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Abstract. In this paper we establish sharp invertibility results for the elastostatics and hydro-
statics single and double layer potential type operators acting on Lp(∂Ω), 1 < p < ∞, whenever Ω
is an infinite sector in R

2. This analysis is relevant to the layer potential treatment of a variety of
boundary value problems for the Lamé system of elastostatics and the Stokes system of hydrostatics
in the class of curvilinear polygons in two dimensions, such as the Dirichlet, the Neumann, and
the Regularity problems. Mellin transform techniques are used to identify the critical integrability
indices for which invertibility of these layer potentials fails. Computer-aided proofs are produced
to further study the monotonicity properties of these indices relative to parameters determined by
the aperture of the sector Ω and the differential operator in question.

1. Introduction

Let Ω be a domain in R
n. Some of the classical boundary value problems associated with the

Lamé system in Ω are the Dirichlet, Neumann, and Regularity problems. When these problems are
considered in the Lp(∂Ω) context, 1 < p < ∞, one seeks an elastic field ~u ∈ C2(Ω) such that





L~u = ~0 in Ω,

~u|∂Ω = ~f ∈ Lp(∂Ω),

M(~u) ∈ Lp(∂Ω),

(1.1)

in the case of the Dirichlet problem,




L~u = ~0 in Ω,

∂νA(r)
~u = ~f ∈ Lp(∂Ω),

M(∇~u) ∈ Lp(∂Ω),

(1.2)

in the case of the Neumann problem, and




L~u = ~0 in Ω,

~u|∂Ω = ~f ∈ Lp
1(∂Ω),

M(∇~u) ∈ Lp(∂Ω),

(1.3)
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in the case of the Regularity problem. Here L is the Lamé differential operator from (3.1), ·|∂Ω
denotes the nontangential restriction to the boundary as in (2.3), M denotes the nontangential
maximal operator introduced in (2.5), ∂νA(r)

denotes the conormal derivative from (3.8) and (3.9),

and the Sobolev space of order one, Lp
1(∂Ω), is as in (2.6).

In a similar vein, analogous problems to (1.1)-(1.3) are posed for the linearized, homogeneous,
time independent Navier-Stokes equations, i.e. the Stokes system. They reside in looking for a
velocity field ~u ∈ C2(Ω) and a pressure function p ∈ C1(Ω) such that





△~u = ▽p in Ω,

div ~u = 0 in Ω,

~u|∂Ω = ~f ∈ Lp(∂Ω),

M(~u),M(p) ∈ Lp(∂Ω),

(1.4)

in the case of the Dirichlet problem,




△~u = ▽p in Ω,

div ~u = 0 in Ω,

∂νA(r)
{~u,p} = ~f ∈ Lp(∂Ω),

M(∇~u),M(p) ∈ Lp(∂Ω),

(1.5)

in the case of the Neumann problem, and




△~u = ▽p in Ω,

div ~u = 0 in Ω,

~u|∂Ω = ~f ∈ Lp
1(∂Ω),

M(∇~u),M(p) ∈ Lp(∂Ω),

(1.6)

in the case of the Regularity problem. Here the conormal derivative ∂νA(r)
{~u,p} is as introduced

in (4.269).
Boundary value problems for the Lamé and Stokes systems in non-smooth domains have been

investigated in numerous contexts and the mathematical and engineering literature on these topics is
very ample. Some of the classical references are the monographs by P. Deuring [10], V.D.Kupradze
and collaborators [24], [25], O.A. Ladyzhenskaya [26], and V.G.Maz’ya [31]. The case of the Lamé
system in Lipschitz domains and domains with isolated singularities has been considered by, among
others, C. Bacuta and J. Bramble [3], B. Dahlberg, C. Kenig and G. Verchota [8], [6], [7], J. Lewis
[28], S. Mayboroda and M. Mitrea [29], Maz’ya and collaborators [21], [23], [31], [30], [32], and
Z. Shen [42]. Boundary value problems for the Stokes system in non smooth domains have been
treated by M. Dauge [9], P. Deuring [11], E. Fabes, C. Kenig and G. Verchota [14], R. B. Kellogg and
J.E. Osborn [18], J. Kilty [19], M. Kohr and W. L. Wendland [20], V.G.Maz’ya and collaborators
[21], [22], [23], [31], [30], M. Mitrea and M. Wright [36], and Z. Shen [42], [43].

Considering for instance the Regularity problem, when Ω is a bounded Lipschitz domain in R
n,

n ≥ 3, with connected boundary and p = 2, the well-posedness of the boundary value problem
(1.3) has been studied by B. Dahlberg, C. Kenig and G. Verchota in [8]. Building on the work
in [6], the well-posedness of (1.3) in the class of bounded Lipschitz domains in R

3 was further
investigated by B. Dahlberg and C. Kenig in [7] who showed there exists ε = ε(Ω) > 0, depending
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only on the Lipschitz character of the domain Ω, such that the problem (1.3) is well-posed whenever
p ∈ (1, 2 + ε). This integrability range is sharp in the class of bounded Lipschitz domains in R

3.
The regularity problem (1.6) for the Stokes system in the class of bounded Lipschitz domains in
R
n, n ≥ 3, with connected boundary has been treated by E. Fabes, C. Kenig and G. Verchota in

[14] when p = 2. More recently, as a byproduct of their study of the transmission boundary value
problem for the Stokes system, M. Mitrea and M. Wright established in [36] optimal well-posedness
results for (1.4)-(1.6) in Lipschitz domains with arbitrary topology, in all space dimensions.

The focus of this paper is to establish sharp invertibility results for singular integral operators
naturally associated with problems (1.1)-(1.3) and (1.4)-(1.6), stated in the class of infinite sectors
in two dimensions. Our main result regarding layer potential operators associated with the Lamé
system is:

Theorem 1.1. Let Ω ⊆ R
2 be an infinite sector of aperture θ ∈ (0, 2π), p ∈ (1,∞), and consider

the Lamé system of elastostatics in Ω as in (3.1) with Lamé moduli µ > 0 and λ+µ ≥ 0. Introduce

κ :=
µ+ λ

3µ + λ
∈ [0, 1). (1.7)

Then the following hold:

(A) If κ ∈ (0, 1), there exist

p1(θ, κ) ∈
(
2, 2π−θ

π−θ

)
and p2(θ, κ) ∈

(
2π−θ
π−θ ,∞

)
, if θ ∈ (0, π),

p3(θ, κ) ∈
(

θ
θ−π ,∞

)
and p4(θ, κ) ∈

(
2, θ

θ−π

)
, if θ ∈ (π, 2π),

(1.8)

such that

p1(θ, κ) = p4(2π − θ, κ) and p2(θ, κ) = p3(2π − θ, κ), ∀ θ ∈ (0, π), (1.9)

with the following significance.

(A.1) With SLamé standing for the single layer potential operator in (3.12), there holds

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \ {p1(θ, κ), p2(θ, κ)},
(1.10)

and

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \ {p3(θ, κ), p4(θ, κ)}.
(1.11)

(A.2) With KLamé

Ψ denoting the boundary-to-boundary pseudo-stress double layer potential
operator from (3.28), the operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \ {p′1(θ, κ), p
′
2(θ, κ)},

(1.12)

and the operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \ {p′3(θ, κ), p
′
4(θ, κ)}.

(1.13)

Here for each j ∈ {1, . . . , 4}, p′j(θ, κ) stands for the conjugate exponent of pj(θ, κ).
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(A.3) With ∂νΨ := ∂
∂νΨ

standing for the pseudo-stress conormal derivative from (3.10), and

with DLamé

Ψ denoting the boundary to domain pseudo-stress double layer potential op-
erator from (3.27), one has that

∂νΨD
Lamé

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \ {p1(θ, κ), p2(θ, κ)},
(1.14)

and

∂νΨD
Lamé

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \ {p3(θ, κ), p4(θ, κ)}.
(1.15)

(B) If κ = 0 then:

(B.1) The operator

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \
{
2π−θ
π−θ

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \
{

θ
θ−π

}
.

(1.16)

(B.2) The operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \
{
2π−θ
π

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \
{

θ
π

}
.

(1.17)

(B.3) The operator

∂νΨD
Lamé

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (0, π) if and only if p ∈ (1,∞) \
{
2π−θ
π−θ

}

and when θ ∈ (π, 2π) if and only if p ∈ (1,∞) \
{

θ
θ−π

}
.

(1.18)

(C) For each κ ∈ [0, 1) one has:

(C.1) The operator

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.19)

(C.2) The operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ = π for all p ∈ (1,∞).
(1.20)

(C.3) The operator

∂νΨD
Lamé

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.21)
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Before stating a similar result regarding the hydrostatics layer potential operators, let us consider
the function

f : [0, π] −→ R, f(θ) := sin θ + (2π − θ) · cos θ. (1.22)

A simple differentiation shows that f ′(θ) = −(2π − θ) · sin θ < 0 on (0, π), and consequently f is

strictly decreasing on (0, π). Combined with the fact that f(π/2) = 1 and f(2π/3) =
√
3
2 − 2π

3 < 0,
we obtain that

there exists a unique θo ∈ [0, π] such that sin θo + (2π − θo) · cos θo = 0, (1.23)

and
θo ∈ (π/2, 2π/3). (1.24)

In addition
f(θ) > 0 whenever θ ∈ [0, θo) and f(θ) ≤ 0 whenever θ ∈ [θo, π]. (1.25)

In fact, using a computer-assisted proof (see Lemma 5.3) it can be shown that

θo ∈ [1.78977584927052, 1.78977584927053]. (1.26)

Theorem 1.2. Let Ω ⊆ R
2 be an infinite sector of aperture θ ∈ (0, 2π), p ∈ (1,∞), and recall θo

from (1.23)-(1.25). Then the following hold.

(A) If θ ∈ (0, θo) ∪ (2π − θo, 2π) then there exist p1(θ), p2(θ), p3(θ), p4(θ) ∈ (2,∞) such that

p1(θ) ∈
(
2, 2π−θ

π−θ

)
and p2(θ) ∈

(
2π−θ
π−θ ,∞

)
, if θ ∈ (0, θo),

p3(θ) ∈
(

θ
θ−π ,∞

)
and p4(θ) ∈

(
2, θ

θ−π

)
, if θ ∈ (2π − θo, 2π),

(1.27)

and
p1(θ) = p4(2π − θ) and p2(θ) = p3(2π − θ), ∀ θ ∈ (0, θo), (1.28)

with the following significance.
(A.1) With SStokes standing for the operator in (4.278), there holds

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (0, θo) if and only if p ∈ (1,∞) \ {p1(θ), p2(θ)},
(1.29)

and

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞) \ {p3(θ), p4(θ)}.
(1.30)

(A.2) With KStokes

Ψ denoting the boundary-to-boundary pseudo-stress double layer potential
operator from (4.281), the operators

±1
2I +KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (0, θo) if and only if p ∈ (1,∞) \ {p′1(θ), p
′
2(θ)},

(1.31)

and the operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞) \ {p′3(θ), p
′
4(θ)}.

(1.32)

Here for each j ∈ {1, . . . , 4}, p′j(θ) stands for the conjugate exponent of pj(θ).
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(A.3) With ∂νΨ standing for the pseudo-stress conormal derivative from (4.269)-(4.270), and
with DStokes

Ψ denoting the boundary to domain pseudo-stress double layer potential op-
erator from (4.280), one has that

∂νΨD
Stokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (0, θo) if and only if p ∈ (1,∞) \ {p1(θ), p2(θ)},
(1.33)

and

∂νΨD
Stokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (2π − θo, 2π) if and only if p ∈ (1,∞) \ {p3(θ), p4(θ)}.
(1.34)

(B) If θ ∈ [θo, π) ∪ (π, 2π − θo] then there exist q1(θ), q2(θ) ∈ (2,∞) such that

q1(θ) ∈
(
2, 2π−θ

π−θ

)
if θ ∈ [θo, π),

q2(θ) ∈
(
2, θ

θ−π

)
, if θ ∈ (π, 2π − θo],

(1.35)

and
q1(θ) = q2(2π − θ) ∀ θ ∈ [θo, π), (1.36)

with the following significance.
(B.1) The operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ [θo, π) if and only if p ∈ (1,∞) \ {q1(θ)},
(1.37)

and the operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞) \ {q2(θ)}.
(1.38)

(B.2) The operators

±1
2I +KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ [θo, π) if and only if p ∈ (1,∞) \ {q′1(θ)},
(1.39)

and the operators

±1
2I +KLamé

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞) \ {q′2(θ)}.
(1.40)

Here for each j ∈ {1, 2}, q′j(θ) stands for the conjugate exponent of qj(θ).

(B.3) The operator

∂νΨD
Stokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ [θo, π) if and only if p ∈ (1,∞) \ {q1(θ)},
(1.41)

and the operator

∂νΨD
Stokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ ∈ (π, 2π − θo] if and only if p ∈ (1,∞) \ {q2(θ)}.
(1.42)

(C) One has
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(C.1) The operator

SStokes : Lp(∂Ω) → L̇p
1(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.43)

(C.2) The operators

±1
2I +KStokes

Ψ : Lp(∂Ω) → Lp(∂Ω) are invertible

when θ = π for all p ∈ (1,∞).
(1.44)

(C.3) The operator

∂νΨD
Stokes

Ψ : L̇p
1(∂Ω) → Lp(∂Ω) is invertible

when θ = π for all p ∈ (1,∞).
(1.45)

The methods employed for proving these results are those of pseudo-differential calculus of Mellin
type. This is possible since in the current geometrical setting, that of infinite sectors in two
dimensions, the operators ∂τS

Lamé and ∂τS
Stokes can be identified with Mellin convolution type

operators. The invertibiliy results established for the operators ∂τS
Lamé and ∂τS

Stokes yield in
turn invertibilty results for the operators SLamé and SStokes, and ultimately for the operators,
±1

2I +KLamé

Ψ and ±1
2I +KStokes

Ψ , and ∂νΨD
Lamé

Ψ and ∂νΨD
Stokes

Ψ , via the operator identities (3.265)-
(3.266), for the Lamé system, and (4.307)-(4.308), for the Stokes system.

One novel aspect of this work is the realization that interval analysis techniques and computer-
aided proofs are employed to shed further light on the nature of the critical indices from Theorem 1.1
and Theorem 1.2. The implementation of this mix of Mellin transform techniques and validated
numerics methods is motivated by the fact that the critical indices arise as roots of certain explicit
elementary functions dependent however on parameters related to the geometry of the domain and
the underlying differential operator, θ and κ respectively. The dependence of the roots on θ and κ is
intricate making it difficult to be studied via traditional analytic methods. As such the computer-
aided proofs we produce in the second part of the paper help us elucidate at least partially the
nature of this dependence. Concretely in the case of the Lamé system we have:

Theorem 1.3. Let Ω be an infinite sector of aperture θ ∈ (0, 2π) \ {π}, κ ∈ (0, 1), and recall the
critical indices pi(θ, κ), i ∈ {1, . . . , 4}, from Theorem 1.1. Then, with ε = 10−6 and δ = 10−4, the
following hold

(1) The critical value p1(θ, κ) is increasing in θ and decreasing in κ on [ε, π − ε]× [0, 1 − δ].
(2) The critical value p2(θ, κ) is increasing in θ and increasing in κ on [ε, π − ε]× [0, 1 − δ].
(3) The critical value p3(θ, κ) is decreasing in θ and increasing in κ on [π+ε, 2π−ε]× [0, 1−δ].
(4) The critical value p4(θ, κ) is decreasing in θ and decreasing in κ on [π+ε, 2π−ε]× [0, 1−δ].

The reason for not being able to take ε = δ = 0 in Theorem 1.3 is that the behavior of p1(θ, κ)
ceases to be strictly monotonic if either θ = π or κ = 1 and a similar phenomenon can be observed
for the other critical indices. As our computer-aided proofs are based on set-valued computations,
rounding errors are introduced, and we can therefore only prove strict inequalities. We should stress
that, even though the proof of Theorem 1.3 is computer-aided, it is rigorous in the mathematical
sense (see e.g. [1], [37], [39]).
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Based on (non-rigorous) numerical simulations we conjecture that when κ ∈ [0, 1] there holds

p1(θ, κ) is increasing in θ and decreasing in κ on (0, π) × [0, 1],

p2(θ, κ) is increasing in θ and increasing in κ on (0, π) × [0, 1],

p3(θ, κ) is decreasing in θ and increasing in κ on (π, 2π) × [0, 1],

p4(θ, κ) is decreasing in θ and decreasing in κ on (π, 2π) × [0, 1].

