Rigorous parameter estimation
for noisy mixed-effects models

Alexander Danis, Sebastian Ueckert, Andrew Hooker, and Warwick Tucker
Uppsala University
Sweden

February 28, 2011

Abstract

We describe how set—valued techniques can be used to reconstruct
model parameters from noisy data. The main algorithm combines a
branch and bound procedure with a data expansion step. The set—
valued results are transformed into point clouds, after which statistical
properties can be retrieved. We apply the presented method to two
mixed-effects models.

1 Introduction

Finitely parameterized mathematical models are used to describe, explain,
summarize, and predict the behavior of physical, biological, and economical
systems. A parameter estimation problem is a problem of finding a set of
parameter values that makes the model function fit the experimental data.
Incomplete approaches to this problem search for one solution in parameter
space; complete approaches search for all. In this article, we describe a
complete approach — a general-purpose solution strategy based on set—valued
computations and global search algorithms. We begin by describing the basic
computational components which involves set—valued computations, directed
acyclic graphs, constraint propagation, and data expansion. We end the
article with some examples demonstrating the usefulness of the approach.

2 Interval analysis

The foundation of most computer-aided proofs dealing with continuous prob-
lems is the ability to compute with set-valued functions. This not only al-
lows for all rounding errors to be taken into account, but — more impor-
tantly — all discretization errors too. Here, we will briefly describe the fun-
damentals of interval analysis. For a concise reference on this topic, see e.g.

[Moo66, AH83, Neu90).

Let IR denote the set of closed intervals. For any element a € IR, we adopt
the notation a = [a, @], where a,a € R. If is one of the operators +, —, X, =,
we define the arithmetic on elements of IR by

axb={axb:aca,bc b},

except that a = b is undefined if 0 € b. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of
the operands:

a+b

0‘ |

+b,a
—b,a

S

la
=la) o (1)
a xb=|mi (ab,gb, ab, ab), max(ab, ab,ab, ab)]
a-b=ax/[1/b1/b], if0¢b.

Note that the identities (1) reduce to ordinary real arithmetic when the
intervals are thin, i.e., when a = @ and b = b. When computing with finite

precision, however, directed rounding must also be taken into account, see
e.g., [Moo66, MooT79].

A key feature of interval arithmetic is that it is inclusion monotonic, i.e., if
a Cx, and b C y, then
axbCzxxy, (2)

where we demand that 0 ¢ y for division.

One of the main reasons for passing to interval arithmetic is that this ap-
proach provides a simple way of enclosing the range of a function f, denoted
by R(f;D) := {f(z): x € D}. Except for the most trivial cases, classical
mathematics provides few tools to accurately bound the range of a function.
To achieve this latter goal, we extend the real functions to interval functions
which take and return intervals rather than real numbers. Based on (1) we
extend rational functions to their interval versions by simply substituting all
occurrences of the real variable x with the interval variable (and the real

arithmetic operators with their interval counterparts). This produces a ra-
tional interval function F'(x), called the natural interval extension of f. As
long as no singularities are encountered, we have the inclusion

R(f;x) C F(x), (3)

by property (2). In fact, this type of range enclosure can be achieved for
any reasonable function. A higher-dimensional function f: R™ — R can be
extended to an interval function F': IR" — IR in a similar manner. The
function argument is then an interval-vector @ = (x4, ..., x,), which we also
refer to as a boz.

There exist several open source programming packages for interval analysis
[CXS],[INv], [PrB], as well as commercial products such as [SUN].

We will now illustrate the use of interval techniques, with a special emphasis
on parameter estimation problems.

Example 2.1 Consider the model y = f(x;p) = xe™P*, together with the
(ezact) data point (z,y) = (2,1), and search region p = [0,1]. A straight-
forward interval evaluation of the model function yields:

fle;p) = F(2:[0,1]) = 207002 = 2008 = 95 o2, 1] = 20722, (4)

This constrains (at x = 2) the value of the model function (y = 1) to belong
to the interval [2e72,2] ~ [0.27,2], which it does.

Had we chosen p = [1,2] as our search space, we would obtain an inconsis-
tency: 1 & f(2,[1,2]) = [2¢7%,2e72] ~ [0.03,0.27]. This would allow us to
discard the entire set p.

This example illustrates how a divide and conquer approach can be devised.
Starting from a large search space p, we adaptively bisect p into smaller
subsets, many of which we can discard via inconsistency checks.

