Automatica 44 (2008) 2422-2426

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Brief paper

Rigorous parameter reconstruction for differential equations with noisy data*

Tomas Johnson *, Warwick Tucker b

2 Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

b Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 20 June 2007
Received in revised form

7 January 2008

Accepted 30 January 2008
Available online 6 May 2008

Keywords:

Rigorous numerics

Parameter estimation
Ordinary differential equations
Interval analysis

We present a method that - given a data set, a finitely parametrized system of ordinary differential
equations (ODEs), and a search space of parameters — discards portions of the search space that are
inconsistent with the model ODE and data. The method is completely rigorous as it is based on validated
integration of the vector field. As a consequence, no consistent parameters can be lost during the pruning
phase. For data sets with moderate levels of noise, this yields a good reconstruction of the underlying
parameters. Several examples are included to illustrate the merits of the method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models based on differential equations, also
called state equations, often depend on one or several parame-
ters that alter the system’s behaviour. In many situations, the pa-
rameters are unknown and must be estimated using experimental
data. These types of inverse problems occur in many fields, includ-
ing pharmacokinetics, systems biology, and ecology. Parameter re-
construction aims at locating parameters that tune the model into
a good agreement with the observed data — this ability is impor-
tant for accurate simulations. To estimate state and parameter vari-
ables given a priori bounds on their values is sometimes known as
bounded-error estimation (Fogel & Huang, 1982; Schweppe, 1968).
The problem of estimating parameters can formally be seen as a
special case of state estimation (Jaulin, 2002; Moore, 1992; Raissi,
Ramdani, & Candau, 2005) by simply adding one state variable with
a corresponding zero equation for each parameter. This is, how-
ever, not the case in practice. Unknown parameters mean that the
state equations are not exactly known, so that instead of studying
one state equation, an entire set of equations has to be studied. This
makes the task of reconstructing or estimating parameters a much

* This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Wolfgang
Scherrer under the direction of Editor Torsten Séederstrom.
* Corresponding author.
E-mail addresses: johnson@math.uu.se (T. Johnson),
warwick.tucker@math.uib.no (W. Tucker).

0005-1098/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2008.01.032

harder task than to estimate state variables, given exactly known
equations. In fact, during the pruning phase, our method will also
estimate the state variables.

Traditionally, the best-fit parameters are determined by mini-
mizing a least-square residual error. This recasts the reconstruc-
tion to a constrained global optimization problem. Our approach,
however, aims at locating the entire set of parameters that are con-
sistent with the data. This is especially valuable when the data is
not exact, but comes with a certain amount of uncertainty. As a
side-effect, producing the full set of consistent parameters illus-
trates the sensitivity of the model equation with respect to data
contamination. This kind of information is usually out of reach for
classical methods, which must rely on local techniques based on
the variational equations.

The underlying mathematics stems from the theory of set-
valued computations — interval analysis. Although this approach
has already been used in the context of parameter reconstruction
(Granvilliers, Cruz, & Barahona, 2004; Jaulin, Kieffer, Didrit, &
Walter, 2001; Raissi, Ramdani, & Candau, 2004; Tucker & Moulton,
2006; Tucker, Kutalik, & Moulton, 2007; Walter & Kieffer, 2007)
our method is novel in that it handles sparse, partial data sets
well, and it does not depend on the decoupling of the ODEs.
Decoupling means that each state variable in a system can be
handled indivudually, see Tucker and Moulton (2006) and Tucker
et al. (2007). Partial data sets are unavoidable in situations when
only some of the state variables can be observed. The ability to
handle relatively sparse data sets is crucial for the applicability of
the method in more realistic situations, when obtaining samples


http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:johnson@math.uu.se
mailto:warwick.tucker@math.uib.no
http://dx.doi.org/10.1016/j.automatica.2008.01.032