(1.46)

The remainder of the paper has the following format. Section 2 contains basic definitions, a brief
review of the algebra generated by Hardy kernels and the truncated Hilbert transform, and an intro-
duction to the Mellin transform. Section 3 debuts with some background information on the elastic
single layer potential SLamé and in subsection 3.1 we compute the Mellin symbol of the operator
∂τS

Lamé as a key step in the proof of Theorem 1.1, which is presented in subsection 3.2. A key role
in our analysis is played by Lemma 3.7, whose proof relies on a delicate argument by contradiction.
In section 4 we treat the case of the Stokes system where we prove Theorem 1.2. Section 5 contains
in its first part the computer-aided analysis of the critical indices pi(θ, κ), i ∈ {1, . . . , 4} culminat-
ing with the proof of the monotonicity statements made in Theorem 1.3. Subsection 5.1 briefly
discusses relevant computational details of the computer-aided proof approach while subsection 5.3
provides basic background on the interval analysis method.

2. Preliminaries

In this section we introduce basic notation and review known results that are useful for the
remainder of the paper.

Definition 2.1. An open and proper set Ω ⊆ R
2 is called a graph Lipschitz domain provided there

exists a Lipschitz function φ : R → R such that

Ω = {X = (X1,X2) ∈ R
2 : X2 > φ(X1)}. (2.1)

Throughout the paper, given a graph Lipschitz domain Ω ⊆ R
2, we shall introduce the surface

measure σ := H 1⌊∂Ω, where H 1 stands for the 1-dimensional Hausdorff measure in R
2. Also ν

will denote the outward unit normal vector to ∂Ω which exists almost everywhere with respect to
σ. Going further, set Ω+ := Ω and Ω− := R

2 \ Ω (where, given a set E ⊆ R
2, E stands for the

closure of E in R
2). For any P ∈ ∂Ω, introduce the non-tangential approach regions Υ±(P ) with

vertex at P by setting

Υ±(P ) := {X ∈ Ω± : |P −X| < ω dist (X, ∂Ω)}, (2.2)

where ω > 1 is a fixed, sufficiently large constant. The regions defined in (2.2) are then used to
define non-tangential traces on ∂Ω. Specifically, if u± : Ω± → R are sufficiently nice functions we
let

u±
∣∣
∂Ω

(P ) := lim
X∈Υ±(P )

X→P

u±(X), for a.e. P ∈ ∂Ω, (2.3)

and

∂νu±(P ) := 〈ν(P ), (∇u±)
∣∣
∂Ω

(P )〉, for σ-a.e. P ∈ ∂Ω. (2.4)
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Here and elsewhere 〈·, ·〉 stands for the canonical inner product in R
2. Also, we recall the non-

tangential maximal operator M acting on functions u± : Ω± → R which is given at each boundary
point P ∈ ∂Ω by

M(u±)(P ) := sup {|u±(X)| : X ∈ Υ±(P )}. (2.5)

For each 1 < p < ∞, the space Lp(∂Ω) is the Lebesgue space of p-integrable functions on ∂Ω
with respect to the surface measure σ, and we denote by Lp

loc(∂Ω) the local version of this space.
Also let

Lp
1(∂Ω) := {f ∈ Lp(∂Ω) : ∂τf ∈ Lp(∂Ω)}, (2.6)

and
L̇p
1(∂Ω) := {f ∈ Lp

loc(∂Ω) : ∂τf ∈ Lp(∂Ω)}/R, (2.7)

where ∂τ is the tangential derivative along ∂Ω. Here, if [g] ∈ L̇p
1(∂Ω) denotes the equivalence class

of the function g, we set
‖[g]‖L̇p

1 (∂Ω) := ‖∂τg‖Lp(∂Ω). (2.8)

When understood from the context, we shall not distinguish between Lp(∂Ω) and
[
Lp(∂Ω)

]m
with

a similar convention for L̇p
1(∂Ω) and

[
L̇p
1(∂Ω)

]m
, for some m ∈ N. A simple observation is that the

operator (also denoted by ∂τ ) given by

∂τ : L̇p
1(∂Ω) −→ Lp(∂Ω), ∂τ ([f ]) := ∂τf,

is well-defined, linear, bounded and invertible for each p ∈ (1,∞).
(2.9)

Next we shall discuss Hardy kernel operators on Lp(R+), where R+ stands for the set of non-
negative real numbers. We start with the following definition.

Definition 2.2. Let h : R+×R+ → R be a measurable function and assume that 1 ≤ p < ∞. Then
h is called a Hardy kernel for Lp(R+) provided that

(1) h is homogeneous of degree -1, i.e., for each λ > 0 one has h(λs, λt) = λ−1h(s, t);

(2)

∫ ∞

0
|h(1, t)|t−1/p dt

(
=

∫ ∞

0
|h(s, 1)|s1/p−1 ds

)
< ∞.

Furthermore, if m ∈ N, a matrix-valued function h : R+ × R+ → R
m×m, whose entries are mea-

surable is called a Hardy kernel for
[
Lp(R+)

]m
provided that each entry hij , i, j ∈ {1, . . . ,m}, is a

Hardy kernel for Lp(R+).

Fix p ∈ [1,∞) and m ∈ N and assume that h = (hij)i,j∈{1,...,m} is a Hardy kernel for [Lp(R+)]
m.

For any vector-valued function ~f ∈
[
Lp(R+)

]m
, define the action of the operator T , called a Hardy

kernel operator with kernel h, on ~f by setting

T ~f(s) :=

∫ ∞

0
h(s, t) · ~f(t) dt, ∀ s ∈ R+, (2.10)

where · denotes matrix multiplication.
Going further, let f be an infinitely differentiable function with compact support in the interval

[0,∞). Then the Mellin transform of f is defined as

Mf(z) :=

∫ ∞

0
xz−1f(x) dx, z ∈ C. (2.11)
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If f is a measurable function on R+ and the integral in (2.11) converges absolutely for all z in some
strip Γα,β := {z ∈ C : α < Re z < β}, then the integral Mf(z) is called the Mellin transform
of the function f . The strip Γα,β is occasionally referred to as a strip of holomorphy for f . It is
straightforward to see that for each z ∈ C such that z + 1 belongs to a strip of holomorphy for a
function f one has

(Mg)(z) = (Mf)(z + 1), whenever g(t) := tf(t). (2.12)

Finally, if X is a Banach space and T : X → X is a linear and continuous operator, the spectrum
of T acting on X is defined as the set

σ(T ;X ) := {w ∈ C : wI − T is not invertible on X}, (2.13)

where I denotes the identity operator on X . In the above context the spectral radius of the operator
T acting on X is given by

ρ(T ;X ) := sup{|w| : w ∈ σ(T ;X )}. (2.14)

In particular, ρ(T ;X ) is the radius of the smallest closed circular disc centered at the origin con-
taining σ(T ;X ).

The following result found in [4] and [12] allows one to explicitly determine the spectrum of the
operator T (as defined in (2.10)) acting on [Lp(R+)]

m, if its kernel k is a linear combination of
Hardy kernels for [Lp(R+)]

m for some 1 < p < ∞, and the kernel of the Hilbert transform.

Theorem 2.3. Let m ∈ N and assume that h = (hij)i,j∈{1,...,m} is a Hardy kernel for
[
Lp(R+)

]m
for some 1 < p < ∞. Consider M ∈ R

m×m a matrix with real constant entries and let c1, c2 ∈ R

be constants. If an operator T acting on [Lp(R+)]
m is given by

T ~f(s) :=

∫ ∞

0
k(s, t) · ~f(t) dt, a.e. s ∈ R+ and ∀ ~f ∈

[
Lp(R+)

]m
, (2.15)

where

k(s, t) := c1 · h(s, t) +
c2

s− t
·M, ∀ s, t ∈ R+, (2.16)

then T is a linear and bounded operator from [Lp(R+)]
m into itself. Moreover, its spectrum satisfies

σ(T ; [Lp(R+)]
m) =

{
w ∈ C : det(wI −Mk(·, 1))(1/p + iξ) = 0, for some ξ ∈ R

}
, (2.17)

where I is the identity operator and E denotes the closure of the set E ⊆ C.

An immediate corollary of Theorem 2.3 is as follows.

Corollary 2.4. In the context of Theorem 2.3, with c1, c2 ∈ R, and c2 6= 0 and detM 6= 0, the
operator T is invertible on [Lp(R+)]

m, 1 < p < ∞, if and only if the following holds

detMk(·, 1))(1/p + iξ) 6= 0 ∀ ξ ∈ R. (2.18)

Proof. It is clear that T is invertible on [Lp(R+)]
m if and only if 0 6∈ σ(T ; [Lp(R+)]

m). Using the
characterization (2.17) from Theorem 2.3 we obtain that 0 6∈ σ(T ; [Lp(R+)]

m) if and only if 0 is not
a limit point of Λ and 0 6∈ Λ, where

Λ :=
{
w ∈ C : w = detMk(·, 1))(1/p + iξ), for some ξ ∈ R

}
. (2.19)
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First off, the fact that h is a Hardy kernel ensures that the function hp defined by hp(x) := x1/ph(x)
for each x ∈ R+ belongs to L1

∗(R+). Here

L1
∗(R+) :=

{
f : ∂Ω → C : f is measurable and

∫

R+

|f(x)|
dx

x
< ∞

}
. (2.20)

Since the Fourier transform on the Harr group is in fact the Mellin transform, the latter condition
along with a version of the Riemann-Lebesgue lemma in the Harr group context guarantee that

lim
ξ→±∞

det
(
Mh(·, 1)(1/p + iξ)

)
= 0. (2.21)

Combining this with the information that

lim
ξ→±∞

M

(
1

· − 1

)
(1/p + iξ) = −πi, (2.22)

implies that the set of limit points of Λ is {(−c2 · πi)
m · det(M)}. The equality in (2.22) is due to

a straightforward calculation which we omit. Due to our hypotheses we can immediately conclude
that 0 is not a limit point of Λ. All in all this discussion shows that T is invertible on [Lp(R+)]

m

if and only if 0 6∈ Λ, which is precisely (2.18). This completes the proof of the corollary. �

For the remainder of the paper we will refer to Mk as the Mellin symbol of the kernel of the
operator T .

3. The case of the Lamé system

The goal of this section is to investigate invertibility properties of singular integral operators
of single and double layer type associated with the Lamé system on infinite sectors in R

2. After
recalling some notation, in subsection 3.1 we compute the Mellin symbol of the kernel of the
tangential derivative of the elastic single layer potential operator in infinite sectors. In subsection 3.2
we present the proof of Theorem 1.1, the main result regarding the Lamé system.

Start by fixing Ω ⊆ R
2, a graph Lipschitz domain, and denote by L the Lamé differential

operator. Specifically, if ~u = (u1, u2) : Ω → R
2 is a vector-valued function (called displacement)

with components in C2(Ω), the action of L on ~u is given by

L~u := µ∆~u+ (λ+ µ)∇div ~u, (3.1)

where the constants µ and λ are called the Lamé moduli and they satisfy

µ > 0 and λ+ µ ≥ 0. (3.2)

It is straightforward to see that for each r ∈ R, there holds

L~u =

(
µ∆u1 + (λ+ µ)∂1(div ~u)

µ∆u2 + (λ+ µ)∂2(div ~u)

)
=

(
a1ℓij (r)∂i∂juℓ

a2ℓij (r)∂i∂juℓ

)
, (3.3)

where

akℓij (r) := µδijδkℓ + (λ+ µ− r)δikδjℓ + rδiℓδjk, ∀ i, j, k, ℓ ∈ {1, 2}. (3.4)
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Above and throughout the paper we use Einstein’s convention for summation over repeated indices
and δkℓ denotes the Kronecker symbol for k, ℓ ∈ {1, 2}. For each r ∈ R, we shall refer to the
collection

A(r) := (akℓij (r))i,j,k,ℓ∈{1,2} (3.5)

as the tensor of coefficients associated with the writing of L as in (3.3)-(3.4).
Moving on, recall that the classical, radially-symmetric matrix-valued fundamental solution of

the Lamé differential operator GLamé := (GLamé

ij )i,j∈{1,2} is given by (c.f. e.g., [24, formula (9.2) in

Chapter 9] and [34, formula (10.7.1) in Chapter 10])

GLamé

ij (X) := C1δij log |X|2 − C2
XiXj

|X|2
, ∀X = (X1,X2) ∈ R

2 \ {0}, (3.6)

where

C1 :=
3µ + λ

8µ(2µ + λ)π
and C2 :=

µ+ λ

4µ(2µ + λ)π
. (3.7)

In particular LGLamé = δI2×2 as distributions in R
2, where the operator L acts on the columns

of the matrix GLamé, I2×2 is the 2 by 2 identity matrix, and δ is the Dirac-delta distribution with
mass at the origin.

Next, fix r ∈ R and consider the tensor of coefficients A(r) = (akℓij (r))i,j,k,ℓ∈{1,2}, where the

akℓij (r)’s are as in (3.4). Then, given a suitably smooth vector-valued function ~u = (u1, u2) defined

in Ω, the conormal derivative of ~u associated to the choice of tensor of coefficients A(r) is given by

∂~u

∂νA(r)

∣∣∣
∂Ω±

:=

(( ∂~u

∂νA(r)

)1
±
,
( ∂~u

∂νA(r)

)2
±

)
, (3.8)

where, for each j ∈ {1, 2},

(
∂~u

∂νA(r)

)j

±
:= νia

jℓ
ik(r)

(
∂kuℓ

)∣∣∣
∂Ω±

(3.9)

= µ
〈
ν, (∇uj)

∣∣∣
∂Ω±

〉
+ (λ+ µ− r)νj(div ~u)

∣∣∣
∂Ω±

+ rνi(∂jui)
∣∣∣
∂Ω±

.

Above ν = (ν1, ν2) is the outward unit normal vector to ∂Ω and
∣∣∣
∂Ω

denotes non-tangential re-

striction to ∂Ω in the sense of (2.3). The conormal derivative ∂
∂νA(r)

from (3.8)-(3.9) is called the

pseduo-stress conormal derivative, denoted by ∂νΨ, when the value of the parameter r is equal to
µ(λ+ µ)/(3µ + λ), i.e.,

∂

∂νΨ
:=

∂

∂νA(ro)
where ro :=

µ(λ+ µ)

3µ + λ
. (3.10)

Also, when r = µ the conormal derivative ∂
∂νA(r)

from (3.8)-(3.9) is called the traction or stress

conormal derivative.
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Next, define the elastostatics single layer potential operator SLamé, and its boundary version

SLamé acting on a vector-valued function ~f : ∂Ω −→ R
2, ~f =

(
f1
f2

)
, by setting

SLamé ~f(X) :=

∫

∂Ω
GLamé(X −Q) · ~f(Q) dσ(Q), X ∈ R

2 \ ∂Ω, (3.11)

SLamé ~f(X) :=

∫

∂Ω
GLamé(X −Q) · ~f(Q) dσ(Q), X ∈ ∂Ω, (3.12)

where GLamé := (GLamé

ij )i,j∈{1,2} is the fundamental solution from (3.6)-(3.7).
We shall also work with double layer potential operators associated with the differential operator

L from (3.1). Specifically, if r ∈ R is fixed and the tensor of coefficients A(r) = (akℓij (r))i,j,k,ℓ∈{1,2}
is as in (3.4), then the double layer potential operator associated with A(r) is denoted by DLamé

A(r)

and its action on a vector-valued function ~f : ∂Ω −→ R
2 with ~f =

(
f1
f2

)
is given by the formula

DLamé

A(r)
~f(X) :=

∫

∂Ω

[
∂GLamé

∂νA(r)
(X − ·)

]t
(Q) · ~f(Q) dσ(Q), X ∈ R

2 \ ∂Ω, (3.13)

where the conormal derivative ∂
∂νA(r)

is applied to the columns of the fundamental solution GLamé

from (3.6)-(3.7), i.e.,

∂GLamé

∂νA(r)
(X − ·) = −

(
νi(·)a

kℓ
ij (r)(∂jG

Lamé

ℓm )(X − ·)
)
k,m∈{1,2}

, (3.14)

and the superscript t stands for transposition of matrices. The boundary version of DLamé

A(r) is the

operator KLamé

A(r) whose action on ~f as above is defined by setting

KLamé

A(r)
~f(X) = p.v.

∫

∂Ω

[
∂GLamé

∂νA(r)
(X − ·)

]t
(Q) · ~f(Q) dσ(Q), σ − a.e. X ∈ ∂Ω, (3.15)

where p.v. denotes principle value. The formal adjoint of the operator KLamé

A(r) is
(
KLamé

A(r)

)∗
, whose

action on ~f is given by
(
KLamé

A(r)

)∗
~f(X) = −p.v.

