Hénon map has a strange attractor. But given a specific point (a, b) in parameter space, it is
not possible to prove that the dynamics of the map generates a strange attractor. It is, however, possible to prove the
existence of a (periodic) sink; this is a finite computation, and all necessary conditions are open (and thus robust).
Our study shows that in many cases where there appears to be a strange attractor, the true underlying dynamics is
governed by a single (or multiple) periodic sink.
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Fig. 1. Trajectory of the Hénon map (with (a, b) = (1.4, 0.3)) composed of 10000 points; unstable fixed points (+, +×)

2. Numerical methods
2.1. Search for coexisting attractors
The most natural method to find a sink is to follow a trajectory and monitor whether it converges to a periodic
orbit. First, initial iterates are discarded until a steady-state is observed. At this stage, we “restart” the trajectory
by taking the current iterate as initial point. Next, we check if the trajectory periodically returns very close to this
initial point. The number of iterations which should be skipped to reach the steady state depends on various factors
like the eigenvalues of the periodic orbit (they define the strength with which the periodic orbit attracts neighboring
trajectories), the size of the basin of attraction and its shape, including the size of the immediate basin. Usually the
number of iterations which has to be discarded has to be chosen by trial-and-error.

With chaotic attractors the situation is more difficult, since a trajectory belonging to a chaotic attractor never
exactly comes back to the initial point. We use an approach based on counting the number of bins visited by the
trajectory at steady-state. First, the state space is covered by a finite number of bins. Again — as in the case of
periodic orbits — some initial iterates are computed and discarded to reach the steady-state. At this stage, a trajectory
of a fixed (long) length is computed, and the number of bins visited by the trajectory is calculated and recorded. This
data is saved for several initial points. If, for two different initial points the numbers of bins are similar, then most
likely the trajectories converge to the same attractor. Note that this method works for periodic attractors too. In this
situation, however, if two trajectories converge to the same periodic orbit, then the number of bins should be the
same. A more sophisticated (although slightly slower) approach is to also record the bin positions, and compare
whether the trajectories visit the same bins. This method will distinguish two different periodic orbits of the same
period, or two chaotic attractors — both having nonempty intersections with approximately the same number of
bins.

In order to be able to locate coexisting attractors, it is necessary to use many initial conditions. Since some of
the attractors may have very small basins of attraction, it is a good strategy to start the computations from many
randomly chosen initial points. In this study, 2000 initial conditions for each point in parameter space were used.

2.2. The existence of attractors
To prove the existence of attractors we use methods from interval analysis [Moore, 1966; Neumaier, 1990]. These
methods allow us to obtain rigorous results using computers. Computations in properly rounded interval arithmetic
produce results which contain both machine arithmetic results and also true (infinite arithmetic precision) results.
Using interval arithmetic it is possible, for example, to prove in a finite number of steps that an image of a given set
is enclosed in other set.

Let us assume that in simulations a periodic or chaotic attractor is observed. In this section we describe a general
technique to prove that there is an attractor in a neighborhood of the observed trajectory.

In order to prove that there is an attractor for the system, it is sufficient to prove that there is a positively
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invariant set (a trapping region) enclosing the observed attractor. A set A is called positively invariant for the
map f if f (x) ∈ A for all x ∈ A. This can be established by constructing a candidate for a trapping region en-
closing the region of interest, covering it by a set of interval vectors, and verifying rigorously that the image of
each interval vector is enclosed by the set A. Usually one uses a covering by so called ε–boxes, i.e., interval
vectors with corners lying on a rectangular grid [Galias, 2001]. Each ε–box is a an interval vector of the form
v = ([k1ε1, (k1 + 1)ε1], [k2ε2, (k2 + 1)ε2], . . . , [kmεm, (km + 1)εm]), where m is the dimension of the state space, ki are
integer numbers, and ε = (ε1, ε2, . . . , εm). This type of representation is very well suited for rigorous computations.
First, by changing ε, it is possible to represent a given set by ε–boxes with arbitrary precision. Second, when ε is
fixed, an ε–box is defined uniquely by m integer numbers.

In this work, we use another method. It has the advantage that no candidate set has to be defined a priori, and the
trapping region is constructed by the procedure. In this method one starts with a single ε–box enclosing an arbitrary
point from the observed trajectory or a covering of the numerically observed attractor by ε–boxes. This defines the
set S of boxes. In each step, for each box from S its image under f is computed, and a set of ε–boxes containing
the image are found. New boxes are added to the set S . The procedure is continued until no new boxes appear in the
process. On the exit, the set S is a trapping region for the map f .

To prove that there is at least n attractors for the system it is sufficient to prove that there are n trapping regions,
and that the trapping regions are pairwise disjoint. This is particularly easy if the trapping regions are represented as
sets of ε–boxes of the same size.

It is very important to choose ε in a correct way. If ε is too large, then either we will not be able to finish the
search procedure or the resulting trapping regions for different attractors will overlap. If ε is too small, then the
computations will generate a covering consisting of prohibitively many boxes.