T. Johnson, W. Tucker / Automatica 44 (2008) 2422-2426 2423
Table 1
Performance for the two-compartment example
Noise ko1 enclosure k12 enclosure ko1 enclosure CPU time
None [0.4638, 0.5380] [0.4653,0.5398] [0.4989, 0.5014] 00:56:15
1% [0.3845, 0.6689] [0.3894, 0.6799] [0.4870, 0.5249] 01:04:57
2% [0.3601, 0.7373] [0.3662, 0.7519] [0.4785, 0.5456] 02:17:26
5% [0.3051,0.9790] [0.3149, 1.0302] [0.4516, 0.6323] 02:49:48
is costly or even perhaps involves a human risk (e.g. in drug Table 2
modeling). Performance for the predator-prey example
Noise None +10~3 1%
Tolerance 276 276 275
2. Background CPU time 01:29:05 02:49:17 03:44:16
o ) ) A [7.87,8.14] [7.61,8.4] [7.35,8.93]
Interval analysis is the mathematical foundation of auto- B [3.93, 4.07] [3.80, 4.2] [3.67, 4.47]
validating algorithms. By computing with intervals instead of € [3.93,4.07] (3.80,4.2] [3.67,4.20]
single numbers, important properties, such as the continuum of g {(1)‘3;'61‘(?2]25] }(1)‘32'9252112] {(1)‘13'62322)]]
the real line can be captured and used in the algorithms. This [0.985. 1.018] [0.984, 1.018] [0.918, 1.050]
leads to very robust methods, well suited for non-linear, global H [0.183, 0.214] [0.183, 0.224] [0.131,0.263]
problems. We denote intervals by X, and as soon as one variable e 2% 59
in an expression is replaced by an interval we always mean the Tolerance 9—4 2-3
interval hull of the corresponding expression. CPU time 04:20:19 06:30:33
Auto-validating algorithms produce mathematically correct re- A [6.30, 9.45] [6.30, 12.6]
sults, incorporating not only the computer’s internal representa- B [3.15,4.73] [3.15,6.30]
tion of the floating point numbers and its rounding procedures, but € [3.15,4.73] [2.10, 5.25]
also all approximation errors of the employed numerical method B [153,2.31] [1.02,2.56]
pp 1ployed T < E [0.328,0.722] [0.131, 1.050]
Thus the computed result comes equipped with guaranteed er- G [0.918, 1.050] [0.787, 1.313]
ror bounds. Areas of success include global optimization, non- H [0.0787, 0.315] [0.000, 0.420]
linear dynamics, and control theory, see e.g. Alefeld and Herzberger
(1983), Jaulin et al. (2001), Moore (1966), Neumaier (1990) and Table 3
Raissi et al. (2004). In this paper, we are primarily interested in val- Comparison with methods using fewer tests, with 5% noise
idated integration of ordinary differential equations — the basics Method S of endbse CPU time
are prc.)v1ded.1n Section 2.1. A thorough review of these methods is T 1.0423 06923
given in Nedialkov, Jackson, and Corliss (1999), and a new method i 21933 0.6923
to integrate parametric ODEs, using Taylor models (Makino & Berz, Backward 2.8950 0.8606

2003), is given in Lin and Stadtherr (2007).

2.1. Validated integration of ODEs

Most validated ODE solvers are based on a two-stage Taylor
series approach, as described in Lohner (1988), Moore (1966) and
Nedialkov et al. (1999). We use the solver VNODE-LP written by
Nedialkov (0000). The theory behind this solver can be found
in Nedialkov and Jackson (1999), Nedialkov et al. (1999) and
Nedialkov, RJackson, and Pryce (2001). The first stage of a Taylor
series based validated solver proves existence and uniqueness of
a solution with a given interval initial value, initial and end times.
If successful, the first stage also provides a coarse enclosure of the
trajectories. The second stage of a Taylor series method uses this
coarse enclosure for the entire piece of trajectory to get a narrow
enclosure of the image at the end time point.

We are interested in the set-valued initial value problem

x € f(x; P)
x(to) € Xo, (1)

where P is a set of model parameters, and X, is a set of possible
initial conditions. In what follows, all such sets are rectangular
boxes. We denote a solution to (1) at time t by &3 (x(to),t — to),
and at a time t; by X;, where we assume that t;_; < t; is some
given sequence of times. We remind the reader that &, denotes the
interval hull of the flow &, for p € P. By inclusion monotonicity, we
always have the enclosure

x(to) € Xo = P:(x(to), t — to) S Pp(Xo, t — to).

3. Method

Recall that our primary goal is to remove parts of a search
domain for the model parameters that are inconsistent with the
provided data. A secondary, more challenging, goal is to locate
parameters that are consistent with the data. This is harder because
the entire data set must be considered when proving consistency.
Inconsistency, however, only requires a subset of the data, as we
explain in more detail below.