3 Noise and data expansion

There are multiple sources of uncertainty, e.g. model simplifications, intrin-
sic system sensitivities (that causes unpredictable behavior of the system),
measurement errors, and conversion errors. In some situations, the only in-
formation available regarding a variable can be limited to knowing the range

of its realizable values. In most such cases, the variable’s probability distri-
bution information is lacking, and the uncertainty of the variable is naturally
modeled by specifying an interval enclosing its possible values.

Given a model function y = f(z;p) together with a finite set of noisy
data (z1,71),...,(xn,Un), we will attempt to find parameters that make
the model consistent with the data, i.e., we want to find the set

S={pep: flayp)=yg; foralli=1,... N} (5)

In general, this set will be empty, indicating the presence of noise in the data.
In order to improve matters, we expand each data value into an interval. This
can be done in several ways; assigning a width roughly proportional to the
value g; is a good heuristic choice in many situations:

gi =y = g1+ a[=1,+1]) + f[=1, +1]. (6)

Here « is a scaling factor, and [is a threshold factor, necessary for situations
when |g;| is very small.

The new requirement for consistency is now formulated in terms of more
robust inclusion conditions:

S={pep: f(zyp) €y, foralli=1,... N} (7)

With no data expansion, this reduces to (5). Gradually increasing o (and/or
B) will eventually produce a non-empty set of consistent parameters S. The
amount of expansion necessary to find consistent parameters can in some
cases provide information regarding the level and type of noise present in the
data. We will explore this feature in the examples of Section 5.

Given a partition P = {p,;}/, of the search space p = p, U--- U py, the
consistent parameters can be enclosed as § C S C §, where

S={p; €P: f(xs;p;) Cy, foralli=1,... N},
g:{pJ-EP: flxisp)) Ny, #0foralli=1,...,N}.

The next example displays how interval-valued data can be contracted, using
constraints from both the model function and the search space.

Example 3.1 Repeating the calculations from Example 2.1, with p = [0, 1],
but with the data (x,y) = (2,[1,3]), we can contract the data range according
to

yyN flap) =[1,3]N[2e7%2] = [1,2].

4 Constraint propagation for pedestrians

In this section, we will outline the main ingredients of our parameter estima-
tion procedure. As mentioned in Section 1, our method is global. As such,
it attempts to find all parameters consistent with the data. Of course, when
the data is noisy, there are no consistent parameters, in general. This forces
us to expand the data — a relaxation process that decrease the noisy data
information. Once sufficiently expanded, the set of consistent parameters is
non-empty and bounded. We shrink the bounding set (and the expand data)
by constraint propagation techniques. To be fully effective, these techniques
require that the model function be represented in a special form.

4.1 The DAG representation

We use a directed acyclic graph (DAG) representation of the model func-
tion to automate constraint propagations. This representation captures the
natural way of decomposing a (possibly complicated) function into its basic
building blocks. The graph nodes represent variables, constants or simple
functions, while the edges represent dependencies between them.

Example 4.1 Returning to the model function of Example 2.1, f(x;p) =
xe P* it can be decomposed into the following code list:

ny =

Ny =p

N3 = N1 X Ny
ngy = —N3
ns = e

Ng = N1 X Nj.

This list 1s equivalent to the DAG illustrated in Figure 4.1.

The DAG representation is used to obtain numeric and symbolic information
of the function, such as derivatives, slopes, which are used to obtain good
range evaluations. Information on these matters can be found in [GWOS,
SNO05].

/ ns Ny ns \

nq ne =Y

Figure 1: The DAG representation of a forward sweep of xe™P* — y.

4.2 Constraint propagation on DAGs

To each elementary mathematical operation one associates two operations,
forward and a backward operations. The forward operator evaluates the
range based on the range of its arguments and intersect it with the current
range. The backward operator evaluates the ranges of its predecessors and
intersect it with their current ranges.

Example 4.2 Once more, we will use the model function of FExample 2.1,
f(z;p) = xe . As we saw in Example 4.1, it can be decomposed into a
code list as well as a DAG. We will now show how we can use these objects
to propagate constraints from data to the parameter. Moving backwards in
the code list of Example 4.1, starting from (x,y) = (n1,ng), and ending in
P = ng, we obtain a new code list:

Ny = Ng — N1
ny = logns
ng = —Ny

Nog = N3 — Nq.

This list is equivalent to the DAG illustrated in Figure 4.2.

Thus, viewing a function in terms of its code list or DAG allows us to compute
its formal inverses, without knowing the formulae for these. All we need is the
code list for f. Traversing the list backward produces the desired information.
This is extremely useful for parameter estimation problems, as we illustrate
in the following example.

Uz

Figure 2: The DAG representation of a backward sweep of xe ™% — y.