2.3. The existence of periodic orbits
In the previous section, we have described a general technique to prove the existence of an attractor. It involves
finding images of many ε–boxes, and even for simple attractors the number of boxes which has to be used may be
very large. When the attractor is periodic, one may use a faster technique.

Interval methods provide simple computational tests for uniqueness, existence, and nonexistence of zeros of a
map within a given interval vector. Let F : Rn 7→ Rn be a continuous map. In order to investigate the existence of
zeros of F in the interval vector v one evaluates a certain interval operator over v. In this work, we use the Newton
operator [Neumaier, 1990]:

N(v) = v̂ − F′(v)−1F(v̂), (2)

where F′(v) is an interval matrix containing the Jacobian matrices F′(v) for all v ∈ v, and v̂ ∈ v. In our implementa-
tion, we choose v̂ to be the center of v.

The most important property of the Newton operator can be used to prove the existence and uniqueness of zeros.
It states that if N(v) ⊂ v, then F has exactly one zero in v. Note that all operations in (2), including evaluation of
F(v̂) and F′(v), have to be implemented rigorously in interval arithmetic for this property to be valid.

In order to study the existence of period–p orbits of a map h, we construct the map F defined by

[F(v)]k = z(k+1) mod p − h(zk), for 0 ≤ k < p, (3)

where v = (z0, z1, . . . , zp−1). Zeros of F correspond to period–p points of h, i.e., F(v) = 0 if and only if hp(z0) = z0.
In order to prove that there is a single period-p orbit enclosed in the interval vector v it is sufficient to evaluate the
interval Newton operator on v, and verify that N(v) ⊂ v. This approach combined with the generalized bisection
technique has been successfully used to find all low period cycles for the Hénon map and the Ikeda map [Galias,
2001]. Application to continuous systems was presented in [Galias, 2006] and [Galias & Tucker, 2011].

Another choice is to apply the interval operator to the map f = id− hp. This approach involves the computation
of several iterates of the map, and may — especially for longer orbits — lead to huge overestimations. The former
method has an advantage that the problem of the existence of periodic orbits is translated into the problem of the
existence of zeros of a higher-dimensional function. This helps to reduce the overestimation caused by the wrapping
effect inherent in all set-valued computations. For details see [Galias, 2001].



October 11, 2012 17:38 ijbc12hf

4 Z. Galias & W. Tucker

Note that the Newton operator enables us to prove the existence of unstable periodic orbits as well. To show
that the periodic orbit is an attractor we must show that it is asymptotically stable. This problem is handled in the
following section.

2.4. Properties of periodic orbits
In this study, the most important property of a periodic orbit is its stability. To study the stability of the orbit v =

(z0, z1, . . . , zp−1) it is sufficient to compute the Jacobian matrix J along the orbit

J = (hp)′(z0) = h′(zp−1) · · · h′(z1) · h′(z0), (4)

and find its eigenvalues. If both eigenvalues are within the unit circle, then the orbit is asymptotically stable. Some-
times, especially when eigenvalues are close to the unit circle, it may be easier to use the Jury criterion, which states
that the second-order polynomial λ2 +a1λ+a0 has all zeros within the unit circle if and only if a0 < 1, a0 +a1 +1 > 0,
and a0 − a1 + 1 > 0.

Another important question concerning periodic orbits is the minimum period. Even if the map (3) is shown
to have a single zero in a given interval vector, it does not follow that the minimum period of the corresponding
periodic orbit of h is p. To be sure that p is the minimum period it is sufficient to verify that the minimum distance

dself(v) = min
k,l
‖zk − zl‖2 (5)

between points belonging to the periodic orbit v = (z0, z1, . . . , zp−1) is positive. If the interval vectors z0, z1, . . . , zp−1
contain points belonging to the periodic orbit it is sufficient to verify that the interval

⋃
k,l ‖zk − zl‖2 does not

contain 0.

2.5. Distance between attractors
Another problem is to verify that two attractors are different. This can be solved by computing the distance between
them. The distance between two sets A and B is defined as

d(A, B) = max{sup
z∈A

inf
w∈B
‖z − w‖2, sup

w∈B
inf
z∈A
‖z − w‖2}. (6)

Two sets are different if their distance is positive. However, note that usually we do not know the exact positions of
attractors; we only have the regions enclosing them. From the fact that the distance between enclosures of attractors is
positive it does not follow that the attractors are different. Therefore, in general, we have to verify that the enclosures
are not overlapping or, in other words, we have to compute the infimum distance between the two sets, which is
defined as

dinf(A, B) = inf
z∈A,w∈B

‖z − w‖2, (7)

and verify that it is positive. Formally, to show that the attractors are different, we use the following property: If sets
of boxes

⋃
k zk and

⋃
l wl are enclosures of attractors A and B, respectively, and the interval

⋃
k,l ‖zk − wl‖2 does not

contain zero, then the attractors are different. The infimum distance between two attractors is also interesting from
the dynamical point of view. It tells us how close two trajectories belonging to different attractors could be.