The entire process is based on a set of tests coupled
with a bisection scheme. More specifically, when the tests are
inconclusive, the parameter box is split along its widest side.
Both halves are then subjected to the same battery of tests. This
procedure ends when the boxes have reached a smallest tolerable
size. The output of this global process is made up of three lists
cList, iList,and sList containing parameter boxes that are
consistent, inconsistent, and small, respectively. Geometrically, the
contents of sList form a set that separates the contents of cList
and iList. As enclosures of the consistent parameters, we take
the interval hull of the union of cList and sList.In general these
enclosures consist largely of parameters that have been proved to
be inconsistent, since typically the set of consistent parameters is
a hypersurface. Thus, more parameters have been excluded by our
algorithm than what is indicated in Tables 1-3.

Initially, we attempt to show that the current parameter box P
is consistent with the data. The criterion we use for this is that some
initial point xy € Xo should flow through each data range:

dxo € Xps.t. Vidp(xo, ti —to) € X;
= Pis consistent with the data set. (2)



2424 T. Johnson, W. Tucker / Automatica 44 (2008) 2422-2426

to 1 ta ts iy ts

to t1 s t3 ta i5

Fig. 1. (a) A consistent parameter; (b) Forward inconsistency proved between t)
and t3.

In our implementation, we use the midpoint of Xq as initial point,
see Fig. 1(a). Other choices of x, would give other sets of consistent
parameters. By taking a set of initial points with some distribution,
more parameters would potentially be regarded as consistent. This
would, however, decrease the run-time efficiency of the program
since the trajectory of each starting point would need to be
integrated individually. As is indicated by the fact that 95% of the
remaining parameters were proved to be consistent in the example
in Section 5, choosing one initial point, the midpoint, seems to be
a good compromise. All consistent parameter boxes are removed
from further study, and stored in the list cList.

If we do not succeed in proving consistency, we switch tactics,
and attempt to establish inconsistency. This is done in three stages.
We begin by computing the flow of each data range one time-step
forward. This is done in an increasing order of time, allowing us to
intersect the image of X; with X;, 1 before flowing the latter:

W{ = Xo,
Wiy =X N &(W, 61— ) (=0,...,N—1).

If any of the intersections are empty — (see Fig. 1(b)), — the
corresponding parameter box is removed:

WL = () = Pis forward inconsistent between t; and t;, 1. (3)

If no inconsistencies are detected during this forward sweep, we
flow backwards and use the (possibly tighter) data set {t;, W }¥,
as constraints:

Wy = Wy,
W, =W N op(Wiq, ti—tiy1) (i=N—-1,...,0).

1

Again, if any of the intersections are empty, the corresponding
parameter box is removed:

W; = ¥ = Pis backward inconsistent between t; and t;; ;. (4)

The forward and backward sweeps reduce the given data to
a subset consistent with the parameters. That is, we get state
estimation as a side effect of our parameter estimation scheme. The
parameter domain is not contracted by the forward and backward
sweeps, since parameters are static, its size is only reduced by
removing entire boxes.

If no inconsistencies have been revealed during the backward
sweep, one final test is performed. This test flows halfway between
two consecutive data ranges:

_ oty — _ =ty
451»<Wi, ' 5 l)ﬂ@m(wm,l 21 )=Wi+1/2~

If any of the intersections are empty, the corresponding parameter
box is removed:

Witz =9
= P is midway inconsistent between t; and t;, . (5)

This method is very general and can be used for any
finitely parametrized differential equation and data set. Naturally,
the performance deteriorates with an increasing number of
parameters and/or with a sparse data set. In such situations,
monotonicity properties of the model ODEs can be of great help.
This scenario is studied in Section 5.

4. Direct use

We start by providing two examples in which we apply the
algorithm without explicitly using any qualitative information
about the differential equations. First, we consider a two-
compartment model previously studied in Walter and Kieffer
(2007). Although qualitative information is available for this
model, we want to illustrate that for simple problems, it is possible
to get good results without any a priori information about the
system. Our second example, included to show the ability of our
method to handle systems with a larger number of parameters, is
a predator-prey model. This three-dimensional model with seven
parameters has previously been studied in the same context in
Willms (2007).

All computations were performed on an Intel Xeon 3.2 Ghz
processor with 3072 Mb of RAM. VNODE-LP was used with
PROFIL/BIAS (PROFIL/BIAS, 0000) and compiled using GNU C++
3.4.6 in Linux.

4.1. A two-compartment model

Compartment models are common in e.g. biology, chemical
engineering, and pharmacokinetics. They model compartments
interacting with each other and the outside. That is, material
flows into the system and out of it. In addition, the compartments
interact with each other. In what follows, we consider a two-
compartment model, previously studied in Walter and Kieffer
(2007).

