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a b s t r a c t

We present a method to find all zeros of an analytic function in a rectangular domain.
The approach is based on finding guaranteed enclosures rather than approximations of the
zeros. Well-isolated simple zeros are determined fast and with high accuracy. Clusters of
zeros can in many cases be distinguished from multiple zeros by applying the argument
principle to sufficiently high-order derivatives of the function. We illustrate the proposed
method through five examples of varying levels of complexity.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Finding approximate zeros of analytic functions is an important and well-studied problem. The case of polynomial zeros
has been studied thoroughly, see e.g. [9,17,16]. Methods to find the number of zeros of a general analytic function are
addressed in e.g. [8,13,19].
The method presented in [8] is based on the argument principle, and uses validated integration of contour integrals. It

is rigorous since the error terms from the numerical quadrature are enclosed via interval arithmetic. The method described
in [4] uses a bisection scheme to find enclosures of all zeroswithin a given rectangle, but is not rigorous. Combining the basic
ideas of bothmentioned papers, and introducing several improvements, we obtain an adaptive, rigorousmethod for locating
enclosures of all zeros of an analytic function within a given rectangle. Several examples of the method’s performance are
presented below.

2. The general strategy

Wewill base ourmethod on the argument principle (see e.g. [1]) restricted to rectangular domains R. If f is ameromorphic
function in R ⊂ C not having any zeros or poles on the simple closed counter-clockwise oriented contour ∂R, we have

I(f ; R) =
1
2π i

∫
∂R

f ′(z)
f (z)

dz = N − P. (1)

Here, N and P are the number of f ’s zeros and poles (counting multiplicities), respectively, inside R. Seeing that we will only
consider analytic functions, we always have P = 0. Thus, in order to determine the number of zeros of f via (1) using a
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computer, it suffices to produce an enclosure E(f ; R) of I(f ; R) such that its real part has a diameter of less than one:
I(f ; R) ∈ E(f ; R) and diam(R (E(f ; R))) < 1.

Once we have established the unique integer value k of I(f ; R), we distinguish three cases:
a. (k = 0) The rectangle R contains no zeros of f .
b. (k = 1) The rectangle R contains exactly one zero of f .
c. (k > 1) The rectangle R contains at least one, and at most k zeros of f .

In case (a), there is nothing to do: we simply remove R from further study. In case (b), however, we might want to refine
the enclosure of the unique zero. This is done by a local search, first heuristically using Newton’s method applied to f , and
finally rigorously by a verification process described below. In case (c), we first attempt to shrink the domain as in (b), but
using a Newton search applied to f (k−1). If this fails we generally bisect the rectangle along its widest side, and re-examine
the two subrectangles separately according to (1). Only when a rectangle has reached a minimum size do we attempt to
distinguish the case of a multiple zero from a cluster of simple zeros. This procedure is described below.
The outcome from this scheme is a list of rectangles, each having an associated integer: {Ri, ki}mi=1, where ki = I(f ; Ri).

Note that R = ∪mi=1 Ri, and int(Ri)∩ int(Rj) = ∅ for i 6= j. In the case maxi ki ≤ 1, we have managed to isolate all zeros of f ,
and proved that they are all simple.

3. Computational aspects

When computing I(f ; R) via (1), we will decompose the contour of integration into its four line segments ∂R =
γ1 + · · · + γ4. Each line segment is parametrized by a linear function: zj: [0, 1] → C defined by zj(t) = γ−j (1− t)+ γ

+

j t ,
where γ−j and γ

+

j are endpoints of γj chosen so that the positive orientation of ∂R is preserved.
With this parametrization, we arrive at the identity

I(f ; R) =
1
2π i

4∑
j=1

∫ 1

0

f ′(zj(t))
f (zj(t))

z ′j (t) dt. (2)

In what follows, we will concentrate on one of the four integrals appearing on the right-hand side of (2). In order to ease
the reading, we will suppress the index j, and write g(t) = f ′(z(t))z ′(t)/f (z(t)). The task at hand, then, is to compute an
enclosure of the integral

Ĩ(g; [0, 1]) =
∫ 1

0
g(t) dt. (3)

We require that the enclosure of the imaginary part of (3) has a diameter less than π/2. This is achieved by adaptively
inserting nodes tk within the domain of integration [0, 1].
The numerical quadraturewill be based on Simpson’s three-pointmethod: given three consecutive nodes t2k, t2k+1, t2k+2

satisfying t2k+1 = (t2k + t2k+2)/2, we have∫ t2k+2

t2k
g(t) dt =

t2k+2 − t2k
6

(g(t2k)+ 4g(t2k+1)+ g(t2k+2))︸ ︷︷ ︸
approximation

−
(t2k+2 − t2k)5

2880
g(4)(s2k)︸ ︷︷ ︸

remainder

, (4)

where s2k is some number between t2k and t2k+2. We will account for the remainder term by enclosing the range of g(4) over
the subdomain [t2k, t2k+2]:

g(4)(s2k) ∈ range
(
g(4); [t2k, t2k+2]

