4ECM Stockholm 2004
(© 2005 European Mathematical Society

Validated Numerics for Pedestrians

Warwick Tucker

Abstract. The aim of this paper is to give a very brief introduction to the emerg-
ing area of validated numerics. This is a rapidly growing field of research faced
with the challenge of interfacing computer science and pure mathematics. Most
validated numerics is based on interval analysis, which allows its users to account
for both rounding and discretization errors in computer-aided proofs. We will il-
lustrate the strengths of these techniques by converting the well-known bisection
method into a efficient, validated root finder.

1. Introduction

Since the creation of the digital computer, numerical computations have played
an increasingly fundamental role in modeling physical phenomena for science
and engineering. With regards to computing speed and memory capacity, the
early computers seem almost amusingly crude compared to their modern coun-
terparts. Nevertheless, real-world problems were solved, and the speed-up due
to the use of machines pushed the frontier of feasible computing tasks forward.
Through a myriad of small developmental increments, we are now on the verge
of producing Peta-flop/Peta-byte computers — an incredible feat which must
have seemed completely unimaginable fifty years ago.

Due to the inherent limitations of any finite-state machine, numerical
computations are almost never carried out in a mathematically precise manner.
As a consequence, they do not produce exact results, but rather approximate
values that usually, but far from always, are near the true ones. In addition
to this, external influences, such as an over-simplified mathematical model or
a discrete approximation of the same, introduce additional inaccuracies into
the calculations. As a result, even a seemingly simple numerical algorithm is
virtually impossible to analyze with regards to its accuracy. To do so would
involve taking into account every single floating point operation performed
throughout the entire computation. It is somewhat amazing that a program
performing only two floating point operations can be challenging to analyze!
At speeds of one billion operations per second, any medium-sized program is
clearly out of reach. This is a particularly valid point for complex systems, which
require enormous models and very long computer runs. The grand example in
this setting is weather prediction, although much simpler systems display the
same kind of inaccessibility.

852 ‘W. Tucker

This state of affairs has led us to the rather awkward position where we
can perform formidable computing tasks at very high speed, but where we do
not have the capability to judge the validity of the final results. The question
“Are we just getting the wrong answers faster?” is therefore a valid one, albeit
slightly unkind.

Fortunately, there are computational models in which approximate results
are automatically provided with guaranteed error bounds. The simplest such
model — interval analysis — was developed by Ramon Moore in the 1960’s,
see [Mo66]. At the time, however, computers were still at an early stage of
development, and the additional costs associated with keeping track of the
computational errors were deemed as too high. Furthermore, without special
care in formulating the numerical algorithms, the produced error bounds would
inevitably become overly pessimistic, and therefore quite useless.

Today, the development of interval methods has reached a high level of
sophistication: tight error bounds can be produced — in many cases even faster
than non-rigorous computations can provide an “approximation”. As a tes-
tament to this, several highly non-trivial results in pure mathematics have
recently been proved using computer-aided methods based on such interval
techniques, see, e.g., [Ha95], [Tu02], and [GMO03]. We have now reached the
stage where we can demand rigor as well as speed from our numerical com-
putations. In light of this, it is clear that the future development of scientific
computation must include techniques for performing validated numerics.

2. Interval arithmetic

In this section, we will briefly describe the fundamentals of interval arithmetic.
For a concise reference on this topic, see, e.g., [AH83], [KM81], [Mo66], or
[Mo79]. For early papers on the topic see, [Yo31], [Wa56], and [Su58].

Let IR denote the set of closed intervals. For any element [a] € IR, we
adapt the notation [a] = [g, @]. If x is one of the operators +, —, x, =, we define
arithmetic operations on elements of IR by

[a] x [b] = {axb: a € [a],b € [b]},

except that [a] + [b] is undefined if 0 € [b]. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of the
operands:

la] + [b] [a+ b,a+ b]

[a] =[] = [a—b,a—1

[a] x [b] = [min(ab, ab,ab,ab), max(ab, ab,ab, ab)]
@] = o x (15178, it0g [b]

To increase speed, it is customary to break the formula for multiplication into
nine cases (depending of the signs of the endpoints), where only one case in-

Validated Numerics for Pedestrians 853

volves more than two multiplications. When computing with finite precision,
directed rounding must also be taken into account, see, e.g., [KM81] or [Mo79].

