
A Computer–assisted Proof of the Existence

of Solutions to a Boundary Value Problem

with an Integral Boundary Condition

Oswald Fogelklou

Department of Mathematics

Uppsala University

P.O. Box 480, SE–751 06 Uppsala, Sweden.

oswald@math.uu.se

Gunilla Kreiss

Department of Information Technology

Uppsala University

Box 337, SE–751 05 Uppsala, Sweden.

gunilla.kreiss@it.uu.se

Warwick Tucker

Department of Mathematics

Bergen University

Johannes Brunsgate 12, 5008 Bergen, Norway.

warwick.tucker@math.uib.no

Malin Siklosi

Department of Information Technology

Uppsala University

Box 337, SE–751 05 Uppsala, Sweden.

malin.siklosi@scania.com

February 21, 2008

Abstract

In this paper, we present a computer–aided method (based on [Ya98]) that establishes
the existence and local uniqueness of a stationary solution to the viscous Burgers’
equation. The problem formulation involves a left boundary condition and one integral
boundary condition, which is a variation of the approach taken in [Si04].

Key words: computer-assisted proof, numerical verification, viscous Burgers’ equation,
enclosure, existence, two-point boundary value problems, fixed-point problems
AMS subject classification: 65L10, 65G20, 34B15, 47H10

1

1 Introduction

Many interesting phenomena can be modelled by systems of hyperbolic conservation laws

ut + f(u)x = 0, −∞ < x <∞, t > 0. (1)

Some examples are gas dynamics, magnetohydrodynamics and two phase flow. An important
property of these systems is that even with smooth initial data discontinuities may develop.
The corresponding parabolic system, where the 0 in the right hand side of (1) is replaced
by εuxx, is also important. In most physical situations there is some dissipative mechanism,
numerical techniques involve numerical dissipation and taking the limit ε → 0 is a way of
selecting an entropy correct solution of the hyperbolic problem. A fundamental question is
when the Riemann problem, (1) together with initial data

u(x, 0) =

{

UL x < 0

UR x > 0
,

has a solution consisting of simple waves; shocks and rarefactions. For general systems, the
results are limited to when the difference |UR − UL| is sufficiently small.

We are interested in a related question for the corresponding parabolic system. Can left and
right states, that are candidates for being a shock wave solution of the hyperbolic system,
be connected by a smooth, travelling wave solution? Such a solution is called a viscous
shock wave. As above, for general systems, results are limited to cases when the difference
|UR − UL| is sufficiently small. For an overview of the theory, see [Br00] or [HR02].

Without restriction, we look for a solution satisfying the steady state system

(U2/2)x = Uxx, −∞ < x <∞, (2)

together with boundary conditions

lim
x→∞

U(x) = UR, lim
x→−∞

U(x) = UL. (3)

Classical techniques for proving the presence of solutions of differential equations often con-
sist of constructing a sequence of approximations, and deriving uniform apriori bounds. If
these bounds are strong enough, then the approximating sequence can be shown to con-
verge to a solution. In, for example, [Gl65], [KL89], and [BS94], the approximations are
constructed by numerical methods. However, since only apriori bounds are used, the ap-
proximations do not need to be explicitly computed. As already mentioned, these techniques
are not generally applicable.

On the other hand, numerical computations indicate the existence of a viscous shock profile
in many cases when existence has not been mathematically proved. From an applied point
of view, a grid–converged solution is as much proof as one could wish to have. From a
mathematical point of view, however, the numerical solution is a solution to a different
problem, and it does not necessarily have anything to do with the solution of the original
PDE.

This paper is a step in developing a framework for using a numerically computed approx-
imate solutions with viscous shocks to prove existence of equations with such shocks. The

2

idea of proof is to use a fixed–point formulation. This is achieved by (repeatedly) rewrit-
ing the problem in terms of the defect – the difference between a (numerically computed)
approximate solution and the (unknown) exact solution. The success of the procedure will
depend on the truncation error and the norm of the inverse of the linearized differential
operator: by carefully choosing the formulation of the fixed–point problem, a sufficiently
strong contraction can be achieved.

In principle, all abovementioned computations can be carried out by hand. In practice,
however, the amount of work is massive, and a computer must be used. The use of computers
as an integral part of a mathematical proof requires the use of auto–validated numerics.
Such ideas have previously been used for ODEs ([Tu02], [BM98], [Fa95]), as well as for some
strongly dissipative PDEs ([Zg02], [MZ01]), and for two–point boundary value problems
([Ås04], [Pl01], [Na92])

In this paper we successfully apply the abovementioned approach to the viscous Burgers’
equation. The aim is the development of the technique, not the result in itself. It is well
known that for this scalar problem, existence of solutions can be proven by other means.
The viscous Burgers’ equation is given by

ut +

(

1

2
u2

)

x

= εuxx, (4)

where u is the velocity and ε is the viscosity coefficient. This is also referred to as the
one–dimensional nonlinear diffusion or heat flow equation, by J.M. Burgers himself [Bu74].
It is a fundamental equation in fluid mechanics, and describes the motion of an infinitely
compressible medium without pressure, shear and vortex motion. With the Cole–Hopf sub-
stitution

u = −2ε
1

φ

∂φ

∂x
,

equation (4) is transformed into

∂φ

∂x

(

∂φ

∂t
− ε

∂2φ

∂x2

)

= φ
∂

∂x

(

∂φ

∂t
− ε

∂2φ

∂x2

)

,

which has the general solution

C(t)φ = D(t)(
∂φ

∂t
− ε

∂2φ

∂x2
).