Example 4.3 Given the model function y = f(x;p) = xe P*, together with
the data (x,y) = (2,1), we can generate, and evaluate the code list of Exam-
ple 4.2:

ns=mng=+n,=1=+2

ng = logns = log%

ng= -—nyg =Ilog2

Ng = N3 — N = %logZ ~ 0.34657359.

The conclusion is that the only parameter that corresponds to the data (z,y) =
(2,1) isp = 2 510g2. Of course, for this simple example, we can find the
explicit mverse p =1 ~log ¥ " which gives the sought result. The point is,
however, that we never use thzs formula; we only use the code list of f.

Continuing Example 3.1, where we have interval-valued data (z,vy), and a
parameter domain p to examine, we can combine the forward and backward
sweeps to contract both y and p.

Example 4.4 Again, we work on the model function y = f(x;p) = ze P*,
but now with the data (z,y) = (2,1, 3]), together with the parameter domain

= [0,1]. The forward sweep, performed in Example 3.1, contracts the
interval data to y = [1,2]. Performing a backward sweep, as in Example 4.3,
contracts the interval parameter to p = [0, 5 log2]:

Ns = Ng — N1 = [] 2 [1]

ng = logns; = log[3,1] = [—log2,0]
ng= -—-ng = [0 og2]

ny =ng <+ ny = 3(0,log 2] ~ [0, 0.34657359].

Note that, in one forward/backward sweep, we managed to exclude over 65%
of the parameter domain, at the same time reducing the data uncertainty by

50%.

In general, we can iterate the procedure of taking forward /backward sweeps,
until no further contraction occurs. In this example, however, we have al-
ready reached the optimal state: for x = 2, there is a one-to-one correspon-
dence between parameters in p = |0, % log 2] and function values in y = [1, 2].

In most cases, the described constraint propagation techniques do not result
in a complete contraction to the optimal state. Rather, a stage is reached
where no further contraction can be obtained, even though there are in-
consistencies present. In order to proceed, some type of partitioning must
be employed. The partitioning can be performed at any node of the DAG.
Great care should be taken to make the split at the most effective place, as
repeated splitting leads to exponential complexity!. Once a node has been
selected for partitioning, its domain is split, resulting in two new DAGs, dif-
fering only in the domain of the split node. Each DAG is updated through
forward /backward sweeps, possibly generating more contraction.

4.3 Data expansion strategy

Search for consistent points by expansion Here we discuss a strategy
to find consistent parameters by alternating contractions and expansions.
The basic idea is to expand data as long as it is detected inconsistent. The
expansions increase the probability of finding consistent parameters. The in-
put to Algorithm 1 is a box ™, a branch and bound procedure BAB, and an
expansion rate r. Its main loop is controled by an inconsistency test based
on the result of BAB. As long as BAB can reduce the current box x to the
empty set, it is reapplied to an expansion of @. The algorithm also adjusts
the expansion to prevent over- and under-expansions. The expansion rate
r is increased if the number of consecutive rejections exceed the parameter
nRejection. If BAB does not find the initial box ™ inconsistent, the algo-
rithm terminates. If BAB finds ™ inconsistent, expansion rate is enabled,
and the rate is larger than a parameter rateMin, then, in order to limit over-
expansion, the rate will be decreased, and the procedure is recursively called
with the last inconsistent box and the decreased expansion rate as input ar-
guments.

LA simple splitting strategy is to select the widest node domain for bisection. Sophis-
ticated splitting strategies make use of monotonicity or contraction information, and can
be a priori or a posteriori; for details see e.g. [CD97, CKDO00).

Algorithm 1: Reject And Expand

Input: Box ™, branch and bound BAB, expansion rate 7.
Output: Output of BAB.

iz 200, =z

2 count < 0

[y

3 while isInconsistentgap(x) do

// increase expansion
4 if adjustEnable and (count > nRejection) then
5 increase 7
6 count <— 0
7 | 20« !
Expand(z?!,r)
count < count + 1
10 | xa

// decrease expansion

11 if adjustEnable and (count > 0) and (r > rateMin) then
12 decrease r
13 RejectAndExpand(x®, BAB, r)

The algorithm operates with any expansion function and without any statis-
tical information of the data. An expansion function should however mimick
known properties of the data perturbations, for instance, if data perturba-
tions are symmetric and dependent on the value of the data, then so should
the expansion.