∫

∂Ω

[∂GLamé

∂νA(r)
(· −Q)

]
(X) · ~f(Q) dσ(Q), σ − a.e. X ∈ ∂Ω. (3.16)

A basic result which follows from [5] and standard techniques is

Proposition 3.1. Let Ω be a graph Lipschitz domain in R
2, assume that r ∈ R is fixed, and recall

the tensor of coefficients A(r) = (akℓij (r))i,j,k,ℓ∈{1,2} from (3.4). Then, for each p ∈ (1,∞),

(1) There holds

SLamé : Lp(∂Ω) → L̇p
1(∂Ω) is a linear and bounded operator, (3.17)

KLamé

A(r) : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator, (3.18)

(
KLamé

A(r)

)∗
: Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator. (3.19)
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(2) For each ~f ∈ Lp(∂Ω) there holds M
(
DLamé

A(r)
~f
)

∈ Lp(∂Ω). Moreover there exists a finite

constant C > 0 depending only on the Lipschitz character of Ω such that

‖M
(
DLamé

A(r)
~f
)
‖Lp(∂Ω) ≤ C‖~f‖Lp(∂Ω). (3.20)

(3) For every ~f ∈ Lp(∂Ω) there holds

DLamé

A(r)
~f
∣∣∣
∂Ω±

(P ) = (±1
2I +KLamé

A(r) )
~f(P ), σ − a.e. P ∈ ∂Ω. (3.21)

(4) For every ~f ∈ Lp(∂Ω) one has M
(
∇SLamé ~f

)
∈ Lp(∂Ω). Moreover there exists a finite

constant C > 0 depending only on the Lipschitz character of Ω such that

‖M
(
∇SLamé ~f

)
‖Lp(∂Ω) ≤ C‖~f‖Lp(∂Ω). (3.22)

(5) For each ~f ∈ Lp(∂Ω), the single layer satisfies

SLamé ~f
∣∣∣
∂Ω+

= SLamé ~f
∣∣∣
∂Ω−

= SLamé ~f, (3.23)

and

∂τS
Lamé ~f

∣∣∣
∂Ω+

= ∂τS
Lamé ~f

∣∣∣
∂Ω−

= ∂τS
Lamé ~f. (3.24)

Moreover, if
(
∂τS

Lamé
)∗

is the formal adjoint of ∂τS
Lamé, then

(
∂τS

Lamé
)∗

= −SLamé∂τ . (3.25)

(6) For every ~f ∈ Lp(∂Ω) there holds

∂SLamé ~f

∂νA(r)

∣∣∣∣∣
∂Ω±

(P ) =
(
± 1

2I −
(
KLamé

A(r)

)∗ )
~f(P ), σ − a.e. P ∈ ∂Ω. (3.26)

We conclude this section by introducing the notation DLamé

Ψ and KLamé

Ψ for the boundary-to-
domain and boundary-to-boundary double layer potentials associated with the pseudo-stress conor-
mal derivative from (3.10). Concretely we set

DLamé

Ψ := DLamé

A(ro)
, with ro :=

µ(λ+ µ)

3µ + λ
, (3.27)

and

KLamé

Ψ := KLamé

A(ro)
with ro :=

µ(λ+ µ)

3µ+ λ
. (3.28)

3.1. The Mellin symbol matrix of ∂τS
Lamé. The main goal of this subsection is to explicitly

compute the matrix of Mellin symbols of the operator ∂τS
Lamé on infinite angles in R

2. Specifically,
we shall assume that Ω is the infinite sector in R

2 of aperture θ ∈ (0, 2π) that is the upper-graph
of the Lipschitz function φ : R → R given by

φ(x) := |x| cot(θ/2), x ∈ R. (3.29)

Recall the matrix-valued fundamental solution GLamé = (GLamé

ij )i,j∈{1,2} of the Lamé system of

elastostatics (3.1) from (3.6)-(3.7) and the single layer potential operator SLamé from (3.12). In the
following lemma we compute the formula for the kernel of the operator ∂τS

Lamé.
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Lemma 3.2. Let θ ∈ (0, 2π) and assume that Ω ⊆ R
2 is the upper-graph of the function φ : R → R

from (3.29). Then for each ~f : ∂Ω → R
2 such that ~f ∈ Lp(∂Ω) for some p ∈ (1,∞), there holds

(∂τS
Lamé ~f)(X) =

∫

∂Ω
k(X,Q) · ~f(Q) dσ(Q), ∀X ∈ ∂Ω and X 6= 0, (3.30)

with

k(X,Q) :=




A11(X,Q) A12(X,Q)

A21(X,Q) A22(X,Q)


 , ∀X,Q ∈ ∂Ω, X 6= Q and X 6= 0, (3.31)

where the functions

Aij : ∂Ω× ∂Ω \
(
diag(∂Ω) ∪

(
{0} × ∂Ω

))
−→ R, i, j ∈ {1, 2}, (3.32)

are as described below. Specifically, if the point X = (X1,X2) ∈ ∂Ω is such that X 6= 0 and
Q = (Q1, Q2) ∈ ∂Ω, Q 6= X, then with the vector ν(X) = (ν1(X), ν2(X)) denoting the outward unit
normal to ∂Ω at the point X, one has

A11(X,Q) := −2ν2(X)

{
(C1 − C2)

X1 −Q1

|X −Q|2
+ C2

(X1 −Q1)
3

|X −Q|4

}
(3.33)

+2ν1(X)

{
C1

X2 −Q2

|X −Q|2
+C2

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}
,

A12(X,Q) := −C2ν2(X)

{
−
X2 −Q2

|X −Q|2
+ 2

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}
(3.34)

+C2ν1(X)

{
−
X1 −Q1

|X −Q|2
+ 2

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

}
,

A21(X,Q) := −C2ν2(X)

{
−
X2 −Q2

|X −Q|2
+ 2

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}
(3.35)

+C2ν1(X)

{
−
X1 −Q1

|X −Q|2
+ 2

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

}
,

and

A22(X −Q) := −2ν2(X)

{
C1

X1 −Q1

|X −Q|2
+ C2

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

)
(3.36)

+2ν1(X)

{
(C1 − C2)

X2 −Q2

|X −Q|2
+C2

(X2 −Q2)
3

|X −Q|4

}
.

Proof. Fix p ∈ (1,∞) and assume that ~f ∈ Lp(∂Ω). Using the Lebesgue dominated convergence
theorem we may write

∂τS
Lamé ~f(X) =

∫

∂Ω
∂τ(X)[G

Lamé(X −Q)] · ~f(Q) dσ(Q), ∀X ∈ ∂Ω \ {0}. (3.37)
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Thus (3.30) holds with

k(X,Q) =




∂τ(X)[G
Lamé

11 (X −Q)] ∂τ(X)[G
Lamé

12 (X −Q)]

∂τ(X)[G
Lamé

21 (X −Q)] ∂τ(X)[G
Lamé

22 (X −Q)]


 , (3.38)

for any X,Q ∈ ∂Ω satisfying X 6= Q and X 6= 0.
To finish the proof, there remains to show that

∂τ(X)[G
Lamé

ij (X −Q)] = Aij(X,Q),

∀ i, j ∈ {1, 2} and ∀X,Q ∈ ∂Ω satisfying X 6= Q and X 6= 0.
(3.39)

With this goal in mind fix i, j ∈ {1, 2} and let ν(X) = (ν1(X), ν2(X)) be the outward unit normal
vector at X ∈ ∂Ω, X 6= 0. Then τ(X) = (−ν2(X), ν1(X)) and consequently

∂τ(X)[G
Lamé

ij (X −Q)] =
〈
τ(X), (∇GLamé

ij )(X −Q)
〉

(3.40)

= −ν2(X)(∂1G
Lamé

ij )(X −Q) + ν1(X)(∂2G
Lamé

ij )(X −Q).

Furthermore straightforward calculations based on (3.6)-(3.7) give that wheneverX = (X1,X2) 6= 0

there holds

(∂1G
Lamé

ij )(X) = 2C1δij
X1

|X|2
− C2

δi1Xj + δ1jXi

|X|2
+ 2C2

XiXjX1

|X|4
, (3.41)

(∂2G
Lamé

ij )(X) = 2C1δij
X2

|X|2
− C2

δi2Xj + δ2jXi

|X|2
+ 2C2

XiXjX2

|X|4
. (3.42)

Then (3.39) follows from (3.40) and (3.41)-(3.42), completing the proof of the lemma. �

Going further, if θ ∈ (0, 2π) and Ω is as in the hypothesis of Lemma 3.2 in what follows we shall
denote by (∂Ω)1 and (∂Ω)2 the left and the right side of the (infinite) angle ∂Ω, respectively. Hence

(∂Ω)1 =
{
(−s sin θ

2 , s cos
θ
2) : s ∈ R+

}
and (∂Ω)2 =

{
(s sin θ

2 , s cos
θ
2) : s ∈ R+

}
. (3.43)

Next observe that one can naturally identify the sides (∂Ω)j for j = 1, 2 with R+ via the mapping
(∂Ω)j ∋ P 7→ |P | ∈ R+. Based on this for each p ∈ [1,∞), Lp(∂Ω) can be identified with
Lp(R+)⊕Lp(R+). In turn, in the view of these identifications the kernel k from (3.31) with entries
(3.33)-(3.36) can be regarded as a kernel on R+ × R+. Specifically k(·, ·) on ∂Ω × ∂Ω shall be

identified with the following 4× 4 kernel matrix k̃ : R+ × R+ → R
4×4 given by

k̃(s, t) =




k̃1111(s, t) k̃1112(s, t) k̃1211(s, t) k̃1212(s, t)

k̃1121(s, t) k̃1122(s, t) k̃1221(s, t) k̃1222(s, t)

k̃2111(s, t) k̃2112(s, t) k̃2211(s, t) k̃2212(s, t)

k̃2121(s, t) k̃2122(s, t) k̃2221(s, t) k̃2222(s, t)




, (3.44)
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where using notation introduced in Lemma 3.2, for each i, j ∈ {1, 2} one has

k̃11ij (s, t) = Aij

(
(−s sin θ

2 , s cos
θ
2), (−t sin θ

2 , t cos
θ
2)
)
, (3.45)

k̃12ij (s, t) = Aij

(
(−s sin θ

2 , s cos
θ
2), (t sin

θ
2 , t cos

θ
2)
)
, (3.46)

k̃21ij (s, t) = Aij

(
(s sin θ

2 , s cos
θ
2), (−t sin θ

2 , t cos
θ
2)
)
, (3.47)

k̃22ij (s, t) = Aij

(
(s sin θ

2 , s cos
θ
2), (t sin

θ
2 , t cos

θ
2 )
)
. (3.48)

Indeed, if i, j ∈ {1, 2} and X and Q are such that X,Q ∈ ∂Ω and |X| = s ∈ R+ and |Q| = t ∈ R+,
then

k̃11ij (s, t) = Aij(X,Q), if X,Q ∈ (∂Ω)1,

k̃12ij (s, t) = Aij(X,Q), if X ∈ (∂Ω)1 and Q ∈ (∂Ω)2,

k̃21ij (s, t) = Aij(X,Q), if X ∈ (∂Ω)2 and Q ∈ (∂Ω)1,

k̃22ij (s, t) = Aij(X,Q), if X,Q ∈ (∂Ω)2,

(3.49)

from which (3.45)-(3.48) immediately follow.

Our next result establishes an explicit formula and useful properties for the kernel k̃ introduced
in (3.44), with entries as in (3.45)-(3.48).

Lemma 3.3. Let θ ∈ (0, 2π), C1 ∈ (0,∞), C2 ∈ [0,∞), and consider the kernel k̃ : R+×R+ → R
4×4

introduced in (3.44), with entries given in (3.45)-(3.48). Then, for each s ∈ R+ and t ∈ R+ there
holds

k̃(s, t) =




−
2C1

s− t
0 −A(s, t) B(s, t)

0 −
2C1

s− t
B(s, t) −C(s, t)

A(s, t) B(s, t)
2C1

s− t
0

B(s, t) C(s, t) 0
2C1

s− t




, (3.50)

where the functions A,B,C : R+ × R+ → R are given by

A(s, t) := 2 ·
C1(s − t cos θ)− C2(s + t) sin2(θ2)

s2 − 2st cos θ + t2
(3.51)

+2C2 ·
sin2(θ2 )(s+ t)2(s− t cos θ)

(s2 − 2st cos θ + t2)2
,

B(s, t) := −C2 ·
s sin θ

s2 − 2st cos θ + t2
(3.52)

+C2 ·
(s2 − t2)(s− t cos θ) sin θ

(s2 − 2st cos θ + t2)2
,
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and

C(s, t) := 2 ·
C1(s− t cos θ)− C2(s− t) cos2(θ2)

s2 − 2st cos θ + t2
(3.53)

+2C2 ·
cos2(θ2)(s − t)2(s− t cos θ)

(s2 − 2st cos θ + t2)2
.

In addition,

k̃(s, t) = h(s, t) +
2C1

s− t
·




−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




, (3.54)

where h : R+ × R+ → R
4×4 given by

h(s, t) :=




0 0 −A(s, t) B(s, t)

0 0 B(s, t) −C(s, t)

A(s, t) B(s, t) 0 0

B(s, t) C(s, t) 0 0




, ∀ s, t ∈ R+, (3.55)

is a Hardy kernel for [Lp(R+) ⊕ Lp(R+)]
2 ≡ [Lp(R+)]

4 in the sense that each of the entries in its
matrix is a Hardy kernel operator for Lp(R+).

Proof. Fix s, t ∈ R+ and let X,Q ∈ ∂Ω be such that s = |X| and t = |Q|. If X,Q ∈ (∂Ω)1, there
holds

X =
(
−s sin θ

2 , s cos
θ
2

)
and Q =

(
−t sin θ

2 , t cos
θ
2

)
, (3.56)

and

ν(X) =
(
− cos θ

2 ,− sin θ
2

)
. (3.57)

Appealing to (3.56), (3.33)-(3.36) and (3.49), straightforward calculations give

k̃11(s, t) :=

(
k̃1111(s, t) k̃1112(s, t)

k̃1121(s, t) k̃1122(s, t)

)
= −

2C1

s− t
· I2×2. (3.58)

Consider next the case when X ∈ (∂Ω)1, Q ∈ (∂Ω)2. Then,

X =
(
−s sin θ

2 , s cos
θ
2

)
and Q =

(
t sin θ

2 , t cos
θ
2

)
, (3.59)

and ν(X) is as in (3.57). Based on this, (3.59), (3.33)-(3.36), and (3.49) we may write

k̃12(s, t) :=

(
k̃1211(s, t) k̃1212(s, t)

k̃1221(s, t) k̃1222(s, t)

)
=

(
−A(s, t) B(s, t)

B(s, t) −C(s, t)

)
, (3.60)

where A(s, t), B(s, t) and C(s, t) are as in (3.51), (3.52) and (3.53), respectively.
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Moving on, when X ∈ (∂Ω)2 and Q ∈ (∂Ω)1 we have

X =
(
s sin θ

2 , s cos
θ
2

)
and Q =

(
−t sin θ

2 , t cos
θ
2

)
, (3.61)

and

ν(X) =
(
cos θ

2 ,− sin θ
2

)
. (3.62)

Thus, algebraic manipulations based on (3.61)-(3.62), (3.33)-(3.36), (3.49) and (3.51)-(3.53) give

k̃21(s, t) :=

(
k̃2111(s, t) k̃2112(s, t)

k̃2121(s, t) k̃2122(s, t)

)
=

(
A(s, t) B(s, t)

B(s, t) C(s, t)

)
. (3.63)

Next we shall consider the scenario where X,Q ∈ (∂Ω)2. Then

X =
(
s sin θ

2 , s cos
θ
2

)
and Q =

(
t sin θ

2 , t cos
θ
2

)
, (3.64)

and ν(X) is as in (3.62). This, (3.64), (3.33)-(3.36), (3.49), and straightforward algebra yield

k̃22(s, t) :=

(
k̃2211(s, t) k̃2212(s, t)

k̃2221(s, t) k̃2222(s, t)

)
=

2C1

s− t
· I2×2. (3.65)

Combining (3.58), (3.60), (3.63) and (3.65) immediately gives (3.50), as desired.
Turning our attention to proving the last statement in the lemma, notice that on grounds of

(3.50), the formula (3.54) holds with h as in (3.55). Thus, it remains to establish that the function
h : R+ × R+ → R

4×4 given in (3.55) is a Hardy kernel for [Lp(R+)]
4, or equivalently that each of

the functions A, B, C given in (3.51)-(3.53) is a Hardy kernel for Lp(R+). With this goal in mind,
we start with the observation that, based on (3.51)-(3.53), the functions A,B,C are homogeneous
of degree −1. In addition, note that

1− 2t cos θ + t2 6= 0 for any θ ∈ (0, 2π) and any t ∈ R+. (3.66)

Indeed, since 1− 2t cos θ + t2 = (t− cos θ)2 + sin2 θ ≥ sin2 θ then (3.66) follows immediately when
θ 6= π. When θ = π the expression 1 − 2t cos θ + t2 becomes (t+ 1)2, which is > 0 for t ∈ R+. In
particular, (3.66) in concert with (3.51)-(3.53) yield

A(1, ·), B(1, ·), and C(1, ·) are continuous functions on [0,∞), (3.67)

and

|A(1, t)|, |B(1, t)|, and |C(1, t)| are O
(1
t

)
as t → ∞. (3.68)

From (3.67) and (3.68) it easily follows that for each p ∈ (1,∞) one has

max
{∫ ∞

0
|A(1, t)|t−1/p dt,

∫ ∞

0
|B(1, t)|t−1/p dt,

∫ ∞

0
|C(1, t)|t−1/p dt

}
< ∞, (3.69)

and consequently A, B, and C are Hardy kernels for Lp(R+) in the sense of Definition 2.2. The
proof of the lemma is now complete.