It follows immediately from the definitions that addition and multiplica-
tion are both associative and commutative. The distributive law, however, does
not always hold. As an example, we have

[71, 1]([7170] + [374]) = [71, 1][274] = [74,4]
whereas
[—1,1][-1,0] + [-1,1][3,4] = [-1,1] 4+ [—4,4] = [-5, 5].

This unusual property is important to keep in mind when representing functions
as part of a computer program. Interval arithmetic satisfies a weaker rule than
the distributive law, which we shall refer to as sub-distributivity:

[al([0] + [e]) < [a][b] + [a[e].

Another key feature of interval arithmetic is that it is inclusion monotonic, i.e.,

if [a] C [a’], and [b] C [V'], then
[a] % [b] C [a'] % [V'],

where we demand that 0 ¢ [b'] for division.
Finally, we can turn IR into a metric space by equipping it with the
Hausdorff distance:

d([a], [b]) = max{|a— b, |a — b]}. (2.1)

3. Interval-valued functions

One of the main points of studying interval arithmetic is that we want a simple
way of enclosing the range of a real-valued function. Let D C R, and consider
a function f: D — R. We define the range of f over D to be the set

R(f; D) ={f(x): € D}.

Except for the most trivial cases, mathematics provides few tools to describe
the range of a given function f over a specific domain D. Indeed, today there
exists an entire branch of mathematics and computer science — Optimization
Theory — devoted to “simply” finding the smallest element of the set R(f; D).
We shall see that interval arithmetic provides a helping hand in this matter.

As a first step, we begin by attempting to extend the real functions to
interval functions. By this, we mean functions who take and return inter-
vals rather than real numbers. We already have the theory to extend ratio-
nal functions, i.e., functions on the form f(z) = p(x)/q(x), where p and ¢ are
polynomials. Simply substituting all occurrences of the real variable x with
the interval variable [x] (and the real arithmetic operators with their interval
counterparts) produces a rational interval function F([z]), called the natural
interval extension of f. As long as no singularities are encountered, we have
R(f;[z]) C F([z]), by the inclusion monotonicity property.

854 ‘W. Tucker

For future reference, we define the class of standard functions to be the set

G = {da%]log,x, 2P/9 absz,sinz, cosz, tan, . . .
...,sinh x, cosh z, tanh x, arcsin z, arccos z;, arctan x }.

By using the fact that these functions are piecewise monotonic, it is possible
to extend all standard functions to the interval realm: any f € & has a sharp
interval extension F. By sharp, we mean that the interval evaluation F([z])
produces the eract range of f over the domain [z]:

f e 6= R(f;[x]) = F([z]).

Note that, in particular, this implies that F([z,z]) = f(x), i.e., F and f are
identical on R.

Of course, the class of standard functions is too small for most practi-
cal applications. We will use them as building blocks for more complicated
functions as follows.

Definition 3.1. Any real-valued function expressed as a finite number of stan-
dard functions combined with constants, arithmetic operations, and compo-

sitions is called an elementary function. The class of elementary functions is
denoted by €.

Thus a representation of an elementary function is defined in terms of
its sub-expressions. The leaves of the tree of sub-expressions (sometimes called
a Directed Acyclic Graph — or a DAG for short) are either constants or the
variable of the function, see Figure 1.

/'\
\

ey
() —
B

FIGURE 1. A DAG for f(z) = (2? + sinz)(32% + 6).

It is important to note that, due to the intrinsic nature of interval arith-
metic, the interval extension F' depends on the particular representation of f.
To illustrate this point, consider the functions f(x) = x —x and g(z) = 0. Their
natural interval extensions are F([z]) = [z] — [z] and G([z]) = [0, 0], respec-
tively. Although f and g are identical over R, their extensions differ over IR.