Sometimes, the enclosures of some attractors are composed of several components, and we know that the at-
tractors have non-empty intersection with each component; this is usually the case for periodic attractors. Then, by
computing distances between components we can obtain a lower bound of the distance between the attractors.

2.6. The continuation method to find the existence region of a sink
When a point in the parameter space with a sink is found one may use the continuation method to find a connected
region in the parameter space for which this periodic orbit exists. The search is based on the assumption that the
position of the orbit changes continuously with the parameters.

Usually, the most effective method to find the region of existence is to continue along the border of the region
using for example the simplex continuation method [Allgower & Georg, 1980]. Unfortunately, in our case this
procedure did not produce correct results: some parts of the existence regions were not found (for example one
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branch of the swallowtail structure shown in the next section was missing). This failure was caused by the fact that
in some cases two sinks with the same period coexist, and continuation along the border fails at points where the
second sink emerges.

Therefore, we use the following method: the parameter space is covered by a rectangular grid of points, and
continuation in all directions is carried out. For each grid point, sinks which were obtained by the continuation
procedure in previous steps are remembered, and continuation is performed in each direction for each sink.

2.7. Numerical study of basins of attraction
When we detect more than one attractor for the system, an interesting challenge is to determine which trajectories
converge to which attractor. For an attractor A we define its basin of attraction B(A) with respect to the map f as the
set of points for which a trajectory starting in this set converges to A:

B(A) = {x : d( f n(x), A)→ 0 for n→ ∞}. (8)

Basins of attraction can be studied numerically by computing trajectories emanating from different initial conditions,
and checking which attractor each trajectory converges to. The initial points can be selected arbitrarily, but a natural
choice is to select them from a rectangular grid. To visualize the basins of attraction the positions of initial points
whose trajectories tend to different attractors are plotted using different colors.

An important notion in the context of basins of attraction is the so-called immediate basin size. It is defined as
the largest number rε such that all trajectories starting closer than rε from the attractor do not escape further than ε
from the attractor, and converge to the attractor:

rε(A) = arg max
r
{d( f n(x), A) ≤ ε ∀n ≥ 0 and d( f n(x), A)

n→∞
−−−−→ 0 for all x such that d(x, A) ≤ r}. (9)

The choice of ε is somewhat arbitrary. Usually, choosing ε a couple of times larger than the expected immediate
basin size works well.

3. Results
In order to locate multiple attractors, we have performed the following search in parameter space. 1001×1001 points
were chosen in the rectangle (a, b) ∈ [0, 2] × [0, 0.5]. For each point in parameter space, 2000 initial points in phase
space were randomly selected. For each such initial point, a trajectory of length 110000 was computed. The first
100000 iterations were discarded (to avoid transient behaviour), and the final 10000 iterations were used to fill bins.
For binning only the x-variable was used. Divergent trajectories were detected and discarded. All initial points with
less than 20% bins non-empty were recorded. Similar computations have been done for 1001 × 1001 points in the
rectangle of parameter values (a, b) ∈ [1.3, 1.5] × [0.2, 0.4].

The results of these computation are reported in Table 1, where some examples of parameters for which three
attractors were found are given, along with short descriptions of observed attractors. In all cases, we have proved the
existence of three attractors, with the exception of case 14, where we were unable to prove the existence of the third
attractor due to its very small immediate basin of attraction (further explanations are given later). In all cases where
we report a sink, we have proved the existence of a sink using the interval Newton method, with the exception of
the period-72 orbit for case 5. In this case the existence of the orbit was proved, but we could not verify from the
Jacobian matrix that the orbit is stable. Nevertheless, the existence of an attractor enclosing this particular orbit was
established using the general method described in Section 2.2.

In what follows, several examples are discussed in more details.

3.1. The case a = 1.338, b = 0.3105

Using the interval Newton operator, we prove that for a = 1.338, b = 0.3105 there exist three stable periodic orbits
with periods 7, 15, and 30, respectively. The properties of the sinks are collected in Table 2. For each sink we
report its period p, rigorous bounds of its self distance dself as defined in (5), rigorous bounds for the eigenvalue
λ1 with the largest absolute value, the largest Lyapunov exponent l1 computed as l1 = p−1 log |λ1| (l1 is computed
non-rigorously), the immediate basin size rε, and the percentage pconv of trajectories converging to this sink, when
finding basins of attraction.
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Table 1. Parameter values with multiple attractors

a b attractors
1 1.338 0.3105 period-7, period-15, period-30
2 1.3562 0.2586 period-7, period-18, period-36
3 1.3566 0.2588 period-7, period-18, period-36
4 1.356 0.2586 period-7, period-18, period-18
5 1.3328 0.2812 period-22, period-22, period-72
6 0.98 0.4415 period-8, period-12, period-20
7 0.95 0.4795 period-8, period-14, period-16
8 0.954 0.474 period-8, period-16, period-28
9 1.4776 0.252 period-6, period-8, chaotic?