�
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Lemma 3.4. Consider θ ∈ (0, 2π), C1 ∈ (0,∞), C2 ∈ [0,∞), and assume that the function

k̃ : R+ × R+ → R
4×4 is as introduced in (3.44), with its entries given in (3.45)-(3.48). Then, for

each z ∈ C with the property that Re z ∈ (0, 1) there holds

M(k̃(·, 1))(z) :=




−v(z) 0 −a(z) b(z)

0 −v(z) b(z) −c(z)

a(z) b(z) v(z) 0

b(z) c(z) 0 v(z)




, (3.70)

where, with γ := π − θ and the constants C1, C2 as in (3.7),

v(z) := −2C1π ·
cos(πz)

sin(πz)
, (3.71)

a(z) := −
2C1π

sin(πz)
cos(γz + θ) +

C2π(z − 1) sin θ

sin(πz)
sin(γz + θ), (3.72)

b(z) := −
C2π(z − 1) sin θ

sin(πz)
cos(γz + θ), (3.73)

c(z) := −
2C1π

sin(πz)
cos(γz + θ)−

C2π(z − 1) sin θ

sin(πz)
sin(γz + θ). (3.74)

Proof. Fix θ ∈ (0, 2π) \ {π}, pick a complex number z ∈ C satisfying Re z ∈ (0, 1), and consider
the functions g, h : R+ −→ R given by

g(s) :=
1

s2 − 2s cos θ + 1
and h(s) := sg(s), ∀ s ∈ R+. (3.75)

Using (3.66) we have that g, h ∈ C(R+) and elementary calculations give

h′(s) =
1− s2

(s2 − 2s cos θ + 1)2
, ∀ s ∈ R+. (3.76)

Based on (3.75)-(3.76) and (3.51)-(3.53), we obtain that for each s ∈ R+ there holds

A(s, 1) = 2C1(s− cos θ)g(s)− 2C2(1 + cos θ) sin2(θ2)h
′(s), (3.77)

B(s, 1) = −C2 sin θ
(
sg(s) + (s− cos θ)h′(s)

)
, (3.78)

and

C(s, 1) = 2C1(s− cos θ)g(s) + 2C2(1− cos θ) cos2(θ2 )h
′(s). (3.79)

Using (3.50) and (3.77)-(3.79) we may therefore write

k̃(s, 1) =




−V (s, 1) 0 −A(s, 1) B(s, 1)

0 −V (s, 1) B(s, 1) −C(s, 1)

A(s, 1) B(s, 1) V (s, 1) 0

B(s, 1) C(s, 1) 0 V (s, 1)




, ∀ s ∈ R+ \ {1}, (3.80)



INVERTIBILITY PROPERTIES OF SIO’S ASSOCIATED WITH THE LAMÉ AND STOKES SYSTEMS21

where

V (s, 1) :=
2C1

s− 1
, ∀ s ∈ R+ \ {1}. (3.81)

The next step is to compute the Mellin transform of each of the entries in the matrix in (3.80)
at the point z. Employing formula 2.12 on p.14 in [40] (recall that Re z ∈ (0, 1)) and (3.71) we get

M(V (·, 1))(z) = −2C1π cot(πz) = v(z). (3.82)

Next, based on (3.77)-(3.79) and (3.75), we also have

M(A(·, 1))(z) = 2C1 · Mh(z) − 2C1 cos θ ·Mg(z) (3.83)

−2C2(1 + cos θ) sin2(θ2) ·Mh′(z),

M(B(·, 1))(z) = −C2 sin θ ·
(
Mh(z) +Mh′(z + 1)− cos θ · Mh′(z)

)
, (3.84)

and

M(C(·, 1))(z) = 2C1 · Mh(z)− 2C1 cos θ · Mg(z) (3.85)

+2C2(1− cos θ) cos2(θ2 ) · Mh′(z).

Going further, our goal is to compute Mg(z), Mh(z), Mh′(z), Mh′(z + 1), and the value of
Mh(z) − cos θ · Mg(z). First, employing formula 2.54 on p.23 in [40] (this requires Re z ∈ (0, 2)
and θ ∈ (0, 2π), conditions that are satisfied in the current setting) we have

Mg(z) = π csc θ · csc(πz) · sin[(π − θ)z + θ] = π ·
sin(γz + θ)

sin θ · sin(πz)
, (3.86)

where γ := π − θ. Also, formula 1.3 on p.11 in [40] and formula (3.86) (the latter applied for z + 1
which still satisfies Re(z + 1) ∈ (0, 2) as required) give that

Mh(z) = Mg(z + 1) = π csc θ · csc(πz) · sin[(π − θ)z] = π ·
sin(γz)

sin θ · sin(πz)
. (3.87)

Based on (3.86) and (3.87) we obtain

Mh(z)− cos θ · Mg(z) =
π

sin θ · sin(πz)
·
(
sin(γz) − cos θ · sin(γz + θ)

)
(3.88)

= −π ·
cos(γz + θ)

sin(πz)
,

where the last equality above follows from the elementary identity sin(γz) − cos θ · sin(γz + θ) =
− sin θ · cos(γz + θ).

Moving on, based on the definition of the function h from (3.75) it is straightforward to check
that

lim
s→0+

sz−1h(s) = 0 and lim
s→∞

sz−1h(s) = 0

whenever z ∈ C satisfies Re z ∈ (0, 3).
(3.89)
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In turn, (3.89), formula 1.9 on p.11 in [40] (which requires the properties in (3.89)), and the first
identity in (3.87) guarantee that

Mh′(z) = −(z − 1) ·Mh(z − 1) = −(z − 1) · Mg(z). (3.90)

Combining this with (3.86) yields

Mh′(z) = −π(z − 1) ·
sin(γz + θ)

sin θ · sin(πz)
. (3.91)

Next, appealing again to (3.89) and formula 1.9 on p.11 in [40], this time with z + 1 in place of z
(note that in our setting the condition Re(z + 1) ∈ (0, 3) is still satisfied), we deduce that

Mh′(z + 1) = −z ·Mh(z) = −zπ · csc θ · csc(πz) · sin[(π − θ)z] (3.92)

= −zπ ·
sin(γz)

sin θ · sin(πz)
.

Having established (3.86), (3.87), (3.88), (3.91) and (3.92), these identities in combination with
(3.83)-(3.85) give that

M(A(·, 1))(z) = a(z), M(B(·, 1))(z) = b(z), M(C(·, 1))(z) = c(z), (3.93)

where a, b, c are as in (3.72)-(3.74). Thus, the conclusion (3.70) of the lemma holds whenever
θ ∈ (0, 2π) \ {π}.

There remains to treat the case when θ = π and to this end we start by picking z ∈ C with
Re z ∈ (0, 1). In this scenario, on the one hand (3.77)-(3.79) give that

A(s, 1) = C(s, 1) =
2C1

s+ 1
and B(s, 1) = 0, ∀ s ∈ R+. (3.94)

On the other hand, thanks to (3.72)-(3.74) and the fact that θ = π, we obtain that

a(z) = c(z) =
2C1π

sin(πz)
and b(z) = 0. (3.95)

Then the identities in (3.93) continue to hold, since due to formula 2.4 on p.13 in [40] one has

M
( 1

·+ 1

)
(z) =

π

sin(πz)
whenever z ∈ C satisfies Re z ∈ (0, 1). (3.96)

The proof of the lemma is now complete. �

The next result will be useful in computing the determinant of the matrix in (3.70).

Lemma 3.5. Let n ∈ N and assume that M,N,S, T are n × n matrices with complex entries
satisfying the property that MS = SM . Then

det




M N

S T


 = det (MT − SN). (3.97)

Proof. Assume first that the matrix M is invertible and denote by M−1 its inverse. Then, with O
standing for the n× n matrix with zero entries, we clearly have

det

(
I O

SM−1 −I

)
= (−1)n, (3.98)
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and
(

I O

SM−1 −I

)
·

(
M N

S T

)
=

(
M N

O SM−1N − T

)
. (3.99)

Thus, taking the determinant in each side of (3.99) and using (3.98), we obtain

(−1)n · det

(
M N

S T

)
= detM · det (SM−1N − T ) (3.100)

= det (MSM−1N −MT )

= (−1)n · det(MT − SN),

where, in the last equality above, we have used that MS = SM . From (3.100) the identity (3.97)
easily follows.

The case when the matrix M is not invertible follows from the fact that the set of invertible
matrices is a dense subset of the set of n × n matrices with complex entries. Indeed, for M as in
the hypothesis and for each t ∈ C introduce

Mt := M + tIn×n. (3.101)

Then detMt = det(M + tIn×n) = pM(t), where pM is a polynomial of degree n in the variable
t ∈ C. Consequently, there exist disjoint values ℓ1, . . . , ℓN ∈ C with N ≤ n such that pM (t) = 0 if
and only if t ∈ {ℓ1, . . . , ℓN} and as such

Mt is invertible for each t ∈ C \ {ℓ1, . . . , ℓN}. (3.102)

Next, consider a sequence {tj}j∈N satisfying

{tj}j∈N ⊆ C \ {ℓ1, . . . , ℓN} and lim
j→∞

tj = 0. (3.103)

From the first part of (3.103) and (3.102) we obtain that Mtj is an invertible matrix for each j ∈ N.
Using this and the fact that SMtj = MtjS for each j ∈ N (an immediate consequence of the fact
that S and M commute and the definition of Mt), based on the first part of the proof we may
therefore write

det

(
Mtj N

S T

)
= det(MtjT − SN). (3.104)

Finally, using (3.104) and the continuity of the determinant function the desired equality (3.97)
then follows. ✷

Corollary 3.6. Let θ ∈ (0, 2π), C1 ∈ (0,∞) and C2 ∈ [0,∞), and recall the function k̃ from (3.44)
with entries as in (3.45)-(3.48) where for each i, j ∈ {1, 2} the functions Aij are as in (3.33)-(3.36).

Then z ∈ C with the property that Re z ∈ (0, 1) satisfies detM(k̃(·, 1))(z) = 0 if and only if one of
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the following identities holds

κ(z − 1) sin θ = sin[(2π − θ)(z − 1)], (3.105)

κ(z − 1) sin θ = − sin[(2π − θ)(z − 1)], (3.106)

κ(z − 1) sin θ = sin[θ(z − 1)], (3.107)

κ(z − 1) sin θ = − sin[θ(z − 1)], (3.108)

where

κ :=
C2

2C1
. (3.109)

Proof. Fix z ∈ C such that Re z ∈ (0, 1). In light of (3.70) from Lemma 3.4 and Lemma 3.5, applied

for the choice of matrices M := −v(z) · I2×2, N :=

(
−a(z) b(z)

b(z) −c(z)

)
, S :=

(
a(z) b(z)

b(z) c(z)

)
and

T := v(z)·I2×2, with v(z), a(z), b(z) and c(z) as in (3.71)-(3.74), elementary algebraic manipulations
give that

det (M(k̃(·, 1))(z) = det

(
−v2(z) + a2(z) − b2(z) −b(z)

[
a(z)− c(z)

]

b(z)
[
a(z) − c(z)

]
−v2(z) − b2(z) + c2(z)

)
. (3.110)

Thus

det (M(k̃(·, 1))(z) =
[
−v2(z) + a2(z)− b2(z)

][
−v2(z)− b2(z) + c2(z)

]
(3.111)

+b2(z)
[
a(z)− c(z)

]2

=
[
v2(z) + b2(z)− a(z)c(z)

]2
− v2(z)

[
a(z)− c(z)

]2
,

where the last equality follows from straightforward algebra. Using (3.111) we can therefore con-
clude that

det(M(k̃(·, 1))(z) = 0 if and only if v2(z) + b2(z)− a(z)c(z) = ±v(z)
[
a(z)− c(z)

]
. (3.112)

Next, due to (3.72) and (3.74) there holds

a(z)c(z) =
π2

sin2(πz)
·
[
4C2

1 · cos2(γz + θ)− C2
2 · (z − 1)2 · sin2 θ · sin2(γz + θ)

]
, (3.113)

where as before γ := π − θ. In turn, (3.113) combined with (3.71) and (3.73) gives that

v2(z)+b2(z)−a(z)c(z) =
π2

sin2(πz)
·
[
4C2

1 ·
(
cos2(πz)−cos2(γz+θ)

)
+C2

2 · (z−1)2 · sin2 θ
]
, (3.114)

and

v(z)[a(z) − c(z)] = −
4C1C2π

2

sin2(πz)
· (z − 1) · cos(πz) · sin θ · sin(γz + θ). (3.115)
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Next, based on the Pythagorean Theorem we write the following sequence of trigonometric
identities

cos2(πz)− cos2(γz + θ) = sin2(γz + θ)− sin2(πz)

= sin2(γz + θ)
(
cos2(πz) + sin2(πz)

)
− sin2(πz)

= sin2(γz + θ) cos2(πz) + sin2(πz)
(
sin2(γz + θ)− 1

)

= sin2(γz + θ) cos2(πz)− cos2(γz + θ) sin2(πz). (3.116)

Thus, using (3.116), the notation introduced in (3.109), and (3.114), we obtain

v2(z) + b2(z)− a(z)c(z) =
4C2

1π
2

sin2(πz)
·
[
sin2(γz + θ) cos2(πz) − cos2(γz + θ) sin2(πz)

]

+
4C2

1π
2

sin2(πz)
· κ2 · (z − 1)2 · sin2 θ. (3.117)

Based on this and (3.115), cancel
4C2

1π
2

sin2(πz)
from both sides of the identity v2(z)+b2(z)−a(z)c(z) =

±v(z)
[
a(z)− c(z)

]
to obtain that v2(z) + b2(z)− a(z)c(z) = ±v(z)

[
a(z) − c(z)

]
if and only if

sin2(γz + θ) cos2(πz)− cos2(γz + θ) sin2(πz) + κ2(z − 1)2 sin2 θ

= ±2κ(z − 1) sin θ sin(γz + θ) cos(πz).
(3.118)

In turn, (3.118) can be rewritten as
(
sin(γz + θ) cos(πz) ± κ(z − 1) sin θ

)2
= sin2(πz) cos2(γz + θ). (3.119)

At this point, (3.112) and (3.119) give that

det (M(k̃(·, 1))(z) = 0 if and only if

sin(γz + θ) cos(πz)± κ(z − 1) sin θ = ± sin(πz) cos(γz + θ),
(3.120)

where the choices of sign ± in the left-hand side and right-hand side of (3.120) are independent of
one another. In light of the following useful identities

− sin(γz + θ) cos(πz) + sin(πz) cos(γz + θ) = sin(πz − γz − θ)

= sin[θ(z − 1)], (3.121)

and

− sin(γz + θ) cos(πz)− sin(πz) cos(γz + θ) = − sin(πz + γz + θ)

= − sin[(2π − θ)(z − 1)], (3.122)

statement (3.120) becomes

det (M(k̃(·, 1))(z) = 0 if and only if

κ(z − 1) sin θ = ± sin[θ(z − 1)] or κ(z − 1) sin θ = ± sin[(2π − θ)(z − 1)].
(3.123)

This finishes the proof of Corollary 3.6. ✷
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Our next goal is to identify those complex numbers z ∈ C with Re z ∈ (0, 1) that satisfy (3.123).
An important ingredient in achieving this is the following result.

Lemma 3.7. Let θ ∈ (0, 2π) and assume that the constants C1 ∈ (0,∞) and C2 ∈ [0,∞) are such
that

κ :=
C2

2C1
∈ [0, 1]. (3.124)

Then the following implication holds:

if z ∈ C is such that Re z ∈ (0, 1)

and one of the identities (3.105)-(3.108) holds, then Im z = 0.
(3.125)

Proof. First note that changing θ to 2π− θ in any one of the equations (3.105), (3.106), (3.107) or
(3.108) yields one of the other three equations. Consequently, it suffices to restrict our analysis to
the case when θ ∈ (0, π]. Going further, since for any w ∈ C one has

sin(w) = sin(w), (3.126)

where the bar denotes conjugation of complex numbers, a quick inspection of (3.105)-(3.108) shows
that if z ∈ C satisfies one of the equations (3.105)-(3.108) then so does z. In this light, (3.125)
follows as soon as we establish that

if θ ∈ (0, π] and z ∈ C such that Re z ∈ (0, 1) and Im z ∈ [0,∞)

and one of the identities (3.105)-(3.108) holds, then Im z = 0.
(3.127)

First we will show that the implication (3.127) is true in the case when θ = π or κ = 0. Indeed,
if θ = π or κ = 0, then the left-hand sides of (3.105)-(3.108) are all equal to zero and having any
one of these equations satisfied requires that

either sin[(2π − θ)(z − 1)] = 0 or sin[θ(z − 1)] = 0. (3.128)

However, since all the zeros of the sine function lie on the real line, it follows that in the current
case z − 1 ∈ R and hence Im z = 0 as desired.