Validated Numerics for Pedestrians 855

Nevertheless, given a real-valued function f, any one of its (well-defined) inter-
val extensions F satisfies R(f;[z]) C F([z]) due to the inclusion monotonicity
property:

Theorem 3.2 (The fundamental theorem of interval analysis). Given an ele-
mentary function f, and a natural interval-extension F such that F([x]) is well
defined for some [z] € IR, we have

(1) [z] C [¢'] C [=] = F([z]) C F([¢']), (inclusion monotonicity)
(2) R(f;[x]) C F([x]). (range enclosure)

For a proof, see, e.g., [Mo66].

Of course, the enclosure F([z]) is rarely sharp, and may in fact grossly
overestimate R(f;[z]). If f is sufficiently regular, however, this overestimation
can be made arbitrarily small by subdividing [z] into many smaller intervals,
evaluating F' over each sub-interval, and then taking the union of all resulting
sets. To make this statement more precise, we define €¢ to be the set of all
(representations of) elementary functions whose sub-expressions are Lipschitz:

¢e = {f € ¢&: each sub-expression of f is Lipschitz}.

Theorem 3.3 (Tight range enclosure). Consider f: I — R with f € €g, and
let F' be an inclusion isotonic interval extension of f such that F([x]) is well
defined for some [x] C I. Then there exists a positive real number K, depending
on F and [z], such that, if [x] = UF_ [2P)], then

k

R(f:[«]) € |J F([2) € F([a])

i=1

and

w
i=1,....k

Here, w([z]) = & — z denotes the width of [x]. For a proof of this theorem,
see, e.g., [Mo66].

In essence, the second part of Theorem 3.3 says that, if the listed condi-
tions are satisfied, then the overestimation of the range tends to zero no slower
than linearly as the domain shrinks:

d(R (f;[2]), F ([2])) = O(w([x])),

where d(-, -) is the Hausdorff distance, as defined in (2.1). Since Lipschitz func-
tions satisfy w(R(f; [z])) = O(w([z])), it also follows that

w(F ([2])) = O(w([z])),

i.e., the width of the enclosure scales (at most) linearly with w([z]), see Figure 2.

s.
Il (B
A

F([iﬁ(i)])) < w(R(f; [;v])) + K max w <[;v(i)]))

856 W. Tucker

FIGURE 2. Successively tighter interval enclosures of f(z) = cos® x + sinz.

4. The bisection method

As a simple illustration of the powers of interval analysis, we will study the
bisection method. This is a well-known algorithm for locating a zero of a con-
tinuous function. To be precise, let f be continuous on [a, b], and suppose that
f(a)f(b) < 0. Then, by the intermediate-value theorem, f has at least one root
a € (a,b). The bisection method proceeds as follows: Initially, we set ag = a
and by = b. At stage k, we compute the midpoint ¢ = (ay + bg)/2. Now there
are three possibilities. If f(cx) = 0, then we can set « = ¢, and terminate the
search. If f(ag)f(ck) < 0, we set ag+1 = ar and byy1 = cx. If f(ar)f(ck) > 0,
we set ag+1 = ¢ and bg+1 = br. The search is guaranteed to converge to a
root since we have |ax — by| = 27%|ag — bo|. When programming the bisection
method, it is common to end the search when some predefined tolerance is met,
e.g., lar —bi| < tol. A C++ implementation of the real-valued bisection method
is presented in Figure 3.

void bisect(pfcn f, double a, double b, double tol)
{ // We are assuming that f(a)xf(b) < 0.
double ¢ = (a + b)/2;
double fc = f(c);
if ((b - a < tol) || (fc == 0)) // If the tolerance is met, or f(c) = 0
cout << c << endl; // ... print the midpoint.
else { // Otherwise...
double ff = f(a)*fc;
if (£f < 0)

bisect(f, a, c, tol); // ... check the left half, or
else if (£ff > 0)
bisect(f, c, b, tol); // ... check the right half.