If C(t) = 0 and D(t) 6= 0 we get
∂φ

∂t
= ε

∂2φ

∂x2
,

i.e. φ satisfies the heat equation.

The paper is organized as follows. The main result is presented as a theorem in the next
section. The notation is described in section 3. In section 4 the particular problem that
we work with is presented. Yamamoto’s method [Ya98] is presented in section 5. This
method is applied to the problem presented in section 6. In section 7 an algorithm for using
Yamamoto’s method is presented. Results other than the main result are shown in section
8. In section 9 we discuss how our method can be improved, and what problems we will
study in the future. The appendix consists of all MATLAB codes.

3

2 Main result

Theorem 2.1. For ε ≥ 0.085 there exists a unique solution to the problem

u(x)u′(x) = εu′′(x), u(−1) = 1,

∫ 1

−1

u(x)dx = 0. (5)

Proof. In this section we show that if a unique solution exists for ε = ε̂ then a unique solution
also exists for all ε > ε̂. In sections 4–7 and the remark in section 8 we prove uniqueness for
ε = 0.085. Therefore the theorem follows.

2.1 Existence of solutions for larger values of ε

Suppose we have proved existence and local uniqueness of the solution to the equation

ûû′ = ε̂û′′, û(−1) = 1, û(1) = −1,

which is equivalent (due to anti–symmetry) to the equation

ûû′ = ε̂û′′, û(−1) = 1,
∫ 1

−1

û(x)dx = 0.

How do we prove existence of the solution to the equation

uu′ = εu′′, u(−1) = 1, u(1) = −1, (6)

where ε > ε̂? With the ansatz u(x) = Kû(ax) in uu′ = εu′′ we get

K2aûû′ − εKa2û′′ = K2a(ûû′ −
εa

K
û′′) = 0, (7)

which is true if
εa

K
= ε̂ ⇔ K =

ε

ε̂
ξ. (8)

With the ansatz in u(±1) = ∓1 we get Kû(±a) = ∓1 and using (8) we have

aû(a) = −
ε̂

ε
. (9)

Since û is continuous,
lim

a→1−
aû(a) = −1 and lim

a→0
aû(a) = 0 (10)

Therefore the intermediate–value theorem says that (9) has at least one solution if −ε̂/ε ∈
[0,−1] i.e. ε̂ < ε. So existence of solutions for larger values of ε is proved.

4

2.2 Uniqueness

Suppose that we have two solutions of (5) say

(u2(x))′/2 = εu′′(x) u(−1) = 1,

∫ 1

−1

u(x)dx = 0 (11)

and

(v2(x))′/2 = εv′′(x) v(−1) = 1,

∫ 1

−1

v(x)dx = 0. (12)

Define f = u− v. If we subtract (12) from (11) we get

(u2(x))′/2 − (v2(x))′/2 = εf ′′(x) f(−1) = 0,

∫ 1

−1

f(x)dx = 0 (13)

so that
1

2
((u+ v)f)′ = εf ′′

and after integration we get
1

2
(u+ v)f = εf ′ + C.

Using integrating factor we achieve

d

dx
(e−

1

2ε

R x

−1
(u(ξ)+v(ξ))dξf(x)) = −

C

ε
.

With f(−1) = 0 from (13) we have

e−
1

2ε

R x

−1
(u(ξ)+v(ξ))dξf(x) = −

∫ x

−1

C

ε
dy

or
f(x) = −

C

ε
(x+ 1)e

1

2ε

R x

−1
(u(ξ)+v(ξ))dξ .

If C > 0 then f < 0 so that
∫ 1

−1
f(x)dx = 0 in (13) is violated. If C < 0 then f > 0 and

again
∫ 1

−1
f(x)dx = 0 is violated. Hence f = C = 0 so that u = v. Therefore the solution of

(14) is unique.

3 Notation

In this paper we will work with meshes on the interval [−1, 1]. A mesh on the inter-
val [−1, 1] is a set of mesh points x0 = −1 < x1 < . . . < xN−1 < xN = 1. The set
{[x0, x1], [x1, x2], . . . , [xN−1, xN]} is called a partition of the interval [−1, 1]. Since we only
work with the interval [−1, 1] we will from now on omit “on the interval [−1, 1]” and “of the
interval [−1, 1]”. A uniform partition is a partition whose elements have the same length. It
is clear what is meant by a uniform mesh. Given a partition and a function u: [−1, 1] → R,
we define ui = u(xi), and let uh be the function which is linear on each element of the
partition with uh(xi) = ui. Since uh is uniquely defined by the mesh points we can represent
uh by the vector (u0, u1, . . . , uN)T called uh. Throughout this text vectors are denoted by
strokes. Finally the projection Πh is the mapping defined by u 7→ uh.

5

4 Burgers’ Equation with an Integral Boundary Condi-

tion

We study stationary solutions of (4) i.e. with ut = 0, together with a boundary/integral
condition:

u(x)u′(x) = εu′′(x) u(−1) = 1,

∫ 1

−1

u(x)dx = 0. (14)

This is a reformulation of the system studied by Siklosi and Åsén [Si04], where u(1) = −1
instead of the integral condition was used. The reason for studying the modification (14)
is that we expect this to improve the numerics. Note, however, that the problems are
mathematically equivalent. Both have the unique solution

u(x) = −
tanh(rx)

tanh(r)
, where r satisfies r tanh(r) =

1

2ε
.