10 1.4772 0.2522 period-6, period-8, chaotic?
11 1.3568 0.2588 period-14, period-36, chaotic?
12 0.972 0.4575 period-12, period-16, chaotic?
13 0.984 0.433 period-8, period-12, chaotic?
14 1.044 0.443 period-14, period-32, chaotic?
15 0.97 0.466 period-8, chaotic?, chaotic?

Table 2. a = 1.338, b = 0.3105; properties of the sinks, p — period of the sink, dself — the self distance of the sink, λ1 — rigorous bounds
for the eigenvalue with the largest absolute value, l1 — the largest Lyapunov exponent, rε — the immediate basin size, pconv — the percentage
of trajectories converging to the sink

k p dself λ1 l1 rε pconv
1 7 0.268673652727491

82 −0.53073187608
6 −0.09050 6.12 · 10−4 15.12%

2 15 0.1096877106527
5 0.25612528

5 −0.09081 4.76 · 10−5 22.36%
3 30 4.0081378495

11 · 10−5 0.420872
60 −0.02885 9.88 · 10−5 18.56%
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Fig. 2. a = 1.338, b = 0.3105, (a) period-7 sink (+), period-15 sink (�), period-30 sink (×), (b) basins of attraction of the three sinks,
x ∈ [−2, 2], y ∈ [−1, 1]
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Table 3. a = 1.338, b = 0.3105, distances between sinks

k l dinf(ok, ol) d(ok, ol)
1 2 0.0727161993577

4 0.6669723627525
1

1 3 0.079552906428
6 0.6719481866757

5
2 3 0.0002044048215

3 0.024230480328
5

The sinks are shown in Fig. 2(a). One can see that the period-7 sink is located far from the other two sinks, and
that the two longer sinks almost coincide. A very low self distance of the third sink (dself(o3) ≈ 4 · 10−5) indicates
that the sink might be the result of the period-doubling bifurcation. Looking at the picture alone, it is difficult to say
whether the two longer periodic orbits are different. The distances between the sinks computed using the formulas (6)
and (7) are reported in Table 3. The results confirm that the shortest sink is far away from the other sinks (the orbit
distance is larger than 0.66, and the infimum distance is larger than 0.07), and that the period-15 and period-30 orbits
are located close to each other (their distance is approximately 0.024 and their infimum distance is close to 0.0002).
It is clear that the sum of immediate basin sizes of two sinks has to be smaller than the infimum distance between
the sinks (4.76 · 10−5 + 9.88 · 10−5 < 0.000204).

Basins of attraction of the three sinks were found numerically. 2001× 2001 initial points are selected uniformly
in the box (x, y) ∈ [−2, 2] × [−1, 1]. The results are shown in Fig. 2(b). Initial points for which trajectories converge
to different sinks are plotted using different colors. Initial points with diverging trajectories are left white. Thin
structures corresponding to immediate basins of attraction are visible, however in most regions in the state space the
basins look random. 15.12%, 22.36%, and 18.56% of trajectories converge to the period-7, period-15, and period-30
sinks, respectively. The remaining 43.96% of trajectories diverge.

Using the continuation procedure, we found regions in the parameter plane for which the three sinks observed
for a = 1.338, b = 0.3105 exist. The results are shown in Fig. 3(a,b,c). In all cases the regions have a swallowtail
structure (compare [Hansen & Cvitanović, 1998]). The intersection of the existence regions is shown in Fig. 3(d).
This also illustrates that the existence region of the period-7 orbit is the largest, and encloses the intersection of the
two other regions. A more detailed picture is shown in Fig. 3(e). In order to explain creation of the region with 3
sinks, let us denote swallowtails corresponding to period-7, period-15 and period-30 sinks by letters α, β, and γ,
respectively. The branches in the swallowtail structures are numbered in the clockwise manner, in such a way that
the outer branches have numbers 1 and 4 (compare Fig. 3).

One can see that some of the branches of the period-15 and period-30 swallowtails have common edges. Namely,
β3 has a common edge with γ4 and β1 has a common edge with γ1. At these boundaries, the period-15 orbit looses
stability, and the period-30 orbit is created via the period-doubling bifurcation. For us, it is important that β3 — one
of the inner branches of the period-15 swallowtail — has a common edge with γ4. As a consequence, β2 — the
second inner branch of the period-15 swallowtail — intersects the γ4 branch. The intersection has a parallelogram
shape. In this region of intersection there exist three sinks — the third one is the period-7 sink, which exists in the
region enclosing the whole picture (compare Fig. 3(e)).

Summarizing, the explanation of the coexistence of three sinks with different periods is the following: a part of
the swallowtail structure (of the period-15 sink in the case observed) is enclosed in the region of existence of another
sink (the period-7 sink in this example). Within a certain region in the swallowtail structure, two sinks with the same
period (period-15 in this example) coexist. When this region is left into one of the swallowtail inner branches, one
of the sinks looses stability and a stable periodic orbit is born through the period-doubling bifurcation (a period-30
orbit in the case observed).