Therefore it remains to consider the implication (3.127) when

θ ∈ (0, π), κ ∈ (0, 1], and z ∈ C is such that Re z ∈ (0, 1) and Im z ∈ [0,∞), (3.129)

which follows immediately as soon as we establish that

if θ ∈ (0, π), κ ∈ (0, 1], and z ∈ C is such that Re z ∈ (0, 1) and Im z ∈ (0,∞),

then none of the equations (3.105)-(3.108) is satisfied.
(3.130)

Indeed, if any of the equations (3.105)-(3.108) are satisfied (with θ, κ and z as in (3.129)) then,
using (3.130) necessarily Im z = 0.

With the goal of establishing (3.130) fix θ ∈ (0, π) and κ ∈ (0, 1]. We shall treat each of the
four equations (3.105)-(3.108) as a separate case. Before proceeding with this plan, let us recall the
Taylor series expansions of the functions sinh and cosh,

sinh t =

∞∑

j=0

t2j+1

(2j + 1)!
and cosh t =

∞∑

j=0

t2j

(2j)!
, t ∈ R. (3.131)
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Case 1. If z is as in (3.130) then

κ(z − 1) sin θ 6= sin[(2π − θ)(z − 1)], (3.132)

i.e., equation (3.105) is not satisfied.
We shall argue by contradiction and to this end assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞) such that (3.105) holds. (3.133)

Introduce the functions G,H : [0, 1] × (0,∞) → R given by

G(x, y) := κ(x− 1) · sin θ − sin[(2π − θ)(x− 1)] · cosh[(2π − θ)y], (3.134)

H(x, y) := κy · sin θ − cos[(2π − θ)(x− 1)] · sinh[(2π − θ)y]. (3.135)

By taking the real and imaginary parts in (3.105), under assumption (3.133) we obtain that the
system of two equations with two unknowns x and y,

{
G(x, y) = 0,

H(x, y) = 0,
(3.136)

has (x0, y0) ∈ (0, 1) × (0,∞) as a solution. Since for y0 > 0 and θ ∈ (0, π) the hyperbolic trigono-
metric functions in (3.134)-(3.135) have positive values, it is necessary that

sin[(2π − θ)(x0 − 1)] < 0 and cos[(2π − θ)(x0 − 1)] > 0. (3.137)

In turn, conditions (3.137) along with the fact that x0 ∈ (0, 1) and θ ∈ (0, π) force the membership
(2π − θ)(x0 − 1) ∈ (−π/2, 0), i.e.,

x0 ∈ I1 :=

(
3π − 2θ

2(2π − θ)
, 1

)
. (3.138)

Note that for θ ∈ (0, π) there holds 1 > (3π − θ)/(2(2π − θ)) > 0 and consequently I1 ⊂ (0, 1) and

sin[(2π − θ)(x− 1)] < 0 and cos[(2π − θ)(x− 1)] > 0, ∀x ∈ I1. (3.139)

Therefore,

∃ (x0, y0) ∈ I1 × (0,∞) such that G(x0, y0) = H(x0, y0) = 0. (3.140)

Going further, using the Taylor expansion for the hyperbolic sine function given in (3.131) we
obtain that for each x ∈ [0, 1] and y ∈ (0,∞) there holds

H(x, y) = h1(x) · y +
∞∑

j=1

h2j+1(x) · y
2j+1, (3.141)

where the functions h2j+1 : [0, 1] → R, for j ∈ N ∪ {0} are given by

h1(x) := κ · sin θ − cos[(2π − θ)(x− 1)] · (2π − θ), (3.142)

and

h2j+1(x) := − cos[(2π − θ)(x− 1)] ·
(2π − θ)2j+1

(2j + 1)!
, j ∈ N. (3.143)
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Thanks to the second inequality in (3.139) and (3.143), we have that h2j+1(x) < 0 for all x ∈ I1
and j ≥ 1. In particular, h2j+1(x0) < 0 for all j ≥ 1. Thus H(x0, y0) = 0 necessarily requires that
h1(x0) > 0. Appealing to (3.142) notice that h1 is continuous, and hence

∃ ε > 0 such that (x0 − ε, x0 + ε) ⊂ I1 and h1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.144)

Next, using (3.142) and the first inequality in (3.139), we obtain

h′1(x) = sin[(2π − θ)(x− 1)] · (2π − θ)2 < 0, ∀x ∈ I1. (3.145)

Therefore, the function h1 is monotonically decreasing on the interval I1, which further combined
with (3.144) yields

h1(x) > 0 for all x ∈

(
3π − 2θ

2(2π − θ)
, x0 + ε

)
. (3.146)

Reasoning similarly, this time based on the Taylor expansion of the cosh function from (3.131)
we obtain that for each x ∈ [0, 1] and y ∈ (0,∞) there holds

G(x, y) = g0(x) +
∞∑

j=1

g2j(x) · y
2j, (3.147)

where g2j : [0, 1] → R, for j ∈ N ∪ {0}, are given by

g0(x) := κ(x− 1) · sin θ − sin[(2π − θ)(x− 1)], (3.148)

and

g2j(x) := − sin[(2π − θ)(x− 1)] ·
(2π − θ)2j

(2j)!
, j ∈ N. (3.149)

Upon recalling the first inequality (3.137) it follows that g2j(x0) > 0 for all j ∈ N. Consequently,
since G(x0, y0) = 0 and y0 ∈ (0,∞), we obtain on the one hand that

g0(x0) < 0. (3.150)

On the other hand, based on (3.148) and (3.142), we may write

g′0(x) = κ · sin θ − cos[(2π − θ)(x− 1)] · (2π − θ) = h1(x), ∀x ∈ [0, 1]. (3.151)

Thus (3.151) and (3.146) imply that

g′0(x) > 0 for all x ∈

(
3π − 2θ

2(2π − θ)
, x0 + ε

)
, (3.152)

and in particular the function g0 is increasing on the interval
(

3π−2θ
2(2π−θ) , x0 + ε

)
. A simple inspection

of (3.148) shows that g0 is also continuous on [0, 1]. Since x0 ∈
(

3π−2θ
2(2π−θ) , x0 + ε

)
we may therefore

conclude that

g0(x0) > g0

(
3π − 2θ

2(2π − θ)

)
= 1−

κπ

2(2π − θ)
· (sin θ) > 0, (3.153)

where the last inequality follows from the fact that κ ∈ (0, 1], and that π/(2(2π − θ)) < 1 and
sin θ ∈ (0, 1] whenever θ ∈ (0, π). However, (3.153) contradicts (3.150) and finishes the argument by
contradiction. Consequently the assumption (3.133) is violated and this establishes the statement
made at the beginning of Case 1 completing our analysis in this case.
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Case 2. If z is as in (3.130) then

κ(z − 1) sin θ 6= − sin[(2π − θ)(z − 1)], (3.154)

i.e., equation (3.106) is not satisfied.
Again we shall argue by contradiction and as such we assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞) such that (3.106) holds. (3.155)

Introducing the functions M,N : [0, 1] × (0,∞) → R given by

M(x, y) := κ(x− 1) · sin θ + sin[(2π − θ)(x− 1)] · cosh[(2π − θ)y], (3.156)

N(x, y) := κy · sin θ + cos[(2π − θ)(x− 1)] · sinh[(2π − θ)y], (3.157)

and taking the real and imaginary parts of (3.106) we obtain that the following system of two
equations with two unknowns x and y

{
M(x, y) = 0,

N(x, y) = 0,
(3.158)

has (x0, y0) ∈ (0, 1) × (0,∞) as a solution. An inspection of the signs of the terms involved in the
expressions in (3.156) and (3.157) shows that if (x0, y0) ∈ (0, 1)× (0,∞) is a solution of the system
(3.158), then

sin[(2π − θ)(x0 − 1)] > 0 and cos[(2π − θ)(x0 − 1)] < 0. (3.159)

In turn, (3.159) along with the fact that x0 ∈ (0, 1) and θ ∈ (0, π) force that (2π − θ)(x0 − 1) ∈
(−3π/2,−π). Consequently,

x0 ∈

(
π − 2θ

2(2π − θ)
,
π − θ

2π − θ

)
∩ (0, 1) =





(
π−2θ

2(2π−θ) ,
π−θ
2π−θ

)
=: I2, if θ ∈

(
0, π2

]
,

(
0, π−θ

2π−θ

)
=: I3, if θ ∈

(
π
2 , π

)
.

(3.160)

Note that one has

sin[(2π − θ)(x− 1)] > 0 and cos[(2π − θ)(x− 1)] < 0

whenever x ∈
(

π−2θ
2(2π−θ) ,

π−θ
2π−θ

)
∩ (0, 1).

(3.161)

Going further, thanks to the first identity in (3.131), for each x ∈ [0, 1] and each y ∈ (0,∞) there
holds

N(x, y) = η1(x) · y +
∞∑

j=1

η2j+1(x) · y
2j+1, (3.162)

where the functions η2j+1 : [0, 1] → R, for j ∈ N ∪ {0}, are given by

η1(x) := κ · sin θ + cos[(2π − θ)(x− 1)] · (2π − θ), (3.163)

and

η2j+1(x) := cos[(2π − θ)(x− 1)] ·
(2π − θ)2j+1

(2j + 1)!
, j ∈ N. (3.164)

Appealing to the second inequality in (3.159) and (3.164), we obtain that

η2j+1(x0) < 0 for each j ∈ N. (3.165)
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Therefore (3.162) and (3.165) combined with the vanishing assumption N(x0, y0) = 0 imply that
η1(x0) > 0. Moreover, thanks to the continuity of the function η1 and the fact that the intersection
of two open intervals is an open set, we may further conclude that there exists ε > 0 with the
property that

(x0 − ε, x0 + ε) ⊆

(
π − 2θ

2(2π − θ)
,
π − θ

2π − θ

)
∩ (0, 1), (3.166)

and

η1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.167)

Next, differentiating in (3.163) yields

η′1(x) = − sin[(2π − θ)(x− 1)] · (2π − θ)2 < 0, ∀x ∈
(

π−2θ
2(2π−θ) ,

π−θ
2π−θ

)
∩ (0, 1), (3.168)

where the inequality above follows from the first inequality in (3.161). In particular, using (3.160)
we obtain that the function η1 is decreasing on the interval I2 when θ ∈ (0, π/2], and that the
function η1 is decreasing on the interval I3 when θ ∈ (π/2, π). These facts, combined with (3.166)-
(3.167), guarantee that

η1(x) > 0 for all x ∈

(
π − 2θ

2(2π − θ)
, x0 + ε

)
whenever θ ∈

(
0,

π

2

]
, (3.169)

and

η1(x) > 0 for all x ∈ (0, x0 + ε) whenever θ ∈
(π
2
, π
)
. (3.170)

Turning our attention to the functionM , based on the second identity in (3.131) for each x ∈ [0, 1]
and each y ∈ (0,∞) we may write

M(x, y) = ξ0(x) +
∞∑

j=1

ξ2j(x) · y
2j , (3.171)

where the functions ξ0, ξ2j : [0, 1] → R are given by

ξ0(x) := κ(x− 1) · sin θ + sin[(2π − θ)(x− 1)], (3.172)

and

ξ2j(x) := sin[(2π − θ)(x− 1)] ·
(2π − θ)2j

(2j)!
, j ∈ N. (3.173)

Thanks to the first inequality in (3.159), one has ξ2j(x0) > 0 for all j ∈ N. Since M(x0, y0) = 0,
this and (3.171) further force that

ξ0(x0) < 0. (3.174)

On the other hand, differentiating in (3.172) and using (3.163) yields

ξ′0(x) = κ · sin θ + cos[(2π − θ)(x− 1)] · (2π − θ) = η1(x), ∀x ∈ [0, 1]. (3.175)

Using (3.175) along with properties (3.169) and (3.170) it follows that the function ξ0 is increasing
on the interval ((π−2θ)/(2(2π−θ)), x0+ε) when θ ∈ (0, π/2], and that the function ξ0 is increasing
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on the interval (0, x0 + ε) when θ ∈ (π/2, π). Based on this and the continuity of ξ0 on [0, 1] it
follows that when θ ∈ (0, π/2] one has

ξ0(x0) > ξ0

(
π − 2θ

2(2π − θ)

)
= 1−

3κπ

2(2π − θ)
· sin θ ≥ 0, (3.176)

where the last inequality follows from the fact that κ ∈ (0, 1] and in the current case one has
sin θ ∈ (0, 1] and 3π

2(2π−θ) ∈ (0, 1]. Similarly, when θ ∈ (π/2, π), there holds

ξ0(x0) > ξ0(0) = (1− κ) · sin θ ≥ 0, (3.177)

where the inequality above follows immediately since κ ∈ (0, 1] and θ ∈ (π/2, π). However (3.176)-
(3.177) contradict (3.174) and this completes the argument by contradiction in this case.

Case 3. If z is as in (3.130) then

κ(z − 1) sin θ 6= sin[θ(z − 1)], (3.178)

i.e., equation (3.107) is not satisfied.
As in the previous two cases, in order to prove the claim above we shall argue by contradiction.

To this end assume that

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞) such that (3.107) holds. (3.179)

Introducing the functions R,S : [0, 1] × (0,∞) → R given by

R(x, y) := κ(x− 1) · sin θ − sin[θ(x− 1)] · cosh(θy), (3.180)

S(x, y) := κy · sin θ − cos[θ(x− 1)] · sinh(θy), (3.181)

and taking the real and imaginary parts of both sides of the identity (3.107) we obtain that the
pair (x0, y0) ∈ (0, 1) × (0,∞) is a solution of the following system of two equations

{
R(x, y) = 0,

S(x, y) = 0.
(3.182)

An inspection of the sign of each of the terms appearing in (3.180) and (3.181) shows that necessarily

sin[θ(x0 − 1)] < 0 and cos[θ(x0 − 1)] > 0, (3.183)

and consequently θ(x0 − 1) ∈ (−π/2, 0). However, this further implies that

x0 ∈
(
1−

π

2θ

)
∩ (0, 1) =

{
(0, 1), if θ ∈

(
0, π2

]
,

(
1− π

2θ , 1
)
=: I4, if θ ∈

(
π
2 , π

)
.

(3.184)

We shall also find it useful to observe that, in fact,

sin[θ(x− 1)] < 0 and cos[θ(x− 1)] > 0,

whenever x ∈
(
1− π

2θ

)
∩ (0, 1).

(3.185)

Going further, based on the first identity in (3.131), for each x ∈ [0, 1] and each y ∈ (0,∞) we
may write

S(x, y) = s1(x) · y +

∞∑

j=1

s2j+1(y) · y
2j+1, (3.186)
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where the functions s1, s2j+1 : [0, 1] → R are given by

s1(x) := κ · sin θ − cos[θ(x− 1)] · θ, (3.187)

and

s2j+1(x) := − cos[θ(x− 1)] ·
θ2j+1

(2j + 1)!
, j ∈ N. (3.188)

Next, thanks to the second inequality in (3.183) we have s2j+1(x0) < 0 for all j ∈ N. Since
S(x0, y0) = 0 and y0 ∈ (0,∞), (3.186) implies that s1(x0) > 0. The function s1 introduced in
(3.187) is continuous, thus this further implies there exists ε > 0 such that

(x0 − ε, x0 + ε) ⊂
(
1−

π

2θ

)
∩ (0, 1), (3.189)

and

s1(x) > 0 for all x ∈ (x0 − ε, x0 + ε). (3.190)

Next, differentiating (3.187) and using the first inequality in (3.185) yields

s′1(x) = sin[θ(x− 1)] · θ2 < 0, ∀x ∈
(
1−

π

2θ

)
∩ (0, 1). (3.191)

Recalling (3.184), we may therefore conclude that the function s1 is decreasing on the interval
(0, 1) whenever θ ∈ (0, π/2], and that s1 is decreasing on the interval I4 whenever θ ∈ (π/2, π).
Combining this information with (3.190) gives that

s1(x) > 0 for all x ∈ (0, x0 + ε) when θ ∈ (0, π/2], (3.192)

and

s1(x) > 0 for all x ∈
(
1−

π

2θ
, x0 + ε

)
when θ ∈ (π/2, π). (3.193)

We now turn our attention to the function R(·, ·). Appealing to the second identity in (3.131),
for each x ∈ [0, 1] and each y ∈ (0,∞) we may write

R(x, y) = r0(x) +
∞∑

j=1

r2j(x) · y
2j , (3.194)

where the functions r0, r2j : [0, 1] −→ R are given by

r0(x) := κ(x− 1) · sin θ − sin[θ(x− 1)], (3.195)

and

r2j(x) := − sin[θ(x− 1)] ·
θ2j

(2j)!
, j ∈ N. (3.196)

Thanks to the first inequality in (3.183), for each j ∈ N one has r2j(x0) > 0. Since R(x0, y0) = 0
and y0 ∈ (0,∞), based on (3.194) we may deduce that

r0(x0) < 0. (3.197)

Next, differentiating in (3.195) and using (3.187) gives

r′0(x) = κ · sin θ − sin[θ(x− 1)] · θ = s1(x), ∀x ∈ [0, 1]. (3.198)
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Using (3.192)-(3.193) and (3.198) we obtain that the function r0 is increasing on the interval
(0, x0 + ε) when θ ∈ (0, π/2], and that r0 is increasing on the interval (1 − π

2θ , x0 + ε) in the case
when θ ∈ (π/2, π). Based on this and the continuity of the function r0, when θ ∈ (0, π/2] we may
deduce

r0(x0) > r0(0) = sin θ · (1− κ) ≥ 0, (3.199)

granted that κ ∈ (0, 1]. On the other hand, when θ ∈ (π/2, π), we have

r0(x0) > r0

(
1−

π

2θ

)
= 1−

κπ

2θ
· sin θ > 0, (3.200)

as κ ∈ (0, 1] and when θ > π/2 one has π/2θ < 1. However, (3.199)-(3.200) contradict (3.197) and
this finishes the proof of the statement made at the beginning of Case 3.