The corresponding integral equation formulation of (14) is

u(x) =
1

2ε

∫ x

−1

u(τ)2dτ −
1 + x

4ε

∫ 1

−1

∫ x

−1

u(τ)2dτdx− x
def
= F (u). (15)

Let V1 be the space V1 = {v ∈ C[−1, 1]|v(−1) = 1,
∫ 1

−1
v(x)dx = 0}. Then the solution of

(14) is in V1. Let Sh
1 be the intersection of V1 and the space of all piecewise linear functions

on some partition of [−1, 1] into N intervals (note that Sh
1 has dimension N − 1). Let uh be

a piecewise linear approximate solution of (15) and assume uh ∈ V1. Then uh is in Sh
1 . Let

V2 be the space defined by

V2 =

{

v ∈ C[−1, 1]|v(−1) = 0,

∫ 1

−1

v(x)dx = 0

}

. (16)

Then the error w = u − uh is in V2. Let Sh
2 be the space of all piecewise linear functions

in V2 on the same partition of [−1, 1] which was used for Sh
1 . Then wh, a piecewise linear

approximate solution of the error w, is in Sh
2 . We now define the Banach space X = Sh

2 ×X
∞

where X∞ = (I − Πh)V2. This gives the fixed point equation

w = T (w), w ∈ X, (17)

where w = (wh, w∞) ∈ X and T (w) = (Th(w), T∞(w)) with

Th(w) = (I −Ah)−1(ΠhF (uh + wh + w∞) − (uh + Ahwh)) and (18)

T∞(w) = (I − Πh)F (uh + wh + w∞), (19)

where Ah is an approximation of the Fréchet derivative described in subsection 6.2. See also
[Si04].

5 General Statement of Convergence Conditions

For w = (wh, w∞) ∈ X we will use the notation

(w)i = |wh(xi)| ≥ 0 ∀i ∈ {1, . . . , N − 1} and

(w)N = ||w∞||∞ ≥ 0.

6

Suppose we want to prove the existence of a unique solution of (17) in a set W , referred to
as a candidate set. Taking a vector W ∈ R

N with positive components

W = (W1, . . . ,WN)T , (20)

a candidate set W is defined by

W = {w ∈ X|(w)i ≤Wi, ∀i ∈ {1, . . . , N}}. (21)

In [Ya98], sufficient conditions on W to prove the existence and local uniqueness of a solution
to (17) are derived. The proof involves assumptions on bounds of T (0) and T ′ respectively,
where T ′ is the Frechét derivative of T. For the reader’s convenience, we give the assumptions
and the theorem from [Ya98].

Assumption 1. There is a vector Y = (Y1, . . . , YN)T ∈ R
N with positive components, such

that the conditions
(T (0))i ≤ Yi ∀i ∈ {1, . . . , N}

hold.

Assumption 2. The operator T has a Fréchet derivative T ′ with the following property. For
any W there exists a vector Z = (Z1, . . . , ZN)T ∈ R

N with nonnegative components such that
the conditions

(T ′(w̃)w)i ≤ Zi ∀i ∈ {1, . . . , N}

hold for any w, w̃ ∈ W . Since the Zi’s satisfying the above inequality depend on W in
general, we write them as Zi(W).

We define the set K in X by

K = {v ∈ X|(v)i ≤ Yi + Zi(W) ∀i ∈ {1, . . . , N}}

Theorem 5.1. If K ⊂W holds for the candidate set W defined by (21), then there exists a
solution to (20) in K. Moreover, the solution is unique within the set W .

The straightforward proof is based on Banach’s fixed point theorem. In the proof, it is shown
that the set K includes the image T (W). In the next section, we will outline in detail how
these bounds can be rigorously verified in computations and show one approach on how to
obtain a suitable W .

6 Convergence Conditions for Burgers’ Equation

In this section, we derive Y and Z such that Assumption 1 and Assumption 2 hold for
Burgers’ equation. In order to facilitate comparison with the numerical implementation, key
expressions are labelled with names corresponding to the names used in the code.

We first consider the derivation of Y , which requires bounds on (T (0))i. From (18), we have

Th(0) =
(

I −Ah
)−1 (

ΠhF (uh) − uh
)

. (22)

7

6.1 Estimation of the Operator F

Let us first consider the evaluation of ΠhF (uh). We have

ΠhF (uh)(xi) =
1

2ε

∫ xi

−1

uh(τ)2dτ −
1 + xi

4ε

∫ 1

−1

∫ x

−1

uh(τ)2dτdx− xi. (23)

We have
uh(τ) = ui +

ui+1 − ui

hi+1

(τ − xi) for xi ≤ x ≤ xi+1, (24)

where hi+1 = xi+1 −xi and we will use the notation h = xi+1 −xi for uniform meshes. From
(24) we get

∫ x

xi

uh(τ)2dτ =
hi+1

3(ui+1 − ui)

(

(ui +
ui+1 − ui

hi+1
(x− xi))

3 − u3
i

)

for xi ≤ x ≤ xi+1, especially
∫ xi+1

xi

uh(τ)2dτ =
hi+1

3

(

u2
i + uiui+1 + u2

i+1

) def
= ai, if i ∈ {0, 1, . . .N − 1}. (25)

Hence, for xi ≤ x ≤ xi+1

∫ x

−1

uh(τ)2dτ =

i−1
∑

k=0

ak +
hi+1

3(ui+1 − ui)

(

(

ui +
ui+1 − ui

h
(x− xi)

)3

− u3
i

)

.

We then obtain

∫ xi+1

xi

∫ x

−1

uh(τ)2dτdx = hi+1

(

hi+1

12

(

3u2
i + 2uiui+1 + u2

i+1

)

+
i−1
∑

k=0

ak

)

def
= bi if i ∈ {0, 1, . . . , N−1}.

Therefore
∫ 1

−1

∫ x

−1

uh(τ)2dτdx =
N−1
∑

k=0

bk.