FIGURE 3. A recursive implementation of the real-valued bisection method.

Validated Numerics for Pedestrians 857

There are, however, several flaws with the bisection method, when used
as a root-finding device. One is the problem of finding points a and b satisfying
the starting condition f(a)f(b) < 0. Indeed, if f is of constant sign, with the
exception of a very small set, it may be impossible to even start the search. An
example is given by the class of functions

folx)=1— 20 (#-1/2)%

Clearly, f,(1/2) = —1 for all p. Nevertheless, when taking p large, almost all
other function values are very close to +1, see Figure 4(a).

1 L A A — ="

FIGURE 4. (a) f,(z) =1 — 2= @=1/2” for p € {1,10,100}.
(b) f(z) = sin (sin(z) + 15/(z* + 1))

A second problem occurs when f has several roots within the search do-
main. Suppose that f has N simple roots a; < ag < -+ < ap in [a,b]. Then
the bisection method will find the even-labeled roots with probability zero,
whilst the odd-labeled roots are located with uniform probability, see [Co77].

The interval bisection methods deals elegantly with both problems. In-
stead of aiming directly at finding a root of f, it discards subsets of [a, b] that
are guaranteed to be root-free. By using the second part of Theorem 3.2, it
follows that 0 ¢ F'([z]) = 0 ¢ R(f;[z]). Therefore, the strategy of the interval
version bisection scheme is to recursively bisect the search space, retaining only
those subintervals [z;] satisfying 0 € F'([z;]). Such intervals are called feasible,
since they may contain roots of f. Once a feasible subinterval has reached a
width smaller than the tolerance tol, it is sent to the output. A C++ imple-
mentation of the interval-valued bisection method is presented in Figure 5.
Note how much clearer the code is compared to its real-valued counterpart in

Figure 3.
When the search has been exhausted, we are left with a collection of
feasible intervals [z1], ..., [zas] whose union contains all roots of f within [a, b]:

M

Z ={a€a,b): fla) =0} C | J] =S,

=1

858 ‘W. Tucker

void bisect(pfcn F, interval X, double tol)
{
if (subset(0.0, F(X))) // If zero is contained in F(X)
if (width(X) < tol) // ...
cout << X << endl; // ... print the subinterval.
else { // Otherwise, divide and conquer.
bisect(F, interval(min(X), mid(X)), tol);
bisect(F, interval(mid(X), max(X)), tol);
¥

and the tolerance is met

FIGURE 5. A recursive implementation of the interval-valued bisec-
tion method.

Of course, the set S may grossly overestimate Z. If, however, f satisfies the
assumptions of Theorem 3.3, we can expect a very good agreement between S
and Z, as long as the tolerance tol is kept reasonably small.

In the case where f has only simple roots in [a, b], there are several ways
of determining weather a feasible interval [z;] contains a unique root or not,
see, e.g., [AH83], [HHI5], [Mo66], or [Mo79].

5. Examples

We will now provide two concrete examples of the interval-valued bisection
method. The first example deals with the family of problematic functions f,,
described earlier. We will fix the search region to [z] = [—5,5], and set the
tolerance to tol = 1071°. It is clear that each fp has two simple roots, both
approaching 1/2 as p increases.

TABLE 1. Interval enclosures of the roots of
folz)=1— 2e—r"(@=1/2) for varying p.

p [e%1 a9

100 —0.3325546111592, —0.3325546110863 +1.3325546111445, 41.3325546112174
10! +0.4167445388156, 4+0.4167445388885 +0.5832554610969, +0.5832554611698
102 +0.4916744538786,40.4916744539515 +0.5083255461067, +0.5083255461796
103 +0.4991674453776,40.4991674454505 +0.5008325546077, 40.5008325546806
104 +0.4999167445203, 40.4999167445931 +0.5000832553923, 4-0.5000832554652
10° +0.4999916744418, +0.4999916745147 +0.5000083255436, +0.5000083256164
106 [4+0.4999991674412, +0.4999991675141] | [4+0.5000008325441, +-0.5000008326170

In Table 1, we clearly see the numerically computed root-enclosures be-
have as expected. Note that for very large values of p, even starting the real-
valued bisection method would require almost as much work as actually finding
the roots of f,.