Case 4. If z is as in (3.130) then

κ(z − 1) · sin θ 6= − sin[θ(z − 1)], (3.201)

i.e., equation (3.108) is not satisfied.
Assume again by contradiction that the claim made above is false, i.e.,

∃ z = x0 + iy0 ∈ C with x0 ∈ (0, 1) and y0 ∈ (0,∞) such that (3.108) holds. (3.202)

Taking the real and imaginary parts in (3.108) we obtain that

κ(x0 − 1) · sin θ = − sin[θ(x0 − 1)] · cosh(θy0), (3.203)

κy0 · sin θ = − cos[(θ(x0 − 1)] · sinh(θy0). (3.204)

However θ ∈ (0, π) and x0 ∈ (0, 1) imply that θ(x0 − 1) ∈ (−π, 0) and thus sin[θ(x0 − 1)] < 0. This
violates (3.203), as its left-hand side is negative while the right-hand side is positive. Consequently
the claim made at the beginning of this case holds and this finishes the proof of the lemma. �

Lemma 3.8. Fix θ ∈ (0, π) and κ ∈ (0, 1] and recall θo from (1.23) (see also (1.26)). Then the
following hold.

(i) The equation

κ(x− 1) · sin θ = sin[(2π − θ)(x− 1)] (3.205)

has a unique solution in the interval (0, 1), and denoting this by x1(θ, κ) there holds

x1(θ, κ) ∈

(
π − θ

2π − θ
,
1

2

)
. (3.206)

(ii) If κ ∈ (0, 1), the equation

κ(x− 1) · sin θ = − sin[(2π − θ)(x− 1)] (3.207)

has a unique solution in the interval (0, 1), and denoting this by x2(θ, κ) there holds

x2(θ, κ) ∈

(
0,

π − θ

2π − θ

)
. (3.208)

If κ = 1 and θ ∈ (0, θo), the equation (3.207) has a unique solution in the interval (0, 1), and
denoting this by x2(θ, 1) there holds

x2(θ, 1) ∈

(
0,

π − θ

2π − θ

)
. (3.209)
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Finally, if κ = 1 and θ ∈ [θo, π) the equation (3.207) has no solution in the interval (0, 1).
(iii) The equations

κ(x− 1) · sin θ = sin[θ(x− 1)], (3.210)

κ(x− 1) · sin θ = − sin[θ(x− 1)], (3.211)

have no solutions in the interval (0, 1).

Proof. We begin by examining the equation (3.205) and we claim that

x ∈ (0, 1) and κ(x− 1) · sin θ = sin[(2π − θ)(x− 1)] =⇒ x ∈ I1 :=

(
π − θ

2π − θ
, 1

)
. (3.212)

Indeed, if x ∈ (0, 1) then κ(x− 1) · sin θ < 0 and thus sin[(2π − θ)(x− 1)] < 0. This, together with
the fact that θ ∈ (0, π) and x ∈ (0, 1) guarantees that (2π − θ)(x − 1) ∈ (−2π, 0), further implies
that (2π − θ)(x− 1) ∈ (−π, 0) and thus x ∈ I1 as desired. In particular, based on (3.212) we may
deduce that

equation (3.205) has no solution in the interval

(
0,

π − θ

2π − θ

]
. (3.213)

We also find it useful to record that

x ∈ I1 =⇒ sin[(2π − θ)(x− 1)] < 0, (3.214)

as x ∈ I1 immediately implies that (2π − θ)(x− 1) ∈ (−π, 0).
Going further, consider the function T : [0, 1] → R given by

T (x) := κ(x− 1) · sin θ − sin[(2π − θ)(x− 1)], (3.215)

and first note that T (1) = 0. Second,

T ′(x) = κ · sin θ − cos[(2π − θ)(x− 1)] · (2π − θ), ∀x ∈ [0, 1], (3.216)

and

T ′′(x) = sin[(2π − θ)(x− 1)] · (2π − θ)2, ∀x ∈ [0, 1]. (3.217)

Using (3.214) we may deduce that T ′′(x) < 0 whenever x ∈ I1. Therefore the function T ′ is
decreasing on the interval I1. In addition,

T ′
(

π − θ

2π − θ

)
= κ · sin θ + (2π − θ) > 0 and T ′(1) = κ · sin θ − (2π − θ) < 0, (3.218)

where the last inequality follows from the fact that κ ∈ (0, 1] and sin θ < 2π − θ for θ ∈ (0, π).
Combining (3.218) with the monotonicity of T ′ on the interval I1 and the fact that this function
is continuous on [0, 1] we obtain that

there exists a unique x0 ∈ I1 such that T ′(x0) = 0 and

T ′ > 0 on the interval
(

π−θ
2π−θ , x0) and T ′ < 0 on the interval (x0, 1).

(3.219)

In particular,

T is increasing on the interval
(

π−θ
2π−θ , x0) and decreasing on the interval (x0, 1). (3.220)
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Next, note that if θ ∈ (0, π) then 0 < π−θ
2π−θ < 1

2 and consequently 1
2 ∈ I1. Evaluating the function

T at the points π−θ
2π−θ and 1

2 gives

T

(
π − θ

2π − θ

)
= −

πκ

2π − θ
· sin θ < 0, (3.221)

T
(1
2

)
= −

κ · sin θ

2
+ sin

(θ
2

)
= sin

(θ
2

)
·
(
1− κ · cos

(θ
2

))
> 0, (3.222)

where the first inequality above is obvious and the second one follows from the fact that sin(θ2 ) > 0

on (0, π) and κ cos(θ2 ) < 1 when κ ∈ (0, 1]. In particular, by the intermediate value theorem

∃ x1(θ, κ) ∈
( π − θ

2π − θ
,
1

2

)
such that T (x1(θ, κ)) = 0, (3.223)

and property (3.220) guarantees that x1(θ, κ) as above is unique. Thus

(3.205) has a unique solution in the interval
(

π−θ
2π−θ ,

1
2

)
. (3.224)

Going further, using (3.221) and (3.220) in concert with the fact T (1) = 0 we conclude that the
function T does not vanish on [12 , 1) and as such (3.205) has no solution in [12 , 1). This together
with (3.213) and (3.224) completes the proof of (i).

We now turn our attention to (ii). A quick inspection of the signs of the left- and right-hand
sides of (3.207) shows that a necessary condition for x ∈ (0, 1) to be a solution of (3.207) is that
sin[(2π − θ)(x− 1)] > 0. In particular

x ∈ (0, 1) is a solution of (3.207) =⇒ x ∈ I2 :=

(
0,

π − θ

2π − θ

)
, (3.225)

and consequently

equation (3.207) has no solution in the interval
[ π − θ

2π − θ
, 1
)
. (3.226)

Also it is useful to record that, as simple manipulations show,

x ∈ I2 =⇒ sin[(2π − θ)(x− 1)] > 0. (3.227)

Going further, consider the function U : [0, 1] −→ R given by

U(x) := κ(x− 1) · sin θ + sin[(2π − θ)(x− 1)], (3.228)

and observe that

U ′(x) = κ · sin θ + cos[(2π − θ)(x− 1)] · (2π − θ), ∀x ∈ [0, 1], (3.229)

U ′′(x) = − sin[(2π − θ)(x− 1)] · (2π − θ)2, ∀x ∈ [0, 1]. (3.230)

Thus, using (3.227) we obtain that

U ′′ < 0 on the interval I2 (3.231)

and hence
the function U ′ is decreasing on I2. (3.232)

We shall analyze first the case when κ ∈ (0, 1). We then have

U(0) = −κ · sin θ − sin(2π − θ) = sin θ ·
(
−κ+ 1

)
> 0, (3.233)



36 IRINA MITREA, KATHARINE OTT, AND WARWICK TUCKER

since κ ∈ (0, 1) and sin θ > 0. At the right endpoint of the interval (3.225) we compute

U

(
π − θ

2π − θ

)
= −

πκ

2π − θ
· sin θ < 0, (3.234)

and as before, for θ ∈ (0, π),

U ′
(

π − θ

2π − θ

)
= κ · sin θ − (2π − θ) < 0. (3.235)

Keeping in mind that U ′′ < 0 on I2, there are two possible scenarios. One is that U ′(x) < 0
whenever x ∈ I2. In this case U is monotonically decreasing on this interval and by (3.233) and
(3.234) and the intermediate value theorem we conclude that

∃ x2(θ, κ) ∈
(
0,

π − θ

2π − θ

)
such that U(x2(θ, κ)) = 0. (3.236)

Moreover, since U ′ < 0 on I2, we can conclude that x2(θ, κ) as above is unique, and thus

(3.207) has a unique solution in the interval
(
0, π−θ

2π−θ

)
. (3.237)

The second alternative is that there exists a unique x3 ∈ I2 such that U ′(x) > 0 on (0, x3),
U ′(x3) = 0, and U ′(x) < 0 on

(
x3,

π−θ
2π−θ

)
. However, this case this yields the same conclusions

(3.236) and (3.237). This completes the proof of (ii) when κ ∈ (0, 1).
Moving on, let κ = 1 in (3.207), and recall the conclusions (3.225) and (3.226). With the function

U as introduced in (3.228), now with κ = 1, i.e.

U : [0, 1] −→ R, U(x) := (x− 1) · sin θ + sin[(2π − θ)(x− 1)], (3.238)

we have that (3.231) and (3.232) hold. In this case, as compared to (3.233), we have

U(0) = 0, (3.239)

as well as the following inequalities, corresponding to (3.234) and (3.235) when κ = 1,

U

(
π − θ

2π − θ

)
= −

π

2π − θ
· sin θ < 0 and U ′

(
π − θ

2π − θ

)
= sin θ − (2π − θ) < 0. (3.240)

Also

U ′(0) = sin θ + (2π − θ) · cos θ. (3.241)

At this point we recall the angle θo from (1.23). By (1.25) it immediately follows that

U ′(0) > 0 whenever θ ∈ (0, θo) and U ′(0) ≤ 0 whenever θ ∈ [θo, π). (3.242)

Keeping in mind that U ′′ < 0 on I2 and using (3.242) we may deduce that when θ ∈ [θo, π) the
function U ′ is strictly negative on the interval I2. Combining this with (3.239), we obtain that
the function U has no roots in I2, and therefore in (0, 1). Also, when θ ∈ (0, θo) we obtain that
there exists a unique x2(θ, 1) ∈ I2 such that U(x2(θ, 1)) = 0. This finishes the analysis of (ii) when
κ = 1, and completes its proof.

Next we focus on the statement (iii). A necessary condition for the identity (3.210) to hold is
that

sin[θ(x− 1)] < 0. (3.243)
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Introduce V : [0, 1] −→ R,

V (x) := κ(x− 1) · sin θ − sin[θ(x− 1)], (3.244)

so that

V ′(x) = κ · sin θ − cos[θ(x− 1)] · θ, ∀x ∈ [0, 1], (3.245)

V ′′(x) = sin[θ(x− 1)] · θ2, ∀x ∈ [0, 1]. (3.246)

Note that, due to (3.243) one has V ′′ < 0 and consequently V ′(x) is monotonically decreasing on
(0, 1). For each κ ∈ (0, 1] and θ ∈ (0, π) we have

V (0) =
(
−κ+ 1) · sin θ ≥ 0, (3.247)

and

V (1) = 0, (3.248)

which, due to the concavity property of V , guarantees that V > 0 for all x ∈ (0, 1). Thus (3.210)
has no solutions for the values of the parameters involved as stated in the hypotheses.

Finally, we consider (3.211). A simple inspection shows that the left-hand side of the equation
is always negative while the right-hand side is always positive. Thus (3.211) has no solutions. �

The following result describes the roots of the equations (3.205)-(3.211) in the case κ = 0. Its
proof is immediate and we omit it.

Lemma 3.9. Fix θ ∈ (0, π). Then the following hold.
(i) The equation

sin[(2π − θ)(x− 1)] = 0, (3.249)

has a unique solution in the interval (0, 1), and denoting this by x1(θ) there holds

x1(θ) =
π − θ

2π − θ
∈
(
0, 12
)
. (3.250)

(ii) The equation

sin[θ(x− 1)] = 0, (3.251)

has no solution in the interval (0, 1).

3.2. Proof the main result. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let p ∈ (1,∞) and κ ∈ (0, 1). Using Lemma 3.2, after the identification of
(∂Ω)j with R+ for each j ∈ {1, 2}, the operator ∂τS

Lamé is invertible on Lp(∂Ω) if and only if the
integral operator T given by

T ~f(s) :=

∫ ∞

0
k̃(s, t) · ~f(t) dt, a.e. s ∈ R+ and ∀ ~f ∈

[
Lp(R+)

]4
, (3.252)

with integral kernel k̃ as in (3.44)-(3.48) is invertible on
[
Lp(R+)

]4
. According to Lemma 3.3, and

using that C1 > 0, the operator T satisfies the hypothesis of Corollary 2.4. As such, the operator

T is invertible on
[
Lp(R+)

]4
if and only if

Mk̃(·, 1))(1/p + iξ) 6= 0 ∀ ξ ∈ R. (3.253)
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We invoke next Corollary 3.6 and Lemma 3.7 to conclude that T is not invertible on
[
Lp(R+)

]4
if

and only if one of the following equalities hold

κ(1p − 1) sin θ = sin[(2π − θ)(1p − 1)], (3.254)

κ(1p − 1) sin θ = − sin[(2π − θ)(1p − 1)], (3.255)

κ(1p − 1) sin θ = sin[θ(1p − 1)], (3.256)

κ(1p − 1) sin θ = − sin[θ(1p − 1)]. (3.257)

Note that if θ = π the left-hand sides in equations (3.254)-(3.257) are equal to zero while the
right-hand sides are different from zero (here we use that p ∈ (1,∞) and as such 1− 1

p ∈ (0, 1)). In

conclusion the operator ∂τS
Lamé is invertible on Lp(∂Ω) for each p ∈ (1,∞) when θ = π. Combining

this with (2.9) gives (1.19), proving (C.1) in the statement of the theorem.
We turn our attention to the statement made in part (A.1). Consider first the case when

θ ∈ (0, π). A direct application of Lemma 3.8 yields that (3.254) has a unique solution denoted by

p1(θ, κ) and this satisfies p1(θ, κ) ∈
(
2, 2π−θ

π−θ

)
. Furthermore, (3.255) has a unique solution denoted

by p2(θ, κ) and this satisfies p2(θ, κ) ∈
(
2π−θ
π−θ ,∞

)
while equations (3.256)-(3.257) have no solutions

for p ∈ (1,∞). In conclusion, the operator

∂τS
Lamé is invertible on Lp(∂Ω)

for each p ∈ (1,∞) \ {p1(θ, κ), p2(θ, κ)} when θ ∈ (0, π).
(3.258)

Using (3.258) and (2.9) the statement (1.10) in Theorem 1.1 immediately follows, appealing again
to (2.9).