Expansion of prediction Given that a consistent parameter p* € § for
data y has been found, its images y* = f(x;;p*), i = 1,..., N, provide a
prediction of the noise-free data. The consistent parameter and the data
prediction could be sensitive to noise. To decrease this sensitivity, and at
the same time increase the probability of enclosing the noise-free data, the
data prediction can be expanded to intervals y* that contain the noisy data.
A new search is then performed, this time for all parameters S* that are
consistent with y*. The result of this search is non-empty, seeing that p*
is consistent. A similar but more global strategy to robustify the estimates
involves estimation of noise properties of the data relative to the prediction.

The noise estimates are then used to define the expansion of the prediction.

4.4 Data gridding

In order to extract traditional statistics from the set-valued results, we dis-
cretize the set 8* into a collection of points. Recall the the outcome of our
parameter estimation is a collection of boxes p, ..., p,, whose union $* may
or may not be a connected set. We form the hull of this collection by taking
the smallest box p that contains S. Next, we introduce m equally spaced
nodes along each side of p. This defines a grid of size m? where d is the
dimension of p. From this grid, we discard all nodes that are not sufficiently
close to the set S*. This leaves us with a set of points amenable to statistical
tests.

5 Methods and examples

We demonstrate our method on two mixed-effects models. A mized—effects
model is a model that includes a mixture of fixed and random factors. In the
current setting, we will consider model functions of the form f(¢,p), where
t denotes time, and p'= (p1, p2, p3) is a three-dimensional parameter vector.
In our models, we will introduce the notion of populations. A population
parameter is a parameter that is shared by every individual in the population.
An individual parameter is a parameter that is unique to each individual. In
what follows, we let p; be an individual parameter, whereas p, and p3 act as
population parameters. Thus p; corresponds to a random factor (sampled
from some underlying distribution), whereas py and p3 correspond to fixed
factors.

5.1 Methods

Starting from a given parameter vector j = (pi, p2, p3), we perturb the indi-
vidual parameter according to

pzlzp1+77@ where T}ZNN<0’O-2) (Z:l,,Np) (8)

Here N(a,b) denotes the normal distribution with mean @ and variance b.
This produces N, different parameter vectors p*, ..., p"» (each corresponding
to a different individual), where p* = (p}, pa, p3). For each of the N, subjects,

10

we generate exact data y;; = f(t;;p") for j = 1,..., N,. Next, the exact data
is perturbed relatively, according to

Uij = vij(1+0y), i=1,...,Np, 5 =1,..., Ny, (9)

where, for instance, each 0;; is either a uniform or a normally distributed
random variable. This produces the data set (¢;,9;;), which, together with
the model function, is all information we have.

Given a search region p in parameter space, the goal is to find consistent
model parameters for the entire subject population. To be more precise, we
want to produce N, estimates E(p*) — one for each subject. Our estimation
procedure ensures that these estimates only differ in the parameter p;, and
so from the values E(p}), we will attempt to estimate the distribution of this
parameter according to (8). Given a sufficiently large subject population
(and of course a sufficiently accurate parameter estimation procedure), we
should be able to accurately determine the mean value p(E(p!)) and the
standard deviation ¢ for the parameter p;.

In addition to this, we would like to be able to infer the data perturbation
parameters. In order to find the typical performance of our method, we
repeat the entire estimation process N; = 200 times, and report the average
results.

5.2 Examples

We now present two examples; the first one is well-posed in the sense that
the model system is identifiable. This means that, given sufficient amounts
of unperturbed data, we can reconstruct a unique parameter vector from
the data. The data is sparse however. The second example, however, is not
identifiable. There is an entire continuum of parameters that equally well fit
any amount of unperturbed data. This situation is much harder to deal with
for traditional (not set-valued) parameter estimation methods.

Example 5.1 Consider the following function

y41
f69) = (10)

used to model the growth of orange tree trunks, see [LB90, DS98].

For this specific example, we assume N, = 5 individuals, with Ny = 2
data points per indiwidual at t = 100,1600. The true parameter values are

11

p'=(191.84,8.153, —0.0029). The individual p; parameter is perturbed abso-
lutely with a normal random variable with zero mean and standard deviation
20. The exact data is perturbed relatively with a normal random variable with
zero mean and standard deviation 0.1,0.2, and 0.3. We search in the param-
eter region p = ([0, 300], [0, 9], [—1,0]). The table shows average results from
NONMEM and the set-valued method for Example 5.1, all using N; = 200
trial runs. A table entry contains the pair u(py) u(o) — average estimates of
the distribution parameters for p;.