In Walter and Kieffer (2007), the fact that the model is
cooperative is used. This means that it is possible to enclose
the solution between solutions of two extremal vector fields. On
the other hand, we use this system as an example of a direct
approach and solve the full set-valued system. In fact, apart from
the initial state (x;(to), x2(to)), we only use measurements of the
second component x;. All we need to know about the unobserved
component x; is that it does not exceed its initial value: x{(t) €
[0, x1(to)]. The ability to deal with these types of partial data sets
is a great advantage of the presented method, compared to those
described in Tucker and Moulton (2006) and Tucker et al. (2007)
where measurements of all variables are required.

The model ODE is given by:
(’h) _ (—(km + ko1)x1 + k12X2> (6)
X2 ka1x1 — k122 ’

where p = (ko1, k12, k21). The first subscript is the label of the con-
tainer that is flowed to, and the second number is the container



T. Johnson, W. Tucker / Automatica 44 (2008) 2422-2426 2425

flowed from. Index O represents the outside. The data set was pro-
duced using p* = (0.5, 0.5, 0.5), and the search domain was cho-
senas [0, 5]3. The samples were taken at 17 uniformly spaced times
fromt =0tot = 16 with 0, 1, 2, and 5% relative noise added to the
exact data. The results of the reconstruction are shown in Table 1.

It is interesting to note that, despite the wide enclosures for
5% noise, the center of mass of the retained parameter boxes is
(0.520, 0.545, 0.523). For the noise-free case, the center of mass
is (0.500, 0.501, 0.500). This is a very good best-fit candidate. No
parameters were proved to be consistent.

4.2. A predator-prey model

The previous example has a small number of parameters,
contrary to many systems that occur in applications. To investigate
if our method is useful in a more realistic situation, we test it on a
three dimensional predator-prey system with seven parameters:

X Ax(1—H(x+y)) — Bxz
(y) = (@(1 —Hx+y) — Dyz) ) (7
z E(2Bxz + Dyz) — Gz

Following Willms (2007), we use the initial condition (xo, yo, z0)
= (3,1, 2) together with the target parameters A* = 8, B* = 4,
C* = 4,D" = 195 F = 05, ¢ = 1, and H* = 0.2 when
generating the clean data set. The perturbed data sets were
generated with absolute noise radius 1073, to compare with the
results in Willms (2007), as well as relative noise levels of 1%, 2%,
and 5%, respectively.

In the reconstruction, we use a subset of the data set from
Willms (2007), namely 201 uniformly distributed samples in
0 <t < 10. The search region for each parameter is [0,2.1 x
(target parameter)], which corresponds to the maximal search
region considered in Willms (2007). The results are shown in the
Table 2.

Again, despite the wide enclosures for 5% noise, the center
of mass of the retained parameter boxes (8.239, 4.187, 4.097,
2.007,0.5673, 1.021,0.207) is a decent best-fit candidate. No
parameters were proved to be consistent.

4.2.1. The effect of the inconsistency tests

To compare the impact the various tests, as described in
Section 3, have on the size of the enclosure, and the run-time of the
algorithm, we use the 5% noise case of the predator-prey model.
The results are shown in Table 3, where all numbers are normalized
with respect to the full version of the algorithm.

5. Monotonicity

To improve accuracy of the algorithm, qualitative information
about the flow can be taken into account. We are primarily
interested in monotonicity, which allows us to flow end points
instead of intervals. We study the SIR system, which is a simple
model of the spread of an infectious disease. This system has few
variables and few parameters, which allows us to get very narrow
results. In fact, for the experimental data considered, taken from
Granvilliers et al. (2004), we prove that 95% of the remaining
feasible parameters are consistent with the data. The low total
number of dimensions involved, four, allows us to make direct use
of monotonicity without any further analysis and simply flow the
16 corners of each box and take the hull of the result.

5.1. The SIR model

A simple model to describe the spread of an infectious disease
is SIR. It divides the population into three disjoint groups,
S (susceptibles), I (infectives) and R (recovered). A standing
assumption is that once an individual has recovered, she cannot
be reinfected. Furthermore, the total population size is assumed to
be constant, that is, (S+ I + R)’ = 0. The system of ODEs is

$ —rSI
I|=[(rSI—all, (8)
R al

where r is the disease transmition frequency, and a is the recovery
rate. Using that the population size is constant allows us to reduce
the phase space by one dimension. In particular, we can remove
the variable R, producing the reduced system

(f) = (s Zar) (9)