In a neighborhood of the swallowtail, there are many other regions (perhaps infinitely many) where three sinks
of various periods exist. Several examples of points belonging to these regions are plotted in Fig. 3(e) and collected
in Table 4.

First, note that in a part of the swallowtail structure two sinks with the same period coexist. An example is
a point (a, b) = (1.388, 0.31046) plotted with the “+” symbol in Fig. 3(e). Second, note that there is a symmetric
period-30 region located on the other side of the period-15 swallowtail. This region intersects the β3 branch of the
period-15 swallowtail, and as a consequence a symmetric parallelogram shaped region with three sinks of period 7,
15, and 30 exists. For example, the point (a, b) = (1.33802, 0.31048) (plotted using the “ ·̂ ” symbol) belongs to this
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Fig. 3. Existence regions of the three sinks, (a) period-7 sink, (b) period-15 sink, (c) period-30 sink, (d) intersection of the existence regions,
(e) enlargement of (d) and positions of points belonging to other regions of coexistence of three sinks

region.
Another region is created at the intersection of two period-30 swallowtails. This happens in the corner between

branches β2 and β3 outside the period-15 swallowtail. In the rhombus shaped region two sinks of period-30 coexist.
For example, the point (a, b) = (1.338035, 0.31053) (plotted with the “ ·�” symbol) belongs to this region. Yet another
region exists in the β2 branch of the period-15 swallowtail, where a period-30 sink looses stability, and a period-60
sink is born via the period-doubling bifurcation. For example, the point (a, b) = (1.33802, 0.31053) plotted with the
“ ·�” symbol is in this region. One may state the hypotheses that there is a sequence of period-doubling bifurcations
located within the β2 branch of the period-15 swallowtail. If this is the case, then there are infinitely many regions
of coexistence of three sinks with periods 7, 15, and 15 · 2n, for n = 0, 1, 2, . . .. We have confirmed this result for
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Table 4. Parameter values with multiple attractors close to a = 1.338, b = 0.3105 and a symbol used to plot the corresponding point in
Fig. 3(e).

a b symbol sinks periods
1.338 0.3105 +× 7, 15, 30
1.338 0.31046 + 7, 15, 15
1.33802 0.31048 ·̂ 7, 15, 30
1.338035 0.31052 ·� 7, 30, 30
1.33802 0.31053 ·� 7, 15, 60
1.33808 0.3106696 × 7, 15, 30

n = 0, 1, 2.
The final interesting region which we describe here is created by the intersection of the γ3 branch of the period-

30 swallowtail and the β2 branch of the period-15 swallowtail. The point (a, b) = (1.33808, 0.3106696) plotted with
the “×” symbol belongs to this region. One can expect that similarly the period-60 structure intersects the period-15
swallowtail, and another region is created.

Using interval methods, we have verified that all periodic orbits listed in Table 4 exist and are stable, with the
exception of the period-60 orbit, for which only the existence has been proved. Here, the Jacobian matrix obtained
has very wide entries, and a rigorous computation of the eigenvalues is not feasible. Naturally, it would be possible
to use higher precision interval arithmetic to prove stability in this case.

3.2. The case a = 1.3562, b = 0.2586

We prove that for a = 1.3562, b = 0.2586 there exist three sinks with periods 7, 18, and 36, respectively. Properties
of the sinks are collected in Table 5.

Table 5. a = 1.3562, b = 0.2586; properties of the sinks

p dself λ1 l1 rε pconv
1 7 0.30898280635909

6 0.12690695459
2 −0.2949 0.000354 5.38%

2 18 0.00786665881184
0 −0.254771933

1 −0.07597 0.000734 32.46%
3 36 0.0001512680908

6 −0.970668
5 −0.000827 0.000295 18.08%

The sinks and their basins of attraction are plotted in Fig. 4. The structure of basins of attraction is similar to the
previous case (compare Figure 2(b)). This time much fewer trajectories (only 5.38%) converge to the period-7 sink.

The existence regions of the period-7, period-18, and period-36 stable periodic orbits obtained using the contin-
uation method are shown in Fig. 5. The situation is similar to the case a = 1.338, b = 0.3105. The main difference
here is that the size of the period-7 region in the area of interest is much smaller. Actually, this is another branch of
the period-7 swallowtail structure discussed earlier (see Fig. 3(a)). Another difference is that the swallowtail struc-
ture is less symmetric. But the explanation for the emergence of three sinks is the same. Part of the swallowtail
structure of the period-18 sink is enclosed in the region of existence of the period-7 sink. One of the period-18 sinks
undergoes the period-doubling bifurcation, and a period-36 sink is born. As in the previous case, other regions with
three sinks in the neighborhood of the swallowtail structure can also be observed.