We can now express (23) as

ΠhF (uh)(xi) =
1

2ε

i−1
∑

k=0

ak −
1 + xi

4ε

N−1
∑

k=0

bk − xi.

6.2 Estimation of the Fréchet Derivative of F

In the rest of the paper we will compute function values at the points x1, x2, . . . , xN although
the dimension of our function spaces is N − 1 and it would be enough to study the points
x1, x2, . . . , xN−1. The reason is that we want to control the error on the right boundary
xN = 1. We need to compute Ah, an approximate Fréchet derivative of ΠhF (v), at v = uh.
Since Ah is a linear operator on the finite dimensional space Sh, there is a matrix B̃ such

8

that the coefficient vector of Ahvh can be expressed as B̃vh. The Fréchet derivative of the
operator F is

F ′(u)v =
1

ε

∫ x

−1

u(τ)v(τ)dτ −
1 + x

2ε

∫ 1

−1

∫ x

−1

u(τ)v(τ)dτdx. (26)

Hence, the elements B̃ij of B̃ are given by

B̃ij =
1

ε

∫ xi

−1

uh(τ)ψj(τ)dτ −
1 + xi

2ε

∫ 1

−1

∫ x

−1

uh(τ)ψj(τ)dτdx, if i, j ∈ {1, 2, . . . , N}. (27)

We have

uh(τ) =

{

ui−1 + ui−ui−1

hi
(τ − xi−1) xi−1 ≤ τ ≤ xi

ui + ui+1−ui

hi+1
(τ − xi) xi ≤ τ ≤ xi+1

and for i = 1, . . . , N − 1, we have

ψi(τ) =







(τ − xi−1)/hi xi−1 ≤ τ ≤ xi

(xi+1 − τ)/hi+1 xi < τ ≤ xi+1

0 otherwise

together with

ψN (τ) =

{

(τ − xN−1)/hN xN−1 ≤ τ ≤ xN = 1
0 otherwise.

The integral appearing in the first term of (27) can be evaluated via
∫ x

−1

uh(τ)ψj(τ)dτ =



















0 0 ≤ x ≤ xj−1

uj−1(x− xj−1)
2/2hj + (uj − uj−1)(x− xj−1)

3/3h2
j xj−1 < x ≤ xj

uj

2
(hj+1 −

(x−xj+1)2

hj+1
) +

(uj+1−uj)(x−xj)2

h2
j+1

(
hj+1

2
−

x−xj

3
) + hj(

uj−1

6
+

uj

3
) xj < x < xj+1

hj(
uj−1

6
+

uj

3
) + hj+1(

uj+1

6
+

uj

3
) xj+1 ≤ x ≤ 1.

(28)

At the nodes, this specialises to

cij
def
=

∫ xi

−1

uh(τ)ψj(τ)dτ =











0 i < j

hj(
uj

3
+

uj−1

6
) i = j

hj(
uj−1

6
+

uj

3
) + hj+1(

uj+1

6
+

uj

3
) i > j.

(29)

Using (28) above, we can also evaluate the second integral of (27):

dj
def
=

∫ 1

−1

∫ x

−1

uh(τ)ψj(τ)dτdx

=

∫ xj

xj−1

∫ x

−1

uh(τ)ψj(τ)dτdx+

∫ xj+1

xj

∫ x

−1

uh(τ)ψj(τ)dτdx+

∫ 1

xj+1

∫ x

−1

uh(τ)ψj(τ)dτdx

=
h2

j

12
(uj−1 + uj) + h2

j+1(
uj+1

12
+
uj

4
) + hj+1hj(

uj−1

6
+
uj

3
)

+(1 − xj+1)
(

hj(
uj−1

6
+
uj

3
) + hj+1(

uj+1

6
+
uj

3
)
)

if j ∈ {1, 2, . . . , N − 1}

9

together with

dN
def
=

∫ 1

xN−1

∫ x

−1

uh(τ)ψ(τ)dτdx =
h2

N

12
(uN−1 + uN).

Hence, we can write

B̃ij =
1

ε
cij −

1 + xi

2ε
dj for i, j ∈ {1, 2, . . . , N}. (30)

6.3 Candidate Vector for Satisfying Assumption 1

From (22), we can now obtain bounds on (T (0))i by solving

(I − B̃)Th(0) = ΠhF (uh) − uh. (31)

From (19) we have
T∞(0) =

(

I − Πh
)

F
(

uh
)

.

We can get a bound on T∞(0) via the following proposition.

Theorem 6.1. Suppose v ∈ C1([xi, xi+1]), and let vh be the straight line between (xi, v(xi))
and (xi+1, v(xi+1)). Then

max
x∈[xi,xi+1]

|vh(x) − v(x)| ≤
xi+1 − xi

2
max

x∈[xi,xi+1]
|v′(x)|.

Now suppose that v belongs to C2([xi, xi+1]). Then

max
x∈[xi,xi+1]

|vh(x) − v(x)| ≤
(xi+1 − xi)

2

8
max

x∈[xi,xi+1]
|v′′(x)|.

Proof. In both cases, we have

vh(x) = v(xi) +
x− xi

xi+1 − xi

(v(xi+1) − v(xi)).