Rather than integrating with VNODE directly, we observe the
following properties of the vector field:

a—5——r1 8—S——rS 2)—S——IS

as a o

X . : . (10)
a_., I_ a_o o _

s a- T T da

The only non-monotonic relationship is % whichis zeroif rS—a =

0. A local extrema of I therefore must occur when S, r, and a are
at endpoints. The flow in the SI-phase plane of an I-interval is the
flow of a line of initial conditions for a smooth two-dimensional
autonomous vector field, so solutions cannot cross each other in
the phase plane. Indeed, we have

I ris—al a

S-S rs’
so the solution curves are
a
IS)=—-S+-In(S) +C (C€eR).
r

Therefore a solution either decreases monotonically in I or first
increases monotonically and then decreases monotonically, since
S decreases monotonically. Thus, the largest I value is the result
of flowing the largest I value in a box, and the smallest I value is
the result of flowing the smallest I value in a box. Hence, it suffices
to flow the 16 corners of a (S, I, r, a)-box and take the hull of the
results. This procedure increases the speed and accuracy of the
algorithm tremendously. We run the program with the following
real-life data, also used for the same problem in Granvilliers et al.
(2004). It describes an influenza epidemic in an English Boarding
school initiated by a single boy from a population of 763. Allowing
for a £30 absolute error in the measured data yields the data set
presented in Table 4.

The search domain used was r € [0,0.01] and a € [0, 1];
the norm in the parameter domain was scaled with a factor of
100 in r so that both parameters were split an equal number of
times. Therefore, the weighted initial domain has unit volume. In
Table 5, we give two different measures of the retained parameters.
The column “remaining volume” lists the volume of all small and
consistent boxes; the column “consistent volume” lists the volume
of all consistent boxes.

Using tol = 24, the enclosures of r and a are

re[2.14,2.22] x 1073 a € [4.25,4.66] x 107",

and their centres of mass are 2.18 x 10~ and 4.45 x 107, in good
agreement with the results presented in Granvilliers et al. (2004).
Our method, however, also proves that 95% of the retained set of
parameters are consistent with the data set.



2426 T. Johnson, W. Tucker / Automatica 44 (2008) 2422-2426

Table 4
The number of infected/susceptible patients

t Imeasured Iinitial value Sinitial value
0 1 [1,1] [762,762]
3 22 [0, 52] [0,762]

4 78 [48, 108] [0,715]
5 222 [192, 252] [0,571]
6 300 [270, 330] [0, 493]
7 256 [226, 286] [0, 493]
8 233 [203, 263] [0, 493]
9 189 [159, 219] [0, 493]

10 128 [98, 158] [0, 493]

11 72 [42,102] [0, 493]

12 28 [0, 58] [0, 493]

13 11 [0, 41] [0, 493]

14 6 [0, 36] [0, 493]

Table 5

A summary of the SIR example

Tolerance Remaining volume Consistent volume Run time

2510 2.26736 x 1074 6.306 x 10~ 00:30:30

2912 1.66655 x 10~4 1.316 x 10~* 03:04:56

=14 1.54317 x 10~4 1.459 x 10~4 08:32:07

6. Conclusions

We have presented a method to estimate parameters from
noisy data, continuing in the spirit of Tucker and Moulton (2006)
and Tucker et al. (2007). We do not focus on finding one best-fit
parameter by solving a global optimization problem, for instance
formulated as a least squares approximation of the data points.
Instead, we focus on consistency by discarding those portions of
the parameter domain that are inconsistent with the given data.
Equally important, we are able to find parameters that are provably
consistent with the data. Our method allows for noise in the data
(which may be partial), and we give several examples on how the
set of inconsistent parameters recedes as the noise level increases.
Our interpretation of noise and noise levels is that the user of our
algorithm has a priori knowledge of the amount of noise in the data,
e.g. measurement errors. Therefore, since data is normally given as
points at each measured time, the data has to be pre-processed into
intervals using suitable absolute or relative noise levels.

We demonstrate how to prove and implement qualitative
properties of the flow, primarily monotonicity, to improve
speed and accuracy of the flowing algorithm. The drawback of
this approach, as we have implemented it, is that it requires
information about the specific problem at hand. Further research
is needed to automate monotonicity checks using automatic
differentiation techniques.

References

Alefeld, G., & Herzberger, ]. (1983). Introduction to interval computations. New York:
Academic Press.

Fogel, E., & Huang, Y. F.(1982). On the value of information in system identification—
bounded noise case. Automatica-Journal of IFAC, 18(2), 229-238.