‘ NONMEM set-valued method
0.1 | 187.9205 (17.94) 198.262 (22.85)
0.2 | 189.8293 (21.39) 192.971 (32.42)
0.3 | 191.2361 (24.22) 187.088 (41.41)

Example 5.2 Consider the following function
fla:p) = e W3PR)T _ gmm(pi+pi)r, (11)

in which the subexpression pa+p3 causes non-identifiability. For this example,
we will use N, = 5 individuals and Ny = 10 data points per individual and
evenly spaced data time points within [1072 1]. The true parameter values
are p = (3,2,1). The individual parameter py is perturbed absolutely by a
normal with zero mean and standard deviation 1. The true data is perturbed
relatively by a uniform with support on [—e, €|, e € {0.1,0.2,0.3}. We search
in the parameter region p = [—100,100]3. The table shows average results of
N; =200 ezperiments for Ezample 5.2. A table entry contains the pair p(p;)
w(o) — average estimates of the distribution parameters for p.

‘ set-valued method
0.1 2.9831 (0.988)
0.2 2.8531 (0.915)
0.3 3.7310 (1.031)

6 Discussion

We have described a method to solve parameter estimation problems for noisy
data. It is a deterministic global search method based on set—valued compu-
tational methods. We gave two examples of population parameter estimation

12

for five individuals. Any number of individuals can be estimated by group-
ing individuals into small groups whose total amount of data excedes the
number of unknown parameters, and then performing averaging over group
estimates. The method can be used for non-identifiable systems. When us-
ing a set-valued method like this, a parameter search domain should be large
enough to includes all possible consistent parameter values. Large search
domains generally require more work than small search domains. However,
often constraint propagation efficiently rejects large inconsistent regions and
estimation time can be quite insensitive to the size of the search domain.
The parameter estimates produced will depend on the amount of noise in
the data. The precision of the estimates can be read off as a measure of how
much the inner and outer parameter solution sets agree. Also, goodness of
fit is a measure of how much the prediction agrees with the original (noisy)
data and any correlation measure is applicable to describe the parameter
estimates. As with any estimator, there are several likely reasons for un-
successful estimations, such as too little data or too much noise in data, or,
having an inappropriate model. A set-valued estimator can be used in model
selection. Here, models can be sorted according to how well they perform
in, for instance, producing identifiable parameter estimates or making good
predictions. The models that perform well are kept and the rest are rejected.

References

[AH83] Goltz Alefeld and Jirgen Herzberger. Introduction to Interval
Computations. 1983.

[CD97] T. Csendes and D.Ratz. Subdivision direction selection in in-
terval methods for global optimization. SIAM J. Numer. Anal.,
34(3):922-938, 1997.

[CKDO00] T. Csendes, R. Klatte, and D.Ratz. A posteriori direction selection
rules for interval optimization methods. Central European Journal
of Operations Research, 8(3):225-236, 2000.

[CXS] CSXC, C++ eXtension for Scientific Computation, version 2.2.3.
Available from http://www.math.uni-wuppertal.de/org/WRST/
xsc/cxsc.htmlh.

[DS98] Norman P. Draper and Harry Smith. Applied Regression Analysis.
John Wiley and Sons, New York, 3rd edition, 1998.

13

[GWOS]

[INV]

[LB9O]

[Moo66]

[Moo79]

[Neu90]

[PrB]

[SNOS]

[SUN]

Andreas Griewank and Andrea Walther. Fvaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation. STAM,
Philadelphia, PA; 2nd edition, 2008.

INTLAB, INTerval LABoratory, version 5.5.
Available from http://www.ti3.tu-harburg.de/\~{}rump/
intlab/.

Mary J. Lindstrom and Douglas M. Bates. Nonlinear mixed effects
models for repeated measures data. Biometrics, 46(3):673-687,
1990.

Ramon E. Moore. Interval analysis. Prentice Hall, Englewood

Cliffs, New Jersey, USA, 1966.

Ramon E. Moore. Methods and Applications of Interval Analysis.
SIAM Studies in Applied Mathematics, Philadelphia, 1979.

Arnold Neumaier. Interval Methods for Systems of FEquations.
Cambridge Univ. Press, 1990.

PROFIL/BIAS, Programmer’s Runtime Optimized Fast Interval
Library / Basic Interval Arithmetic Subroutines, version 2.04.
Available from http://www.ti3.tu-harburg.de/Software/
PROFILEnglisch.html.

Hermann Schichl and Arnold Neumaier. Interval analysis on di-
rected acyclic graphs for global optimization. J. of Global Opti-
mization, 33(4):541-562, 2005.

Forte Developer 7: C++ Interval Arithmetic Programming Refer-
ence.
Available from http://docs.sun.com/app/docs/doc/816-2465.

14