3.3. The case a = 0.98, b = 0.4415

Using the interval Newton operator, we establish that for a = 0.98, b = 0.4415 there exist three stable periodic orbits
with periods 8, 12, and 20, respectively. Properties of the sinks are collected in Table 6.

The sinks and their basins are shown in Fig. 6(a). Note that the stripes in basin structures are much wider than
in the previous examples. This is related to considerably larger immediate basin size of the period-8 sink.

The existence regions of the period-8, period-12, and period-20 stable periodic orbits obtained using the con-
tinuation method are shown in Fig. 7(a,b,c). Note that the first structure is rather complex. The intersection of the
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Fig. 4. a = 1.3562, b = 0.2586, (a) period-7 sink (+), period-18 sink (�), period-36 sink (×), (b) basins of attraction of the three sinks,
x ∈ [−2, 2], y ∈ [−1, 1]
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Fig. 5. (a) Existence regions of the three sinks around a = 1.3562, b = 0.2586, (b) enlargement of (a)

Table 6. a = 0.98, b = 0.4415; properties of the sinks

p dself λ1 l1 rε pconv
1 8 0.3091793526553

1 −0.892620405456
2 −0.01420 0.00315 5.87%

2 12 0.06905465118017
0 −0.437307936

4 −0.06892 0.00042 6.96%
3 20 0.0210560235670

67 −0.80867677
3 −0.01062 0.000057 63.61%

existence regions is shown in Fig. 7(d). The regions of existence of the sinks are not related as in the previous exam-
ples. They do not have a common border and do not form a common structure like the swallowtail in the previous
examples. Hence, the explanation of the coexistence of three sinks in this example is different; one may say that the
sinks are “independent”.
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Fig. 6. a = 0.98, b = 0.4415, (a) period-8 sink (+), period-12 sink (�), period-20 sink (×), (b) basins of attraction, x ∈ [−2, 2], y ∈ [−1, 1]

Table 7. a = 0.95, b = 0.4795; properties of the sinks

p dself λ1 l1 rε pconv
1 8 0.3631774036926

3 0.77173992057
2 −0.03239 0.002191 6.24%

2 14 0.1577899141785
3 −0.345741481

79 −0.07586 0.0000988 0.69%
3 16 0.003130897235

3 0.9505436
4 −0.00317 0.003155 71.57%

Note that the intersection of the period-12 and period-20 regions is not entirely enclosed in the period-8 region.
Hence, one can expect that there is another region with three sinks located within the intersection of the period-12
and period-20 regions just above the period-8 region. Indeed, we have verified that for a = 0.97842, b = 0.445 there
are three sinks with periods 12, 16, and 20, respectively (compare also Fig. 7(d)). The second sink is created via the
period-doubling bifurcation from the period-8 sink.

One may expect a sequence of period-doubling bifurcations and corresponding period-(8 ·2n) regions. This may
create a finite or infinite sequence of regions with three sinks depending on how wide the period-(8 · 2n) regions are.

3.4. The case a = 0.95, b = 0.4795

Using the interval Newton operator, we prove that for a = 0.95, b = 0.4795 there exist three stable periodic orbits
with periods 8, 14, and 16, respectively. Properties of the sinks are collected in Table 7.

The distances between sinks are collected in Table 8. Note that the sinks are located further away from each
other compared to the previous examples.

The sinks and their basins of attraction are plotted in Fig. 8. Note that only 0.69% of trajectories converge to the
period-14 sink. Its immediate basin size is very small (rε ≈ 0.0000988). Most orbits converge to the period-16 sink
with the largest immediate basin size of rε ≈ 0.003155.

The results on the existence of the sinks obtained using the continuation method are shown in Fig. 9. First, note
that the region of existence of the period-8 sink is the same as the one in Fig. 7(a). The region of existence of the
period-14 sink is very narrow. Finding a point belonging to this region using brute-force computations requires very
fine sampling of the parameter space. Also note that the regions intersect many times and as in the previous example
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Fig. 7. Existence regions of the three sinks around a = 0.98, b = 0.4415, (a) period-8 orbit, (b) period-12 orbit, (c) period-20 orbit, (d)
borders of the existence regions at the intersection

Table 8. a = 0.95, b = 0.4795, distances between sinks

k l dinf(ok, ol) d(ok, ol)
1 2 0.0234358696718

6 0.521438589219
7

1 3 0.144896867606
2 0.85931126235382

0
2 3 0.0875042664186

0 0.7232056609
7

do not have a common border.

3.5. The case a = 0.972, b = 0.4575

In all previous examples, we found three coexisting sinks. For a = 0.972, b = 0.4575, however, we observe two
stable periodic orbits and a third attractor which appears to be chaotic.

Using the interval Newton operator we prove that in this case there exist two stable periodic orbits with periods
12, and 16, respectively. Properties of the attractors are collected in Table 9.

The three numerically observed attractors are shown in Fig. 10. The period-16 attractor looks like a period-8
orbit; its self distance is only dself = 0.004543. The period-12 orbit is located very close to what appears to be a
chaotic attractor.