)
= {g(4)(t): t ∈ [t2k, t2k+2]} ⊆ G(4)([t2k, t2k+2]). (5)

Here, G(4) is a set-valued, interval extension of g(4). This is obtained by a combination of complex interval arithmetic and
automatic differentiation (see [2,5,11,12,14,18]).
In order to reach the desired quality of the global enclosure, we demand that the diameter of the imaginary part of each

local enclosure of (5) be less than (t2k+2 − t2k)π/2. This is not hard to obtain seeing that the width of the enclosure comes
from the remainder term, which contains a (t2k+2 − t2k)5 factor.
One major strength of this approach is that the user need only provide the original function f and the domain R. The

program automatically generates the re-parametrization g , as well as its interval extension G, and all necessary set-valued
derivatives G(k) with mathematical rigour.

3.1. Improving enclosures of simple zeros

As soon as we encounter a region Ri that contains a unique simple zero, we attempt to improve the bounds via a Newton
search. Taking the midpoint of the domain z0 = mid(Ri) as starting point, we generate the sequence

zn+1 = zn −
f (zn)
f ′(zn)

. (6)
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This usually converges to some point z∗ within a few iterates. Since this is obtained from a (non-validated) floating point
iteration, we have to prove a posteriori that z∗ indeed is a good approximation to the unique zero of f . This is done in three
steps: (i) we verify that z∗ belongs to the original enclosing domain Ri; (ii) we shrink Ri to a very small rectangle R∗i containing
z∗; (iii) we show that I(f ; R∗i ) = 1. If (i)–(iii) hold, then we have proved that there is a zero in R

∗

i , and that this is the only
zero of f in Ri. If the validation fails, we return to the main program, and continue to bisect Ri.

3.2. Multiple zeros versus clusters

Given a rectangle Ri of minimal size, satisfying I(f ; Ri) = k > 1, we would like to know whether Ri contains multiple
zeros or not. To prove numerically that an analytic function has a multiple zero is, in general, not possible. What is possible,
however, is to prove that no multiple zeros reside within Ri. This is achieved by applying the argument principle to the jth
derivative f (j) for j = 1, . . . , k − 1. If I(f (j); Ri) = 0, the function f does not have any zeros of order j + 1 within Ri. If
successful, this procedure can establish the existence of several simple zeros within Ri. As mentioned earlier, the required
derivatives are generated via automatic differentiation.

3.3. Improving enclosures of multiple zeros

As soon as we encounter a region Ri, satisfying I(f ; Ri) = k > 1, we attempt to shrink Ri via a Newton search on f (k−1).
Taking the midpoint of the domain z0 = mid(Ri) as starting point, we generate the sequence

zn+1 = zn −
f (k−1)(zn)
f (k)(zn)

. (7)

If the domain contains a zero of degree k, this sequence usually converges to some point z∗ within a few iterates. Again, we
have to prove a posteriori that z∗ indeed is a good approximation to the simple zero of f (k−1). This is done in three steps:
(i) we verify that z∗ belongs to the original enclosing domain Ri; (ii) we shrink Ri to a very small rectangle R∗i containing z

∗;
(iii) we show that I(f ; R∗i ) = k. If (i)–(iii) hold, then we have proved that there are k zeros in R

∗

i , and that these are the only
zeros of f in Ri. If the validation fails, we return to the main program, and continue to bisect Ri.

4. Examples

All computations were performed on a Intel Xeon 2.0 GHz, 64 bit computer with 7970 MB of RAM. The program was
compiled with gcc, version 3.4.6. The software for complex interval Taylor arithmetic was provided by the CXS-C package,
version 2.1.1 (see [3,6]).

Example 1. Our first example is purely academic, and illustrates the adaptivity of the proposed method:

f1(z) = z11 − a,

(
a =

1
2
+ i

√
3
2

)
.

This polynomial has exactly 11 zeros — all of them simple, and evenly distributed on the unit circle in C. Starting with the
domain R = [−3, 3] + i[−3, 3], 28 subdivisions and 11 Newton searches were needed to determine all zeros with nine
decimals. The entire run time was 40 s, see Fig. 1. On average, we needed roughly 4 s per zero.

Example 2. Our second example is taken from [17] (see p. 119), and is a fifth order polynomial with clustered zeros:

f2(z) = 70(z2 − 2z + 3)2
(
z −

(
1+ i

99
70

))
.

This polynomial has two zeros of multiplicity two at z = 1 ± i
√
2, and one simple zero at z = 1 + i 9970 . Note that

|
√
2 − 99

70 | < 7.3 × 10−5. This means that three of the five zeros are clustered together. Searching over the domain
R = [−10, 10] + i[−10, 10], 40 subdivisions and three Newton searches were needed to determine all the zeros (multiple
and simple) with nine decimals, see Fig. 2. The entire run time was 27 s, which corresponds to roughly 5 s per zero on
average.