In the first case we have

v(xi) = v(x) + (xi − x)v′(ξ1) and v(xi+1) = v(x) + (xi+1 − x)v′(ξ2),

where {x, ξ1, ξ2} ⊂ [xi, xi+1], so that

|vh(x) − v(x)| =

∣

∣

∣

∣

(xi − x)v′(ξ1) +
x− xi

xi+1 − xi

(

(xi+1 − x)v′(ξ2) − (xi − x)v′(ξ1)

)
∣

∣

∣

∣

≤ max
x∈[xi,xi+1]

|v′(x)|
|(xi − x)(xi+1 − xi) + (x− xi)

2| + |(xi+1 − x)(x− xi)|

xi+1 − xi

≤ max
x∈[xi,xi+1]

2|v′(x)|

xi+1 − xi

max
x∈[xi,xi+1]

(x− xi)(xi+1 − x) =
xi+1 − xi

2
max

x∈[xi,xi+1]
|v′(x)|.

10

In the second case we have

v(xi) = v(x) + (xi − x)v′(x) + (xi − x)2v
′′(η1)

2
and

v(xi+1) = v(x) + (xi+1 − x)v′(x) + (xi+1 − x)2 v
′′(η2)

2
,

where {x, η1, η2} ⊂ [xi, xi+1], so that

|vh(x) − v(x)| =

∣

∣

∣

∣

(xi − x)v′(x) + (xi − x)2 v
′′(η1)

2

+
x− xi

xi+1 − xi

(

(xi+1 − xi)v
′(x) +

(xi+1 − x)2v′′(η2) − (xi − x)2v′′(η1)

2

)
∣

∣

∣

∣

≤ max
x∈[xi,xi+1]

|v′′(x)|

2

|(xi − x)2(xi+1 − xi) − (x− xi)
3| + |(xi+1 − x)2(x− xi)|

xi+1 − xi

≤ max
x∈[xi,xi+1]

|v′′(x)|

2
max

x∈[xi,xi+1]
(x− xi)(xi+1 − x) =

(xi+1 − xi)
2

8
max

x∈[xi,xi+1]
|v′′(x)|.

Hence from the strong (second) case we get

||T∞(0)||∞ ≤
h2

8
||
d2F (uh)

dx2
||∞. (32)

Using (23) we get

‖T∞(0)‖∞ ≤ max
i∈{1,...,N}

h2
i

16ε

∣

∣

∣

∣

d

dx
(uh(x)2)

∣

∣

∣

∣

x∈[xi−1,xi]

(33)

We now have on each interval x ∈ [xi−1, xi]

d

dx

(

uh(x)2
)

= 2

(

ui−1 +
ui − ui−1

hi

(x− xi−1)

)

ui − ui−1

hi

Since this is linear in x, the maximum modulus occurs at x = xi or x = xi−1. Considering
all intervals gives

‖T∞(0)‖∞ = max
i∈{1,...,N}

hi

8ε
|ui − ui−1|max{|ui−1|, |ui|} (34)

Using (31) and (34), we obtain a vector

Y =

(

|(I − B̃)−1(ΠhF (uh) − uh)|
maxi∈{1,...,N}

hi

8ε
|ui − ui−1|max{|ui−1|, |ui|}

)

(35)

that satisfies Assumption 1.

11

6.4 Candidate Vector for Satisfying Assumption 2

We now derive Z, i.e. we bound (T ′(w̃)w)i. From (18) and (19) we have

T ′
h(w̃)w = (I − Ah)−1(ΠhF ′(uh + w̃h + w̃∞)(wh + w∞) − Ahwh),

T ′
∞(w̃)w = (I − Πh)F ′(uh + w̃h + w̃∞)(wh + w∞).

For Ah, we have already derived the corresponding matrix B̃. From (26) and from using
Ahwh = ΠhF ′(uh)wh, {wh, w̃h} ⊂ Sh

2 and (w)i, (w̃)i ≤Wi we have

ε
(

ΠhF ′(uh + w̃h + w̃∞)(wh + w∞) −Ahwh
)

i

def
= ε

∣

∣ΠhF ′(uh + w̃h + w̃∞)(wh + w∞) − Ahwh
∣

∣ (xi)

=

∣

∣

∣

∣

∫ xi

−1

(

uhw∞ + (w̃h + w̃∞)(wh + w∞)
)

dτ − 1+xi

2

∫ 1

−1

∫ x

−1

(

uhw∞ + (w̃h + w̃∞)(wh + w∞)
)

dτdx

∣

∣

∣

∣

≤

∫ xi

−1

(|w̃h| + |w̃∞|)(|wh| + |w∞|)dτ +
1 + xi

2

∫ 1

−1

∫ x

−1

(|w̃h| + |w̃∞|)(|wh| + |w∞|)dτdx

+
1 + xi

2

∫ 1

−1

∫ x

−1

|w∞uh|dτdx+

∫ xi

−1

|uhw∞|dτ (36)

≤

i
∑

j=1

Dj +

i
∑

j=1

Cj + (xi + 1)W 2
N+1 +

1 + xi

2

(

N
∑

j=1

hj(Ej +

j−1
∑

k=1

Dk) +

N
∑

j=1

hj(Fj +

j−1
∑

k=1

Ck) + 2W 2
N+1

)