Next, let θ ∈ (π, 2π) and let γ := 2π− θ ∈ (0, π). In this notation, equations (3.254) and (3.255)
become

κ(1p − 1) sin γ = ∓ sin[γ(1p − 1)], (3.259)

and by Lemma 3.8 they have no solutions for p ∈ (1,∞). Going further, (3.256) gives

κ(1p − 1) sin γ = − sin[(2π − γ)(1p − 1)]. (3.260)

Using Lemma 3.8 the equation (3.260) has a unique solution

p3(θ, κ) ∈
(2π − γ

π − γ
,∞
)
=
( θ

θ − π
,∞
)
. (3.261)

Similarly, equation (3.257) becomes

κ(1p − 1) sin γ = sin[(2π − γ)(1p − 1)], (3.262)

and appealing one last time to Lemma 3.8 this has a unique solution

p4(θ, κ) ∈
(
2,

2π − γ

π − γ

)
=
(
2,

θ

θ − π

)
. (3.263)
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As such, the operator

∂τS
Lamé is invertible

on Lp(∂Ω) for each p ∈ (1,∞) \ {p3(θ, κ), p4(θ, κ)} when θ ∈ (π, 2π).
(3.264)

As before, (3.264) and (2.9) imply the statement made in (1.11). This finishes the proof of (A.1).
The statement in (B.1) (corresponding to κ = 0) is treated similarly, this time appealing to

Lemma 3.9.
Moving on, the statements made in (A.2), (B.2) and (C.2) follow from (A.1), (B.1) and (C.1),

(2.9), duality, and the two dimensional identity proved in [2] to the effect that
(
∂τS

Lamé
)2

=
(
1
2I + (KLamé

Ψ )∗
)
◦
(
− 1

2I + (KLamé

Ψ )∗
)

on Lp(∂Ω), ∀ p ∈ (1,∞), (3.265)

where (KLamé

Ψ )∗ denotes the dual of the operator KLamé

Ψ .
Finally, the statements (A.3), (B.3) and (C.3) are a consequence of (A.2), (B.2) and (C.2),

respectively, duality, (A.1), (B.1) and (C.1), and the operator identity (valid in all dimensions)

∂νΨD
Lamé

Ψ ◦ S =
(
1
2I + (KLamé

Ψ )∗
)
◦
(
− 1

2I + (KLamé

Ψ )∗
)

on L̇p
1(∂Ω), ∀ p ∈ (1,∞). (3.266)

This completes the proof of the theorem. �

4. The case of the Stokes system

In this section, we discuss the invertibility of hydrostatic layer potentials. To this end, consider
the linearized, homogeneous, time independent Navier-Stokes equations, i.e. the Stokes system

{
△~u = ▽p,

div ~u = 0,
(4.267)

in an open set in R
2, where ~u is the velocity field and p is the pressure function. If we define the

matrix A = A(r) := (akℓij (r))i,j,k,ℓ∈{1,2} by

akℓij = akℓij (r) := δijδkℓ + r δiℓδjk, for r ∈ R, (4.268)

then akℓij ∂i∂juℓ = △uk + r∂k(div ~u). Hence, any solution ~u, p of the Stokes system (4.267) satisfies

akℓij ∂i∂juℓ = ∂kp.

As before, let Ω ⊂ R
2 be an infinite angle of aperture θ ∈ (0, 2π) and ν = (ν1, ν2) the outward

unit normal vector a.e. on ∂Ω. The conormal derivative associated with the tensor of coefficients
A(r) := (akℓij (r))i,j,k,ℓ∈{1,2}, for r ∈ R, in the case of the Stokes system is defined as

(
∂

∂νA(r)
{~u,p}

)j

:= νia
jℓ
ik(r)∂kuℓ − νjp, where j = 1, 2. (4.269)

The special choice r := 1 gives rise to the so-called stress conormal derivative (see also, e.g., [26],
[8]). This derivative has a physical interpretation and it is known as the slip condition when imposed
at the boundary and we shall denote this for the remaining part of the manuscript by ∂νΨ . Thus

∂νΨ :=
∂

∂νA(1)

. (4.270)
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Parenthetically we note that

1 = lim
λ→∞

µ(λ+ µ)

3µ+ λ

∣∣∣
µ=1

. (4.271)

Going further, denote by GStokes = (GStokes

ij )i,j∈{1,2} the Kelvin matrix-valued, radially symmetric

fundamental solution for the system of hydrostatics in R
2 given by

GStokes

ij (X) := C1δij log |X|2 − C2
XiXj

|X|2
, ∀X = (X1,X2) ∈ R

2 \ {0}, (4.272)

where i, j ∈ {1, 2}, and

C1 :=
1

8π
, and C2 :=

1

4π
, (4.273)

(see e.g. [34, formula (10.7.2) in Chapter 10]). Note that the constants C1, C2 in (4.273) satisfy

C1 = lim
λ→∞

3µ + λ

8µ(2µ + λ)π

∣∣∣
µ=1

and C2 = lim
λ→∞

µ+ λ

4µ(2µ + λ)π

∣∣∣
µ=1

. (4.274)

Consider next the pressure vector ~q : R2 \ {0} given by

~q(X) = (q1(X),q2(X)) := −
1

2π

X

|X|2
, ∀X ∈ R

2 \ {0}. (4.275)

Then, for each i, j ∈ {1, 2} there holds

∆GStokes

ij = ∆GStokes

ji = ∂iqj = ∂jqi on R
2 \ {0}. (4.276)

Moving on, the boundary-to-domain single layer potential operator is introduced as

SStokes ~f(X) :=

∫

∂Ω
GStokes(X − Y ) · ~f(Y ) dσ(Y ), X ∈ R

2 \ ∂Ω. (4.277)

and the boundary-to-boundary single layer hydrostatic operator SStokes is given by

SStokes ~f(X) :=

∫

∂Ω
GStokes(X − Y ) · ~f(Y ) dσ(Y ), X ∈ ∂Ω. (4.278)

We shall also introduce the double layer potential operators associated with the system. Specifically,
if r ∈ R is fixed and the tensor of coefficients A(r) = (akℓij (r))i,j,k,ℓ∈{1,2} is as in (4.268), then the

double layer potential operator associated with A(r) is denoted by DStokes

A(r) and its action on a

vector-valued function ~f : ∂Ω −→ R
2 with ~f =

(
f1
f2

)
is defined by setting

DStokes

A(r)
~f(X) :=

∫

∂Ω

[
∂

∂νA(r)
{GStokes, ~q}(X − ·)

]t
(Q) · ~f(Q) dσ(Q), X ∈ R

2 \ ∂Ω (4.279)

where
∂

∂νA(r)
{GStokes, ~q} is defined as the matrix obtained by applying the conormal derivative

from (4.269) to each pair consisting of the j-th column of the fundamental solution GStokes from
(4.272) and the j-th component of the vector ~q. Also, the superscript t stands for transposition of
matrices. In the sequel we shall use the notation

DStokes

Ψ := DStokes

A(1) , (4.280)
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to denote the slip double boundary-to-domain double layer potential operator. For each r ∈ R, the

boundary version of DStokes

A(r) is the operator KStokes

A(r) whose action on ~f as above is defined by setting

KStokes

A(r)
~f(X) = p.v.

∫

∂Ω

[
∂

∂νA(r)
{GStokes, ~q}(X − ·)

]t
(Q) · ~f(Q) dσ(Q), σ − a.e. X ∈ ∂Ω, (4.281)

where p.v. denotes principle value. We set

KStokes

Ψ := KStokes

A(1) . (4.282)

For each r ∈ R, the formal adjoint of the operator KStokes

A(r) is denoted by
(
KStokes

A(r)

)∗
and

(
KStokes

Ψ

)∗

denotes the adjoint of KStokes

Ψ . A similar result to Proposition 3.1 holds in the case of the layer
potentials associated with the Stokes system (this follows again from the work in [5]). Concretely
we have.

Proposition 4.1. Assume that Ω is a graph Lipschitz domain in R
2, and fix r ∈ R. Recall the

tensor of coefficients A(r) = (akℓij (r))i,j,k,ℓ∈{1,2} from (4.268). Then, for each p ∈ (1,∞),

(1) There holds

SStokes : Lp(∂Ω) → Lp
1(∂Ω) is a linear and bounded operator, (4.283)

KStokes

A(r) : Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator, (4.284)

(
KStokes

A(r)

)∗
: Lp(∂Ω) → Lp(∂Ω) is a linear and bounded operator, (4.285)

where
(
KStokes

A(r)

)∗
denotes the adjoint of the operator KStokes

A(r) .

(2) For each ~f ∈ Lp(∂Ω) there holds M
(
DStokes

A(r)
~f
)

∈ Lp(∂Ω). Moreover there exists a finite

constant C > 0 depending only on the Lipschitz character of Ω such that

‖M
(
DStokes

A(r)
~f
)
‖Lp(∂Ω) ≤ C‖~f‖Lp(∂Ω). (4.286)

(3) For every ~f ∈ Lp(∂Ω) there holds

DStokes

A(r)
~f
∣∣∣
∂Ω±

(P ) = (±1
2I +KStokes

A(r) )~f(P ), σ − a.e. P ∈ ∂Ω. (4.287)

(4) For every ~f ∈ Lp(∂Ω) one has M
(
∇SStokes ~f

)
∈ Lp(∂Ω). Moreover there exists a finite

constant C > 0 depending only on the Lipschitz character of Ω such that

‖M
(
∇SStokes ~f

)
‖Lp(∂Ω) ≤ C‖~f‖Lp(∂Ω). (4.288)

(5) For each ~f ∈ Lp(∂Ω), the single layer satisfies

SStokes ~f |∂Ω+ = SStokes ~f |∂Ω−
= SStokes ~f , (4.289)

and

∂τS
Stokes ~f

∣∣∣
∂Ω+

= ∂τS
Stokes ~f

∣∣∣
∂Ω−

= ∂τS
Stokes ~f. (4.290)
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Moreover, if
(
∂τS

Stokes
)∗

is the formal adjoint of ∂τS
Stokes, then

(
∂τS

Stokes
)∗

= −SStokes∂τ . (4.291)

(6) For every ~f ∈ Lp(∂Ω) there holds

∂SStokes ~f

∂νA(r)

∣∣∣∣∣
∂Ω±

(P ) =
(
± 1

2I −
(
KStokes

A(r)

)∗ )
~f(P ), σ − a.e. P ∈ ∂Ω. (4.292)

In light of the observation made in (4.274), the computations carried out in Section 3 for the
Mellin symbol of the operator ∂τS

Lamé for the Lamé system of elastostatics can now be reworked in
the case of the Stokes system by changing the values of C1 and C2 as in (4.273). This immediately
yields the following results.

Lemma 4.2. Let Ω ⊂ R
2 be an infinite sector of aperture θ ∈ (0, 2π). Consider X = (X1,X2),

Q = (Q1, Q2) ∈ ∂Ω and recall GStokes = (GStokes

ij )i,j∈{1,2} from (4.272). The kernel of the operator

∂Stokes

τ S is the matrix

k(X,Q) =

(
∂τ(X)G

Stokes

11 (X −Q) ∂τ(X)G
Stokes

12 (X −Q)

∂τ(X)G
Stokes

21 (X −Q) ∂τ(X)G
Stokes

22 (X −Q)

)
, (4.293)

where

∂τ(X)G
Stokes

11 (X −Q) = −ν2(X)

{
−

1

4π

X1 −Q1

|X −Q|2
+

1

2π

(X1 −Q1)
3

|X −Q|4

}

+ν1(X)

{
1

4π

X2 −Q2

|X −Q|2
+

1

2π

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}
,

(4.294)

∂τ(X)G
Stokes

12 (X −Q) = −ν2(X)

{
−

1

4π

X2 −Q2

|X −Q|2
+

1

2π

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}

+ν1(X)

{
−

1

4π

X1 −Q1

|X −Q|2
+

1

2π

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

}
,

(4.295)

∂τ(X)G
Stokes

21 (X −Q) = −ν2(X)

{
−

1

4π

X2 −Q2

|X −Q|2
+

1

2π

(X1 −Q1)
2(X2 −Q2)

|X −Q|4

}

+ν1(X)

{
−

1

4π

X1 −Q1

|X −Q|2
+

1

2π

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

}
,

(4.296)

and

∂τ(X)G
Stokes

22 (X −Q) = −ν2(X)

{
1

4π

X1 −Q1

|X −Q|2
+

1

2π

(X1 −Q1)(X2 −Q2)
2

|X −Q|4

}

+ν1(X)

{
−

1

4π

X2 −Q2

|X −Q|2
+

1

2π

(X2 −Q2)
3

|X −Q|4

}
.

(4.297)

Going further, recall the identification of (∂Ω)j ≡ R+ for each j ∈ {1, 2} and the manner in

which the kernel k̃ in (3.44) was associated with k from (3.33)-(3.36). Following this recipe from

Section 3, denote by k̃ the kernel associated with k from (4.293)-(4.297). We then have the following
result.
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Lemma 4.3. Let Ω ⊂ R
2 be the domain consisting of the interior of an infinite sector of aperture

θ ∈ (0, 2π) and k̃ be as in the preamble of this result. Then, for any z ∈ C with Re z ∈ (0, 1), there
holds

M(k̃(·, 1))(z) =




−v(z) 0 −a(z) b(z)

0 −v(z) b(z) −c(z)

a(z) b(z) v(z) 0

b(z) c(z) 0 v(z)




(4.298)

where, with γ := π − θ,

v(z) := −
1

4
·
cos(πz)

sin(πz)
, (4.299)

a(z) := −
1

4 sin(πz)
cos(γz + θ) +

(z − 1) sin θ

4 sin(πz)
sin(γz + θ), (4.300)

b(z) := −
(z − 1) sin θ

4 sin(πz)
cos(γz + θ), (4.301)

c(z) := −
1

4 sin(πz)
cos(γz + θ)−

(z − 1) sin θ

4 sin(πz)
sin(γz + θ). (4.302)

Lemma 4.4. Let Ω ⊂ R
2 be the domain consisting of the interior of an infinite sector of aperture

θ ∈ (0, 2π) and let k̃ be as in the preamble of Lemma 4.3. Then detM(k̃(·, 1))(z) = 0 for some
z ∈ C with Re z ∈ (0, 1), if and only if one of the following equalities holds

(z − 1) sin θ = sin[(2π − θ)(z − 1)], (4.303)

(z − 1) sin θ = − sin[(2π − θ)(z − 1)], (4.304)

(z − 1) sin θ = sin[θ(z − 1)], (4.305)

(z − 1) sin θ = − sin[θ(z − 1)]. (4.306)

Furthermore, if any one of the identities (4.303), (4.304), (4.305) or (4.306) hold for some θ ∈
(0, 2π) and z = x+ iy, with x ∈ (0, 1) and y ∈ R, then y = 0.

Proof. The proof of the if and only if statement follows immediately from Corollary 3.6 where, in
the case of the Stokes system of hydrostatics, κ = C2/(2C1) = 1. The proof that if z ∈ C with
Re z ∈ (0, 1) satisfies one of the equations (4.303)-(4.306) than z must be a real number is treated
in Lemma 3.7 in the case κ = 1. �

With these tools in hand the proof of Theorem 1.2 follows in a similar fashion to that of Theo-
rem 1.1, making use this time of the following operator identities (see again [2])

(
∂τS

Stokes
)2

=
(
1
2I + (KStokes

Ψ )∗
)
◦
(
− 1

2I + (KStokes

Ψ )∗
)

on Lp(∂Ω), ∀ p ∈ (1,∞), (4.307)
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valid in two dimensions and

∂νΨD
Stokes

Ψ ◦ S =
(
1
2I + (KStokes

Ψ )∗
)
◦
(
− 1

2I + (KStokes

Ψ )∗
)

on L̇p
1(∂Ω), ∀ p ∈ (1,∞), (4.308)

valid in all dimensions.

5. On the critical indices via computer aided proofs

In this section, we focus on the behavior of the critical indices pi(θ, κ), i ∈ {1, . . . , 4} from
Theorem 1.1 by analyzing their dependence on the angle θ and the parameter κ.

Our main goal is to prove Theorem 1.3. Recalling Lemma 3.8, the first step is to show that each
of the two equations (3.205) and (3.207) implicitly defines a surface x = x(θ, κ) that is monotone
with respect to its parameters θ and κ; see Figure 1.

Figure 1. The implicit surfaces for equation (3.205) (left) and equation (3.207) (right).

Proposition 5.1. Let ε = 10−6 and δ = 10−4. Then the following hold

(1) Equation (3.205) implicitly defines a surface x1 = x1(θ, κ) for (θ, κ) ∈ [ε, π − ε]× [0, 1 − δ]
which is decreasing in θ and increasing in κ.

(2) Equation (3.207) implicitly defines a surface x2 = x2(θ, κ) for (θ, κ) ∈ [ε, π − ε]× [0, 1 − δ]
which is decreasing in θ and decreasing in κ.

Proof. We start with the proof of item (1) and introduce the function f : (0, π)× [0, 1]× [0, 1] −→ R

given by
f(θ, κ, x) := κ(x− 1) sin θ − sin[(2π − θ)(x− 1)]. (5.309)

In this notation (3.205) becomes
f(θ, κ, x) = 0. (5.310)

Employing Lemma 3.8 (and Lemma 3.9 for the case κ = 0), the equation (5.310) has exactly one
solution x1 = x1(θ, κ) for each pair (θ, κ) ∈ (0, π) × [0, 1]. The goal is to use the implicit function
theorem for the function f with respect to its dependence in the variable x. Since f is real analytic,
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matters reduce to proving that ∂f
∂x is bounded and does not vanish at the points (θ, κ, x1(θ, κ)).

Then, by the implicit function theorem, the function

[ε, π − ε]× [0, 1 − δ] ∋ (θ, κ) 7→ x1(θ, κ) (5.311)

is well-defined and as regular as f . With this in hand and using implicit differentiation in (5.310)
we obtain

∂x1
∂θ

(θ, κ) = −

∂f

∂θ
(θ, κ, x1(θ, κ))

∂f

∂x
(θ, κ, x1(θ, κ))

,
∂x1
∂κ

(θ, κ) = −

∂f

∂κ
(θ, κ, x1(θ, κ))

∂f

∂x
(θ, κ, x1(θ, κ))

. (5.312)

Monotonicity now follows by verifying that ∂f
∂θ and ∂f

∂κ in (5.312) do not vanish.