Example 3. Next, we consider an example from [4],

f3(z) = z50 + z12 − 5 sin(20z) cos(12z)− 1,

which we prove to have exactly 424 zeros on the domain R = [−20.3, 20.7] + i[−5, 5.1] — all of them simple, see Fig. 3. A
total of 1321 bisections were required in order to find the zeros with 9 decimals. The run time for this programwas 63 min,
indicating that our method is slow for functions with a large number of clustered zeros. On average, we needed roughly 9 s
per zero.
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Fig. 1. Throughout the search, a subrectangle can be discarded (blue) or contracted (green). The final enclosures (too small to appear in the illustration)
are marked with red stars. (a) When a = 1

2 + i
√
3
2 , the boundaries of the subrectangles do not contain any zeros of f1 . (b) When a = 1, however, the zero

at z = 1 requires that two subrectangles be slightly enlarged during the search. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. (a) The two regions of five zeros of f2 . (b) A close-up of the three zeros with positive imaginary parts.

Example 4. Our second last example, also from [4], is based on a model for the stability of a flow inside of an annular
combustion chamber:

f4(z) = z2 + Az + Be−Tz + C .

The relevant parameter values are A = −0.19435, B = 1000.41, C = 522 463, and T = 0.005. Using the same domain as
in [4], R = [−15 000, 5000] + i[−15 000, 15 000], we prove that f4 has exactly 24 zeros inside R — all of them simple, see
Fig. 4. Since all of these are well separated, only 67 bisections were needed to isolate the zeros before the Newton step, and
another 24 during the Newton search procedure. Thus, a total of 48 Newton searches had to be done in order to find the
zeros with 9 decimals. The run time was 64 s, which means roughly 2 s per zero.
Comparing these results to the non-validated method in [4], one should note that both methods actually find all roots of

f3 and f4 in the respective domains. We, however, can also prove that this really is the case.
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Fig. 3. (a) The 424 zeros of f3 with the discarded/contracted regions. (b) A close-up on the zeros near the origin.

Fig. 4. (a) The 24 zeros of f4 with the discarded/contracted regions. (b) A close-up on the zeros.

Example 5. As our final example, to illustrate that the presentedmethod also works for complicated functions, we consider
the Riemann Zeta function (see e.g. [10])

ζ (s) =
∞∑
n=1

n−s.

To find an interval extension of ζ (s) we approximate it using the Euler–Maclaurin summation formula (see e.g. [7]), and
enclose the error terms and their derivatives with interval extensions. This gives the following interval extension of ζ (s):

ζ (s) ∈
N∑
n=1

n−s +
1
2
(1+ N)−s +

(1+ N)1−s

s− 1
+

R∑
k=1

B2k
(2k)!

2k−2∏
l=0

(s+ l)(1+ N)−s−2k+1 +
2R∏
l=0

(s+ l)G(s, R,N), (8)

where B2k denote the even Bernoulli numbers and G(s, R,N) is an interval extension of the remainder. Interval extensions
of the derivatives of G are entered by hand, so that automatic differentiation can be used for the entire formula (4).

G(s, R,N) = 2/(2π)2R+1ζ (2R)(σ + 2R)−1(N + 1)−(σ+2R)I

G(k)(s, R,N) = (lnk(1+ N)G(s, R,N)+ k(σ + 2R)−1G(k−1)(s, R,N))I,

where I = [−1, 1] + i[−1, 1].
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Table 1
A summary of the performance for the five examples.

Function Zeros Bisections CPU time

f1 11 28 00:00:40
f2 5 40 00:00:27
f3 424 1321 01:03:00
f4 24 91 00:01:04
f5 29 95 10:30:00

Examining the domain [0.49, 0.51]+ i[0, 100] (which encloses a portion of the critical lineR(s) = 1
2 ), we found 29 zeros

— all simple. These were all determined with nine correct decimals. The total run time was 1h 30 min on seven parallel
processors, and called for a total of 95 bisections. The complexity of these computations are illustrated by the tremendous
increase in run time: on average, it took 22 min per zero. Of course, there exist much more effective methods for locating
the zeros of the Riemann Zeta function, see e.g. [15].

5. Conclusions

We have presented a validated method which produces enclosures of all zeros of an analytic function in a bounded
rectangular domain. Simple, well-spaced zeros are generally determined reasonably fast, and with high accuracy. Our
method is also able to disprove the existence of multiple roots in a cluster of zeros. Its main strength, however, is that
all zeros are accounted for: it is mathematically impossible for the algorithm to miss a zero.
As illustrated by the performance in the third and fifth examples (see Table 1), the time-consuming part of our algorithm

is caused either by the number of bisections, or by a very expensive function evaluation. An obvious, partial, remedy to the
latter would be to store all function evaluations. These could then be re-used when inserting new nodes in the adaptive
quadrature scheme.
The proposed method is very user-friendly seeing that only the function itself, and no derivatives, are required by the

user. Future research will aim at generalizing the method to arbitrary triangulated domains.
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