+
1 + xi

2

N
∑

j=1

hj(Bj +

j−1
∑

k=1

Ak) +
i
∑

j=1

Aj

=
i
∑

j=1

(Aj + Cj +Dj) + 2(xi + 1)W 2
N+1 +

1 + xi

2

N
∑

j=1

hj(Bj + Ej + Fj +

j−1
∑

k=1

Ak + Ck +Dk)
def
= εqi,

where i ∈ {1, . . . , N}, W0 = 0 and we have introduced

Aj
def
= WN+1

∫ xj

xj−1

|uh(τ)|dτ =

{

hjWN+1

2

u2
j−1

+u2
j

|uj−1|+|uj |
ujuj−1 < 0

hjWN+1

2
(|uj−1| + |uj|) otherwise

,

Bj
def
=

WN+1

hj

∫ xj

xj−1

∫ x

xj−1

|uh(τ)|dτdx =

{

hjWN+1

6

|uj |3+3u2
j−1

|uj |+2|uj−1|3

(|uj−1|+|uj |)2
ujuj−1 < 0

hjWN+1

6
(2|uj−1| + |uj|) otherwise

,

Cj
def
= hjWN+1(Wj−1 +Wj) ≥WN+1

∫ xj

xj−1

(|wh(τ)| + |w̃h(τ)|)dτ,

Dj
def
=

hj

3
(W 2

j +WjWj−1 +W 2
j−1) ≥

∫ xj

xj−1

|wh(τ)w̃h(τ)|dτ,

Ej
def
=

hj

12
(3W 2

j−1 + 2WjWj−1 +W 2
j) ≥

1

hj

∫ xj

xj−1

∫ x

xj−1

|wh(τ)w̃h(τ)|dτdx and

Fj
def
=

hjWN+1

3
(2Wj−1 +Wj) ≥

WN+1

hj

∫ xj

xj−1

∫ x

xj−1

(|wh(τ)| + |w̃h(τ)|)dτdx.

The last component of Z is again bounded by the use of the interpolation error. However,
using (32) as previously requires differentiating (26) twice with respect to x. Since we only

12

have a bound of ‖w∞‖∞, such a bound would not be useful. Instead, we use the the weaker
(first) case of Proposition 1. From (26), we have

‖(I − Πh)F ′(uh + w̃)(w)‖∞ ≤

max
i∈{1,...,N}

hi

2

∣

∣

∣

∣

1

ε
(uh + w̃h + w̃∞)(wh + w∞) −

1

2ε

∫ 1

−1

∫ x

−1

(uh + w̃h + w̃∞)(wh + w∞)dτdx

∣

∣

∣

∣

≤ max
i∈{1,...,N}

hi

2ε

(

(WN+1 + max{Wi,Wi−1})(WN+1 + max{Wi,Wi−1} + max{|ui−1|, |ui|})+

1

2

(

N
∑

j=1

hj(Bj+

j−1
∑

k=1

Ak)+
N
∑

j=1

hj(Ej+

j−1
∑

k=1

Dk)+
N
∑

j=1

hj(Fj+

j−1
∑

k=1

Ck)+2W 2
N+1+

N
∑

j=1

hj(Hj+

j−1
∑

k=1

Gk)
)

)

= max
i∈{1,...,N}

hi

2ε

(

(WN+1 + max{Wi,Wi−1})(WN+1 + max{Wi,Wi−1} + max{|ui−1|, |ui|})+

W 2
N+1 +

1

2

N
∑

j=1

hj(Bj + Ej + Fj +Hj +

j−1
∑

k=1

Ak + Ck +Dk +Gk)

)

def
= ZN+1,

where

Gj
def
=

hj

6
(2Wj−1|uj−1| +Wj |uj−1| +Wj−1|uj| + 2Wj|uj|) ≥

∫ xj

xj−1

|uh(τ)wh(τ)|dτ and

Hj
def
=

hj

12
(3Wj−1|uj−1| +Wj |uj−1| +Wj−1|uj| +Wj|uj|) ≥

1

hj

∫ xj

xj−1

∫ x

xj−1

|uh(τ)wh(τ)|dτdx.

Hence, we obtain a vector

Z(W) =

(

|(I − B̃)−1|q
ZN+1

)

,

that satisfies Assumption 2.

7 Algorithm

The algorithm consists of several steps. First we get an approximate solution uh of (14)
using some boundary value solver. Then we can compute Y using (35). This part we need
to fulfil Assumption 1. Eventually we fulfil Assumption 2 with the algorithm part

k ⇐ 0

W
(k)
i ⇐ Zi(0), i ∈ {1, . . . , N + 1}

while Yi + Zi(W
(k)

) ≥W
(k)
i for some i ∈ {1, 2, . . . , N + 1}

k ⇐ k + 1

W
(k)
i ⇐ (1 + δ)(Yi + Zi(W

(k−1)
)), i ∈ {1, 2, . . . , N + 1}

end.

If the while–loop terminates, existence and local uniqueness are proved. The main function
for the whole algorithm is called adspline. It starts by calling the MATLAB boundary

13

value problem solver bvp4c, which computes an approximate solution uh as our approximate
candidate. (Note that in order to use the solver bvp4c, the equation must be written as a
first order system.) Next, the values of uh over the user–defined mesh, are computed using
splines. Following this, the program enters an outer loop over mesh modifications, computes
Y for the mesh, and enters an inner loop where Z and W are repeatedly computed. If the
convergence condition K ⊂ W is satisfied, the iterations stop. If not, W is increased by a
factor 1+ δ, which is typically about 1.01. If convergence is not reached within the loop, one
or two points are added to the mesh where W is maximal, uh and Y are computed again,
and the inner loop starts again. If successful, the program outputs the maximal values of
K and W on the final mesh, as well as their infinite parts are displayed; otherwise an error
message appears. All interval computations are performed using the free MATLAB package
INTLAB [In].

8 Result

The solutions of (14) for different values of ε are shown in Figure 1. We see that for large
values of ε, the solutions are almost linear. When ε approaches zero, the viscous shock
becomes more pronounced, and also increasingly hard to compute.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

x

ε = 1
ε = 0.4
ε = 0.12
ε = 0.03

Figure 1: The solutions of (14) for different values of ε.