Summarizing, item (1) follows as soon as we prove that all partial derivatives of f (that is ∂f
∂θ ,

∂f
∂κ , and

∂f
∂x) are bounded and non-zero on the solution set A of (5.310), where

A :=
{
(θ, κ, x) ∈ [ε, π − ε]× [0, 1 − δ]× [0, 1/2] : f(θ, κ, x) = 0

}
. (5.313)

A comment is in order here, vis a vis the third component of A, namely [0, 12 ]. For each (θ, κ) ∈

(0, π)× [0, 1] Lemma 3.8 provides bounds for x1(θ, κ) :=
1

p(θ,κ) via (3.206). In particular x1(θ, κ) ∈

[0, 12 ].
One obstacle to overcome is that Lemma 3.8 provides only a crude bound on A that is not

sufficient for our needs. To address this, since A is a two-dimensional subset of the product of the
domains of θ, κ and x, we will enclose it by a finite union of closed, axis-parallel parallelepipes,
referred to as boxes. Specifically,

A ⊂ B =
N⋃

i=1

Bi. (5.314)

The computer-aided part of the proof will produce this finite enclosure by an adaptive bisection
procedure and – once we have a sufficiently tight enclosure of A – prove that all partial derivatives
of f are bounded and non-zero on a neighbourhood of A.

As an initial step, consider the interval extension F of the function f from (5.309); see Section 5.3
for an introduction to set-valued numerics. For computational reasons we will find it useful to revisit
parts of the proof of Lemma 3.8, and we shall do this in a sequence of four steps.

Step 1. Here our goal is to generate a finite set of boxes

Bi := Ii × [0, 1 − δ]× [0, 12 ] ⊆ [ε, π − ε]× [0, 1− δ]× [0, 12 ], i = 1, . . . , N, (5.315)

with the property that Ii := [θi, θi], for each i ∈ {1, . . . , N}, have disjoint interiors,

N⋃

i=1

Ii = [ε, π − ε], (5.316)

and, for each i ∈ {1, . . . , N},

the intervals F (Ii × [0, 1 − δ]× {0}) and F (Ii × [0, 1 − δ]× {1
2})

reside on opposite sides of the origin.
(5.317)
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The construction of the family of boxes {Bi}i=1,...,N is the result of a computer program which
also rigorously verifies that the function f has opposite signs on the two surfaces S− = [ε, π − ε]×
[0, 1− δ]×{0} and S+ = [ε, π− ε]× [0, 1− δ]×{1

2 }. All remaining computations will be performed
on the family of boxes {Bi}i=1,...,N .

Step 2. In this step we implement an algorithm whose goal is to tighten the enclosure of the
solution set A obtained as a result of the algorithm in Step 1. This is done by performing a rigorous
line search (as described in Section 5.3) along each of the four vertical edges of every box Bi. For
each i ∈ {1, . . . , N}, the vertical edges are given by

ℓi,1 = {θi} × {0} × [0, 12 ]

ℓi,2 = {θi} × {0} × [0, 12 ]

ℓi,3 = {θi} × {1− δ} × [0, 12 ]

ℓi,4 = {θi} × {1− δ} × [0, 12 ].

(5.318)

We will use interval-bisection in the x-coordinate (the third) to enclose the zeros of the function f
along each edge ℓi,j. The result of this procedure is that each vertical edge ℓi,j is shrunk to a very

small set ℓ̃i,j which contains the unique zero of f restricted to ℓi,j,

ℓ̃i,1 = {θi} × {0} × [xi,1, xi,1]

ℓ̃i,2 = {θi} × {0} × [xi,2, xi,2]

ℓ̃i,3 = {θi} × {1− δ} × [xi,3, xi,3]

ℓ̃i,4 = {θi} × {1− δ} × [xi,4, xi,4],

(5.319)

where, for each j ∈ {1, . . . , 4} we have 0 ≤ xi,j < xi,j ≤ 1/2. Next, for each i ∈ {1, . . . , N} consider

the box formed by taking the hull of the four contracted vertical edges ℓ̃i,j , j ∈ {1, . . . , 4},

B̃i = [θi, θi]× [0, 1 − δ]× [mi,Mi],

where mi := min
j∈{1,...,4}

xi,j and Mi := max
j∈{1,...,4}

xi,j.
(5.320)

Under the additional assumption that the mapping

[ε, π − ε]× [0, 1 − δ] ∋ (θ, κ) 7→ x1(θ, κ) is monotone in the variables θ and κ, (5.321)

for each i ∈ {1, . . . , N} we have

Bi ∩ A ⊂ B̃i. (5.322)

Consequently, the family of boxes {B̃i}i∈{1,...,N} cover A. In Step 4 we will describe how we verify

that assumption (5.321) is indeed satisfied and as such, the family {B̃i}i∈{1,...,N} obtained in this
step is a tighter enclosure of A (as compared to {Bi}i∈{1,...,N}).

Step 3. The aim of this step is to ensure the applicability of the implicit function theorem as
discussed at the beginning of the proof. To achieve this we implement an algorithm showing that
∂f
∂x is bounded and non-zero on the enclosure B̃ :=

⋃N
i=1 B̃i obtained in the previous step. This
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Figure 2. The effect of Step 2 in the proof. The white (full height) boxes are
from Step 1, where only the θ-domain is subdivided. The gray, contracted boxes
are the results of the bisection in Step 2. Projecting the implicit surface shows that
the contraction is near-optimal. Equation (3.205) appears in the left, and equation
(3.207) in the right.

reduces to checking that for each i ∈ {1, . . . , N} we have that

diam
(∂F
∂x

(Bi)
)

is finite and 0 /∈
∂F

∂x

(
B̃i

)
. (5.323)

As a consequence of (5.323), the implicit function theorem is applicable on B̃, and thus the solution
set A is a surface.

Step 4. The goal of this step is to prove (5.321). This can be done by verifying that

∂x1
∂θ

(·, ·) and
∂x1
∂κ

(·, ·) do not vanish on [ε, π − ε]× [0, 1− δ]. (5.324)

With an eye towards proving (5.324) we justify the implicit differentiation in (5.310) (here we use
Step 3) which led to (5.312). As a consequence, for each i ∈ {1, . . . , N}, the following inclusions
hold:

∂x1
∂θ

∣∣∣
[θi,θi]×[0,1−δ]

⊆ −

∂F

∂θ

(
B̃i

)

∂F

∂x

(
B̃i

) , (5.325)

and

∂x1
∂κ

∣∣∣
[θi,θi]×[0,1−δ]

⊆ −

∂F

∂κ

(
B̃i

)

∂F

∂x

(
B̃i

) . (5.326)

Next, we appeal to the second part in (5.323) in Step 3 to ensure that for each i ∈ {1, . . . , N} the

right-hand sides of (5.325) and (5.326) are meaningful. Since ∂f
∂κ(θ, κ, x) = (x − 1) sin θ < 0 on

(0, π) × [0, 1] × [0, 12 ] we deduce that ∂x1
∂κ (·, ·) does not vanish on [ε, π − ε]× [0, 1 − δ]. Matters are
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therefore reduced to checking that, for each i ∈ {1, . . . , N} we have

0 6∈
∂F

∂θ

(
B̃i

)
. (5.327)

We achieve this by implementing an algorithm computing the intervals ∂F
∂θ (B̃i) for i ∈ {1, . . . , N}

and check that they are bounded away from zero. This establishes the monotonicity of the surface
in (5.311) and, at the same time, justifies the tightening process in Step 2.

This finishes the proof of item (1); item (2) follows from a similar treatment, completing the
proof of the proposition. �

Remark. We have hand-coded the partial derivatives of f needed in (5.325). For more complicated
functions, one may utilize automatic differentiation, which only requires the explicit formula for f .
For a concise introduction to this technique, see [16]. Note also that, in Steps 1 and 2, we never
subdivide along the κ-component. For general functions f , however, this may have to be done.

We are now ready to present the proof of Theorem 1.3.
Proof of Theorem 1.3. Items (1) and (2) are a direct consequence of Proposition 5.1. The case of
items (3) and (4), when θ ∈ [π + ε, 2π − ε], follows immediately from (1.9) and Proposition 5.1. ✷

5.1. Computational results. The actual verifications needed in the proof of Theorem 5.1 (and its
analogue for equation (3.207)) were carried out on a single thread on an eight core Intel i7 processor
running at 2.67GHz. The operating system was Ubuntu 14.04 with the gcc compiler (version 4.8.2)
and the interval analysis package CXSC, version 2.5.4, see [17]. The total computing time was
roughly 23 seconds.

In Figure 1, we illustrate the surfaces x1(·, ·) and x2(·, ·). Note how the surface x2(·, ·) correspond-
ing to equation (3.207) is very flat when (θ, κ) ≈ (π, 1). Similarly, the surface x1(·, ·) corresponding
to equation (3.205) is flat when (θ, κ) ≈ (0, 1). This makes all steps of the computer aided proof
very hard to perform near these regions, which is apparent in Figure 2 where the partitions of the
domain are visible.

Table 1. Computational information.

equation boxes time (ms)
(3.205) 16458 4940
(3.207) 39896 17300

In Table 1, we present some computational information from the proof. The first column indicates
the equation under study. The second column lists the number of boxes produced in Step 1 of the
proof. The third column lists the CPU time (in milliseconds) required to complete the entire proof.

5.2. Stokes system. As Proposition 5.1 does not treat the case κ = 1, we address this situation
in what follows. We are interested in the two equations

fσ(θ, x) = (x− 1) sin θ − σ sin [(2π − θ)(x− 1)] = 0, σ ∈ {−1,+1}. (5.328)

We want to know if (5.328) implicitly defines a curve xσ = xσ(θ), and, if so, for what domain. We
are also intersted in monotonicity properties of the curve.

Proposition 5.2. The following holds:
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(1) Equation (5.328) with σ = +1 implicitly defines a curve x1 = x1(θ) for θ ∈ [10−4, π) which
is decreasing in θ.

(2) Equation (5.328) with σ = −1 implicitly defines a surface x2 = x2(θ) for θ ∈ (0, 1.78977],
which is decreasing in θ.
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Figure 3. An illustration of Proposition 5.2. The blue boxes are the maximal
domains of interest (θ, x) ∈ (0, π) × (0, 1/2). When σ = +1, the implicit curve x(θ)
(left) extends over the entire domain. When σ = −1, the implicit curve x(θ) (right)
exits the domain at θ ≈ 1.78975.

The proof uses Lemma 3.8; more precisely, we use the fact that there is at most one solution
xσ(θ) to (5.328) for θ ∈ (0, π). Based on this, we start by computing an approximation to the
curve xσ at a finite number of grid points θi, i = 1, . . . , N . Next, we cover the approximate curve
with N − 1 rectangles as illustrated in Figure 4. We construct the cover in such a way that the
approximate curve extends horizontally across each rectangle. We verify that the partial derivatives
of fσ are bounded and non-zero on each rectangle; this allows us to invoke the implicit function
theorem (and to prove monotonicity). Finally, we verify that the function fσ assumes different
signs on its two horizontal edges of each rectangle. This ensures that the graph of the implicit
function xσ(θ) is well-defined and is enclosed by the cover.

In the computer-aided proof of Proposition 5.2, we used 500000 (2848598) rectangles in the cover.
The computations took ca 780 (4400) ms for each case σ = −1 (+1). Of course, the reported bound
1.78977 in Proposition 5.2 is a lower estimate of the number θo introduced in (1.23). In fact, we
can enclose this number as accurately as we wish: it is simply a matter of using sufficiently high
precision in our computations.

Lemma 5.3. The equation sin θ + (2π − θ) · cos θ = 0 has a unique solution θo in [0, π] which
satisfies θo ∈ [1.78977584927052, 1.78977584927053].

The computer-assisted proof is based on the techniques and algorithms described in Section 5.3.

5.3. Interval Analysis. The foundation of most computer-aided proofs dealing with continuous
problems is the ability to compute with set-valued functions. This allows for all rounding errors to
be taken into account, and even more importantly, all discretization errors. Here, we will briefly
describe the fundamentals of interval analysis (for a concise reference on this topic, see e.g. [1],
[37], [39]).
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Figure 4. An illustration of the enclosing cover of the graph of xσ(θ). The rectan-
gles of the cover (blue) are centered on the approximate graph (red), ensuring that
the exact solution to (5.328) never comes close to the vertical edges of the rectangles.
The case σ = +1 is presented in the left figure. The case σ = −1 is presented in
right figure.

Let IR denote the set of closed intervals. For any element x ∈ IR, we adopt the notation
x = [x,x], where x,x ∈ R. If ⋆ is one of the operators +,−,×,÷, we define the arithmetic on
elements of IR by

x ⋆ y = {a ⋆ b : a ∈ x, b ∈ y},

except that x÷ y is undefined if 0 ∈ y. Working exclusively with closed intervals, we can describe
the resulting interval in terms of the endpoints of the operands:

x+ y = [x+ y,x+ y],

x− y = [x− y,x− y], (5.329)

x× y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)],

x÷ y = x× [1/y, 1/y], if 0 /∈ y.

Note that the identities (5.329) reduce to ordinary real arithmetic when the intervals are thin, i.e.,
when x = x and y = y. When computing with finite precision, however, directed rounding must
also be taken into account, see e.g., [37, 38].

A key feature of interval arithmetic is that it is inclusion monotonic, i.e., if x ⊆ x̂, and y ⊆ ŷ,
then

x ⋆ y ⊆ x̂ ⋆ ŷ, (5.330)

where we demand that 0 /∈ ŷ for division.
One of the main reasons for passing to interval arithmetic is that this approach provides a

simple way of enclosing the range of elementary functions f over simple domains. In what follows,
we will use the notation range(f ;x) := {f(x) : x ∈ x}. Except for the most trivial cases, classical
mathematics provides few tools to accurately bound the range of a function. To achieve this latter
goal, we extend the real functions to interval functions which take and return intervals rather
than real numbers. Based on (5.329) we extend a given representation of a rational functions to
its interval version by simply substituting all occurrences of the real variable x with the interval
variable x (and the real arithmetic operators with their interval counterparts). This produces a
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rational interval function F : IR ∩ Df → IR, called the natural interval extension of f : Df → R,
where Df ⊆ R is the domain of the function f . As long as all interval arithmetic operations are
well-defined, we have the inclusion

range(f ;x) ⊆ F (x), (5.331)

by property (5.330). In fact, this type of range enclosure can be obtained for any elementary
function.

A higher-dimensional function f : Rn → R can be extended to an interval function F : IRn → IR

in a similar manner. The function argument is then an interval-vector x = (x1, . . . ,xn), which we
also refer to as a box. There exist several open source programming packages for interval analysis
[17],[41], [27], as well as commercial products such as [15].

We will now illustrate the use of interval techniques, with a special emphasis on non-linear
equation solving. Given a continuous function f together with an interval domain x, we want
to locate all zeros of f restricted to x. We will do this by subdividing the domain into smaller
intervals:

x =

N⋃

i=1

xi. (5.332)

Using the contrapositive version of (5.331), we have 0 /∈ F (xi) ⇒ ∀x ∈ xi, f(x) 6= 0. This is an
effective criterion for discarding subsets of the domain that provably do not contain zeros of f .
By continuity, the intermediate value theorem provides a simple check for a subinterval to enclose
(at least) one zero of f : if f(xi) and f(xi) have opposite signs, then f(x) = 0 for some x ∈ xi.
If f is continously differentiable, and we also have 0 /∈ F ′(xi), then we know that xi encloses a
unique zero of f . In higher dimensions, the intermediate value theorem is replaced by more general
statements such as Miranda’s theorem [33].
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[30] V.G.Maz’ya and V.A. Plamenvskii, On properties of solutions of three-dimensional problems of elas-

ticity theory and hydrodynamics in domains with isolated singular points, Amer. Math. Soc. Transl. Ser.
2, vol. 123 (1984), 109–123.

[31] V.Maz’ya, Boundary integral equations, Analysis, IV, 127–222, Encyclopaedia Math. Sci., Vol. 27,
Springer, Berlin, 1991.

[32] V.G.Mazya and J.Rossmann, Weighted Lp estimates of solutions to boundary value problems for second
order elliptic systems in polyhedral domains, Z. Angew. Math. Mech., 83 (2003), 435–467.

[33] C.Miranda, Un’ osservatione su un theorema di Brouwer, Bolletino Unione Mathematica Italiana, 3
(1940), 5–7.

[34] D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Universitext, Springer-
Verlag, 2013.

[35] I.Mitrea, Boundary problems for harmonic functions and norm estimates for inverses of singular inte-
grals in two dimensions, Numer. Funct. Anal. Optim., 26(7-8) (2005), 851–878.



INVERTIBILITY PROPERTIES OF SIO’S ASSOCIATED WITH THE LAMÉ AND STOKES SYSTEMS53
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