Using the technique described in Sec. 2.2, we prove that for a = 0.972, b = 0.4575 there are three non-
overlapping trapping regions. For this we used ε–boxes with ε = (2 · 10−5, 2 · 10−5). The trapping regions found
for the period-12 sink, period-16 sink and the third attractor are composed of 9527, 20425, and 320319 ε–boxes,
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Fig. 8. a = 0.95, b = 0.4795, (a) period-8 sink (+), period-14 sink (×), period-16 sink (�), (b) basins of attraction, x ∈ [−2, 2], y ∈ [−1, 1]
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Fig. 9. (a) Existence regions of three sinks around a = 0.95, b = 0.4795, (b) enlargement of (a)

Table 9. a = 0.972, b = 0.4575; properties of the attractors

p dself λ1 l1 rε pconv
1 12 0.0693215779289

6 0.124729295
3 −0.1734 0.000353 5.15%

2 16 0.00288419386
4 0.97226672

0 −0.00175 0.004543 9.37%
3 ∞? 0? 62.44%

respectively. The trapping region for the chaotic attractor is composed of four components. For larger boxes the
method fails; when ε = (10−4, 10−4) the trapping region found for the period-12 orbit encloses both the period-12
orbit and the third attractor.
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Fig. 10. a = 0.972, b = 0.4575, (a) period-12 sink (+), period-16 sink (�), and chaotic (?) attractor (dots), (b) basins of attraction, x ∈ [−2, 2],
y ∈ [−1, 1]

Table 10. a = 0.984, b = 0.433; properties of the attractors

p dself λ1 l1 rε pconv
1 8 0.3068270242286

4 −0.09131039058
5 −0.29918 0.002629 3.56%

2 12 0.0708658171928
6 0.03459488

6 −0.28033 0.000424 6.02%
3 ∞? 0? 66.60%

3.6. The case a = 0.984, b = 0.433

In this case, we also observe two sinks and a (possibly) chaotic attractor. The difference is that the chaotic attractor
now occupies a much smaller area in the state space. Using the interval Newton operator we show that for a = 0.984,
b = 0.433 there exist two stable periodic orbits with periods 8, and 12, respectively. Properties of the attractors are
collected in Table 10.

The attractors are shown in Fig. 11. Again, we can prove that there are three non-overlapping trapping regions
in this case. For this ε–boxes with ε = (2 ·10−6, 2 ·10−6) were used. The trapping regions found for the period-8 sink,
period-12 sink and the third attractor are composed of 1539, 6527, and 193161 ε–boxes, respectively. The trapping
region for the chaotic attractor is composed 20 components. Therefore, one may expect that the attractor is created
by a sequence of period-doubling bifurcations originating from a period-20 sink.

3.7. The case a = 1.044, b = 0.443

In this case, as in two previous cases we also observe two sinks and a (possibly) chaotic attractor. This case is
interesting because we were able to locate many regions with three sinks in its neighborhood.

The attractors and their basins of attraction are plotted in Fig. 12. Not that the attractors are more separated from
each other than in the previous example.

Using the interval Newton operator we prove that for a = 1.044, b = 0.443 there exist two stable periodic orbits
with periods 14 and 32, respectively. Properties of the attractors are collected in Table 11. For the period-32 orbit we
were not able to compute the eigenvalues. Nevertheless, the orbit was proved to be stable using Jury’s criterion.



October 11, 2012 17:38 ijbc12hf

Numerical study of coexisting sinks for the Hénon map 15
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Fig. 11. a = 0.984, b = 0.433, (a) period-8 sink (+), period-12 sink (�), and chaotic (?) attractor (×), (b) basins of attraction, x ∈ [−2, 2],
y ∈ [−1, 1]
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Fig. 12. a = 1.044, b = 0.443, period-12 sink (�), period-32 sink (+) and a chaotic(?) attractor (×), (b) basins of attraction, x ∈ [−2, 2],
y ∈ [−1, 1]

Despite our attempts to use various sizes of ε–boxes, we were not able to prove the existence of a trapping region
enclosing the third attractor. This is perhaps due to its very small basin of attraction, only 0.52% of the computed
trajectories converge to this attractor.
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Table 11. a = 1.044, b = 0.443; properties of the attractors

p dself λ1 l1 rε pconv
1 14 0.1378260412385

3 −0.17662104
1 −0.12384 0.000354 54.08%

2 32 0.000388127246
4 ? −0.21467 0.000057 16.75%

3 ∞? 0.52%

One can expect that the (seemingly) chaotic attractor is created by a sequence of period doubling bifurcations.
If this is the case there could be a parameter region close to a = 1.044, b = 0.443 with three sinks. To confirm this
hypothesis we have carried out a local search for multiple attractors. A number of points in the parameter space with
three coexisting sinks were located. The results are collected in Table 12. For each region with three sinks only one
example is given.