If, for a given resolution h, ε is too small, the algorithm described in the previous section
does not converge – instead W and K grow without bounds. On the other hand, if we
choose h too small, our computations will consume too much time or memory. It is therefore
interesting to study how small ε can be chosen, given a fixed resolution h. To establish
where the limit between convergence and divergence lies, we first choose some values of h.
For every such value we run the algorithm for varying ε. If we get convergence, we decrease
ε, and restart the algorithm. If we do not get convergence, we try a larger value and so on,

14

until the difference between the smallest value of ε for which we have have convergence and
the largest value of ε for which we have divergence is sufficiently small. For example, when
h = 0.02, we get convergence for ε = 0.295, but not for ε = 0.285. Hence, rounded off to two
decimals, ε = 0.29. When computing uh, we use a uniform starting mesh with h = 0.001.

The result is shown in Table 1 and in Figure 2, which is a plot of log(h) as a function of
log(ε). The estimated least square line slope is approximately 2.20.

Remark 1. The smallest value of ε for which we manage to establish convergence is 0.085.
In this case h = 0.001 is used.

ε 0.08 0.11 0.15 0.22 0.29 0.38 0.58 0.85 1.33
h 0.001 0.002 0.004 0.01 0.02 0.04 0.1 0.2 0.4

Table 1: The minimum value of ε for which the algorithm converges for given values of h.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g
(h

)

log(ε)

Figure 2: The logarithm of the minimum value of ε for which the algorithm converges for
given values of the logarithm of h. A least square straight line estimation of log(ε) versus
log(h) is also shown.

We have also computed the infinite matrix norm of the inverse of I − B̃ for a uniform
mesh with h = 0.01, and with ε ∈ {0.01, 0.02, 0.03, . . . , 0.10}. It is interesting to see that
I − B̃ approaches a singular matrix when ε approaches zero. The result is displayed in
Table 2, and the logarithmic version is displayed in Figure 3. The least square straight line

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
||(I − B̃)−1||∞ 49.68 24.96 16.65 12.52 10.08 8.43 7.27 6.40 5.74 5.21

Table 2: The infinite matrix norm of the inverse of I − B̃ for different values of ε.

15

−5 −4.5 −4 −3.5 −3 −2.5 −2
1.5

2

2.5

3

3.5

4

lo
g
(|
|(
I
−
B̃

)−
1
||
)

log(ε)

Figure 3: The logarithm of the infinite matrix norm of the inverse of I − B̃ for different
values of the logarithm of ε and the least square straight line estimation.

h maxW W∞

0.04 3.27 × 10−3 4.56 × 10−4

0.02 6.21 × 10−4 8.51 × 10−5

0.01 1.38 × 10−4 1.87 × 10−5

0.005 3.29 × 10−5 4.43 × 10−6

0.004 2.09 × 10−5 2.81 × 10−6

0.002 5.12 × 10−6 6.86 × 10−7

0.001 1.26 × 10−6 1.68 × 10−7

Table 3: The maximal W component, and W∞ for different values of the resolution h.
ε = 0.5.

approximation for the logarithms is also computed. The estimated least square straight line
slope is approximately −0.98.

Finally, we have computed the maximal W -components as well as W∞ for ε = 0.5 and
uniform meshes with different resolutions. The logarithms of the values are shown in Table 3
and in Figure 4 together with the least square approximation lines. The slopes of the lines
are 2.12 and 2.13 respectively, illustrating that the maximal W -component and W∞ are
almost proportional to each other.

9 Discussion

Since ||B̃||2 << 1 = ||I||2 when we have convergence, and qi (36) is non–decreasing in i, Zi

and therefore also Wi are typically also non–decreasing in i. Hence the mesh is updated with

16

−7 −6 −5 −4 −3
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−7 −6 −5 −4 −3
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

lo
g
(W

m
a
x
)

log(h)log(h)

lo
g
(W

∞
)

Figure 4: The logarithm of the resolution h versus the logarithm of the maximal W compo-
nent and W∞. The least square straight line estimation for the logarithms are also shown.
Here ε = 0.5.

more points on the right boundary, where the error estimate is maximal. But this does not
necessarily mean that the error w = u− uh is maximal there. It is simply due to the lack of
cancellation in the inequalities for computing qi and ZN+1.

There are several ways to improve the algorithm. The function spaces do not necessarily
have to be spanned by hat functions; perhaps other basis functions are more appropriate.
This change would probably increase the complexity of each step of the calculations, but it
should also increase speed and accuracy. The bottleneck of our computations is the inversion
of the matrix I− B̃. According to (30), this matrix is a sum of a lower triangular matrix and
an outer product. Utilizing the Sherman–Morrison formula [Pr02], we may thus increase the
speed of the inversion.

In future work we will study time–dependent problems or systems of equations. Such prob-
lems are more interesting since they can describe more complicated physical models, and
they may not be analytically solvable. As an example one could consider the time–dependent
version of this problem with the method described in [Zg01].

References

[BM98] Berz, M., Makino, K., Verified Integration of ODEs and Flows using Differential
Algebraic Methods on High–Order Taylor Models, Reliable Computing 4, 361–369,
1998.

[Br00] Bressan, A. Hyperbolic Systems of Conservation Laws. Oxford University Press,
2000.

17

[BS94] Brenner, S. and Scott, R. The Mathematical Theory of Finite Element Methods.
Springer–Verlag, 1994.

[Bu74] Burgers, J.M., The Nonlinear Diffusion Equation: Asymptotic Solutions and Sta-
tistical Problems. Reidel, 1974.

[Fa95] Farzaneh, R. A Computer Generated Proof for the Existence of Periodic Orbits for
Three–Dimensional Vector Fields. Ph.D. Thesis, Cornell, 1995.