Granvilliers, L., Cruz, J., & Barahona, P. (2004). Parameter estimation using interval
computations. SIAM Journal of Scientific Computing, 26(2), 591-612.

Jaulin, L. (2002). Nonlinear bounded-error state estimation of continuous-time
systems. Automatica Journal of IFAC, 38(6), 1079-1082.

Jaulin, L., Kieffer, M., Didrit, O., & Walter, E.(2001). Applied interval analysis. Springer-
Verlag.

Lin, Y., & Stadtherr, M. A. (2007). Validated solutions of initial value problems for
parametric ODEs. Applied Numerical Mathematics, 57(10), 1145-1162.

Lohner, R. (1988). EinschlieSung der Losung gewohnlicher Anfangs- und Randwer-
taufgaben und Anwendungen. Ph.D. thesis. Universitdt Karlsruhe.

Makino, K., & Berz, M. (2003). Taylor models and other validated functional
inclusion methods. International Journal of Pure and Applied Mathematics, 6(3),
239-316.

Moore, R. E. (1966). Interval analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

Moore, R. E. (1992). Parameter sets for bounded-error data. Mathematics of
Computation and Simulation, 34, 113-119.

Nedialkov, N. S., & Jackson, K. R. (1999). An interval Hermite-Obreschkoff method
for computing rigorous bounds on the solution of an initial value problem for
an ordinary differential equation. Reliable Computing, 5(3), 289-310.

Nedialkov, N. S., Jackson, K. R., & Corliss, G. F. (1999). Validated solutions of initial
value problems for ordinary differential equations. Applied Mathematics and
Computation, 105(1), 21-68.

Nedialkov, N. S., RJackson, K., & Pryce, J. D. (2001). An effective high-order interval
method for validating existence and uniqueness of the solution of an IVP for an
ODE. Reliable Computing, 7(6), 449-465.

Nedialkov, N. S. VNODE-LP a validated solver for initial value problems in ordinary
differential equations, available at
www.cas.mcmaster.ca/nedialk/Software/VNODE/VNODE.shtml.

Neumaier, A. (1990). Encyclopedia of mathematics and its applications: Vol. 37.
Interval methods for systems of equations. Cambridge: Cambridge Univ. Press.

PROFIL/BIAS, Available at www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.

Raissi, T., Ramdani, N., & Candau, Y. (2004). Set membership state and parameter es-
timation for systems described by nonlinear differential equations. Automatica,
40, 1771-1777.

Raissi, T., Ramdani, N., & Candau, Y. (2005). Bounded error moving horizon state
estimator for non-linear continuous-time systems: Application to a bioprocess
system. Journal of Process Control, 15, 537-545.

Schweppe, F. C. (1968). Recursive state estimation: Unknown but bounded errors
and system inputs. IEEE Transactions on Automatic Control, 13(1), 22-28.

Tucker, W., & Moulton, V. (2006). Parameter reconstruction for biochemical
networks using interval analysis. Reliable Computing, 12(5), 389-402.

Tucker, W., Kutalik, Z., & Moulton, V. (2007). Estimating parameters for generalized
mass action models using constraint propagation. Mathematical Biosciences, 208,
607-620.

Willms, A. R. (2007). Parameter range reduction for ODE models using cumulative
backward differentiation formulas. Journal of Computational and Applied
Mathematics, 203(1), 87-102.

Walter, E., & Kieffer, M. (2007). Guaranteed nonlinear parameter estimation in
knowledge-based models. Journal of Computational and Applied Mathematics,
199(2), 277-285.

Tomas Johnson was born in Orebro, Sweden, in 1979.
He received his M.Sc. in Engineering Physics from
Uppsala University in 2005, and is since then persuing
a Ph.D. within the CAPA group at Bergen University. His
research interests include parameter estimation, global
optimisation, and computational aspects of nonlinear
dynamical systems.

1 Warwick Tucker was born in Sydney, Australia, in 1970.
He received his Ph.D. in mathematics at Uppsala University
in 1998, and is currently leading the CAPA group at Bergen
University. His research field is Computer-Aided Proofs in
Analysis, with applications such as nonlinear dynamical
systems, parameter estimation, and spectral theory.



http://www.cas.mcmaster.ca/nedialk/Software/VNODE/VNODE.shtml
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

	Rigorous parameter reconstruction for differential equations with noisy data
	Introduction
	Background
	Validated integration of ODEs

	Method
	Direct use
	A two-compartment model
	A predator--prey model
	The effect of the inconsistency tests


	Monotonicity
	The SIR model

	Conclusions
	References