The second example deals with a function having many roots within the
search domain. We will study the function f(x) = sin (sin(z) + 15/(z* + 1)),

Validated Numerics for Pedestrians 859

which is not completely trivial to analyze by hand. Once again, the search
region is fixed to [z] = [~5, 5], and the tolerance is set to tol = 1071Y.

The graph of Figure 4(b) indicates that f has nine roots in the search
region. This is indeed confirmed by the output of the interval-valued bisection
method, detailed in Table 2.

TABLE 2. Interval enclosures of the roots of
f(x) = sin (sin(z) + 15/(2? + 1)).

a1 | [—1.61951630492695, —1.61951630485419
ag | [—1.04787158852560, —1.04787158845284
a3 | [—0.69981597283914, —0.69981597276638
ag | [—0.39748093411618, —0.39748093404342
as | [+0.49000622362655, +0.49000622369932
ag | [+0.85439020273042, +0.85439020280319
a7 | [+1.35143495448574, +1.35143495455850
ag | [+2.29537873135996, +2.29537873143273
og | [+4.12523527877056, 4+4.12523527884333]

Note, however, that the real-valued bisection method, started on the do-
main [a, b], would fail to locate the four even-labeled roots for almost any choices
of a € [-5, 1) and b € (a9, 5]

References

[AH83] Alefeld, G., Herzberger, J., Introduction to Interval Computations. Academic
Press, New York, 1983.

[Co77] Corliss, G., Which Root Does the Bisection Algorithm Find?, STAM Review
19 (1977), 325-327.

[CXSC] CXSC — C++ eXtension for Scientific Computation, version 2.0. Available
from
http://www.math.uni-wuppertal.de/org/WRST/xsc/cxsc.html

[GMO03] Gabai, D., Meyerhoff, G.R., Thurston, N., Homotopy hyperbolic 3-manifolds
are hyperbolic, Annals of Mathematics, 157:2 (2003), 335-431.

[Ha95] Hass, J., Hutchings, M., Schlafly, R. The double bubble conjecture, Electronic
Research Announcements of the AMS 1 (1995), 98-102.

[HH95] Hammer, R. et al., C++ toolbox for Verified Computing. Springer-Verlag,
Berlin, 1995.

[INv4] INTLAB — INTerval LABoratory, version 4.1.2. Available from
http://www.ti3.tu-harburg.de/ rump/intlab/

[KM81] Kulisch, U.W., Miranker, W.L., Computer Arithmetic in Theory and Prac-
tice. Academic Press, 1981.

[Mo66] Moore, R.E., Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey,
1966.

[Mo79] Moore, R.E., Methods and Applications of Interval Analysis. STAM Studies
in Applied Mathematics, Philadelphia, 1979.

860 ‘W. Tucker

[PrBi] PROFIL/BIAS — Programmer’s Runtime Optimized Fast Interval Libra-
ry/Basic Interval Arithmetic Subroutines. Available from
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

[Sub8] Sunaga, T., Theory of an Interval Algebra and its Application to Numerical
Analysis. RAAG Memoirs, 2 (1958), 29-46.

[Tu02] Tucker, W., A Rigorous ODE Solver and Smale’s 14th Problem. Found.
Comp. Math., 2:1 (2002), 53-117.

[Wab6] Warmus, M., Calculus of Approxzimations. Bulletin de I’Académie Polonaise
de Sciences, 4:5 (1956), 253-257.

[Yo31] Young, R.C., The algebra of multi-valued quantities. Mathematische An-
nalen, 104 (1931), 260-290.

Warwick Tucker
Department of Mathematics
Uppsala University

Box 480

Uppsala, Sweden

e-mail: warwick@math.uu.se