Table 12. Parameter values with three sinks close to a = 1.044, b = 0.443

a b sinks periods
1.04396 0.443 14, 16, 22
1.04396 0.442999 14, 16, 44
1.043914 0.443026 14, 16, 32
1.043908 0.442985 14, 16, 42
1.043922 0.442984 14, 16, 84
1.043902 0.442999 14, 16, 88
1.04397 0.443 14, 22, 32
1.044042 0.443001 14, 22, 64
1.044038 0.442976 14, 32, 42
1.04398 0.443 14, 32, 44
1.044008 0.443 14, 32, 66
1.044066 0.442974 14, 32, 84
1.043994 0.443, 14, 32, 88
1.044096 0.442972 14, 42, 64

We have proved that for a = 1.04396 and b = 0.443 there exist three sinks with periods 14, 16, and 22,
respectively. It is interesting to know that their immediate basin sizes are 2.94 · 10−4, 9.88 · 10−5, and 3.47 · 10−7,
respectively. The extremely small value of the immediate basin size for the third sink might be the reason why it was
not possible to find a trapping region enclosing the chaotic attractor for a = 1.044, b = 0.443. Note that finding a
trapping region for the period-22 orbit for a = 1.04396, b = 0.443 also did not work.

One can see from Table 12 that in a neighborhood of the point a = 1.044, b = 0.443 there are many different
regions with three coexisting sinks. In order to get a better understanding of the relations between these regions, we
have found existence regions of various sinks. The search was performed using the continuation method started at
points from Table 12. The results are shown in Fig. 13. The largest region is the region of existence of period-14
sink. Apart from it there are three structures of parallel stripes. Two of them are very narrow. The widest structure
contains regions of existence of seven sinks. The first three of them are period-16, period-32, and period-64 sinks.
The corresponding existence regions have common borders, which means that period-32 and period-64 sinks are
born by the period-doubling bifurcation. The widest structure contains also four narrow parallel stripes, which are
the regions of existence of period-80, period-48, period-80 and period-64 sinks. Note that these regions are separated
from each other. The second set of parallel stripes (labelled “22”) is almost horizontal. Although it is very narrow
(in fact one can see only a single stripe in the picture), it contains four existence regions. The regions of existence
of period-22, period-44, and period-88 sinks have common borders. The last stripe in this structure is the region of
existence of a period-66 sink, and is separated from other stripes in this structure. The last structure (labelled “42”)
contains regions of existence of period-42 and period-84 sinks.

The intersection of each of the two stripes belonging to the parallel structures described above creates a region
of existence of three sinks. It follows that there are at least 50 (7 · 4 + 7 · 2 + 4 · 2) distinct regions of coexistence of
three sinks shown in Fig. 13. Some examples were already given in Table 12.
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Fig. 13. Existence regions of three sinks around a = 1.044, b = 0.443

Table 13. a = 0.97, b = 0.466; properties of the attractors

p dself λ1 l1 rε pconv
1 8 0.33207896823929

7 −0.896893877538
2 −0.0136 0.00785 12.80%

2 ∞? 0? 55.27%
3 ∞? 0? 8.17%

3.8. The case a = 0.97, b = 0.466

In the previous three cases, two sinks and one (possibly) chaotic attractor were observed. In the present case we have
only one periodic attractor, and two potentially chaotic attractors. The existence of the sink is established using the
interval Newton operator. Properties of the attractors are collected in Table 13. The three attractors and their basins
of attraction are shown in Fig. 14.

Using the technique described in Sec. 2.2, we prove that there are three non-overlapping trapping regions. For
ε = (10−4, 10−4) the trapping regions found for the two chaotic attractors overlap. For ε = (10−5, 10−5), the three
trapping regions do not overlap. They are composed of 8385, 141836, and 805095 ε–boxes, respectively. These
trapping regions are composed of 8, 12, and 4 connected regions respectively. Using ε = (2 · 10−6, 2 · 10−6) gives
trapping regions composed of 9369, 629260, and 225434 boxes. The last trapping region is decomposed into 20
connected components, which is a much finer enclosure of the attractor.

4. Conclusions
In this paper, we have explored a large parameter domain for the Hénon map, and located regions for which there
are (at least) three coexisting attractors. In the strongly dissipative case (b ∈ [0, 0.5]) that we have considered, it is
hard to find sinks due to their small immediate basins of attraction. The attractors were located by an ensemble of
brute-force computations, and later verified by interval analysis and rigorous numerics. This ensures that the reported
sinks are not numerical artifacts, but true mathematical objects. In order to understand the creation (and destruction)
of coexisting sinks, we computed their local existence regions. This provided a clear picture of the local dynamics,
and also suggested other parameter regions where coexisting sinks reside.
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Fig. 14. a = 0.97, b = 0.466, (a) period-8 sink (+), first chaotic(?) attractor (�), second chaotic(?) attractor (×), (b) basins of attraction,
x ∈ [−2, 2], y ∈ [−1, 1]
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