[Gl65] Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations.
Comm. Pure Appl. Math, 18, 679–715, 1965.

[HR02] Holden, H. and Risebro, N. H. Front Tracking for Hyperbolic Conservation Laws.
Springer–Verlag, 2002.

[In] INTLAB – INTerval LABoratory Version 5.3.
Available from http://www.ti3.tu–harburg.de/rump/intlab/.

[KL89] Kreiss, H–O. and Lorenz, J. Initial–boundary value problems and the Navier–Stokes
equations. Pure and applied mathematics, vol. 136, Academic Press, 1989.

[MZ01] Mischaikow, K. and Zgliczyński, P. Rigorous Numerics for Partial Differential
Equations: the Kuramoto–Sivashinsky Equation. Found. Comput. Math. 1 255–288,
2001

[Na92] Nakao, M. T. A numerical verification method for the existence of weak solutions
for nonlinear boundary value problems. J. Math. Anal. and Appl. 164, 489–507,
1992.

[Pl01] Plum, M. Computer–assisted enclosure methods for elliptic differential equations.
Linear Algebra and its Applications 324, 147–187, 2001.

[Pr02] Press, W.H., et. al. Numerical Recipes in C++: The Art of Scientific Computing.
Second Edition, Cambridge University Press, 2002.

[Si04] Siklosi, M. and Åsén, P.O., On a Computer–Assisted Method for Proving Existence
of Solutions of Boundary Value Problems. KTH–Numerical Analysis and Computer
Science, October, 2004.

[Tu02] Tucker, W. A Rigorous ODE Solver and Smale’s 14th Problem. Foundations of
Computational Mathematics, 2:1, 53–117, 2002.

[Ya98] Yamamoto, N., A Numerical Verification Nethod for Solutions of Boundary Value
Problems with Local Uniqueness by Banach’s Fixed Point Theorem. SIAM Journal
on Numerical Analysis, 35(5), 2004–2013, 1998.

[Zg01] Mischaikow, K. and Zgliczyński, P. Rigorous Numerics for Partial Differential
Equations: the Kuramoto–Sivashinsky Equation. Found. Comput. Math. 1 255–288,
2001.

[Zg02] Zgliczynski, P. Attracting Fixed Points for the Kuramoto–Sivashinsky Equation: A
Computer Assisted Proof SIAM Journal on Applied Dynamical Systems, Volume
1, Number 2, 215–235, 2002.

18

[Ås04] Åsen, P–O. A proof of a Resolvent Estimate for Plane Couette flow by new analytical
and Numerical Techniques. TRITA–NA–0427, KTH, 2004.

19

10 Appendix

Here we list all MATLAB code used in implementing the algoritm. The tilde sign means
that a row is terminated in the listing, but not in the corresponding M–file.

adspline.m

function [K,W]=adspline(eps,xguess,maxmesh,tol,x,delta,iter1,iter2)

% xguess is the starting mesh for MATLAB’s boundary value solver bvp4c.

% maxmesh is the maximal number of mesh points.

% tol is the maximal relative tolerance in the bvp4c process.

% x is the starting mesh for the main algorithm.

% delta is an algorithm parameter describing how much the search domain should

% be increased in every step. Usually it is set to 0.01.

% iter1 is the number of mesh refinements.

% iter2 is the number of iterations per refinement.

format long

global eps1

eps1=eps;

eps1int=intval(eps1);

delta=intval(delta);

convergence=0;

s=size(x);

if s(1)<s(2)

x=x’;

end

s=size(xguess);

if s(1)<s(2)

xguess=xguess’;

end

l=0; % Loop counter.

for k=1:iter1 % Loops over the number of partition refinements.

disp(’Solving the boundary value differential equation...’)

options=bvpset(’FJacobian’,@jacob,’Nmax’,maxmesh,’Stats’,’on’,’RelTol’,tol);

% The solver will compute with a jacobian, which is defined in jacob.m.

solinit=bvpinit(xguess,[1;-1]); % Starting guess u=-x.

sol=bvp4c(@odefun,@bcfun,solinit,options); % The ODE is written as a first order system.

u=sol.y(1,:); % The system has two unknowns: u and u’. Only the first is needed.

error=max(abs(u-exactu(sol.x,eps1)))

disp(’Computing splines...’)

u=spline(sol.x,u,x); % The value of u in the points x are computed using splines.

uint=intval(u(2:end));

N=length(x)

disp(’Computing Y...’)

x=intval(x);

Y=makeYint(eps1int,x,uint); % For Assumption 1.

Z=intval(zeros(N,1));

for m=1:iter2 % Iterations over some fix resolution.

l=l+1;

disp([’Iteration’ int2str(l) ’...’])

W=(1+delta)*(Y+Z); % W is increased.

Z=Zh(eps1int,W,uint,x);

mean_of_W=mean(W.sup)

if ~sum((Y.sup+Z.sup)>W.inf) % Is Assumption 2 fulfilled?

convergence=1;

break

20

end

end

if(convergence)

break

end

disp(’Updating the partition...’)

[M,j]=max(W(1:end-1).inf);

% Checks where W is maximal. The infinite part i.e. the last part is not considered.

Maximal_point=x(j+1)

if j==length(W)-1 %Maximun on the boundary. Only one point is added.

x=[x(1:j);(x(j)+x(j+1))/2;x(j+1)];

else

x=[x(1:j);(x(j)+x(j+1))/2;x(j+1);(x(j+2)+x(j+1))/2;x(j+2:end)];

% Doubles the resolution around this maximum.

end

plot(x.mid,zeros(length(x),1),’.’) % Plots the partition.

hold on

plot(x.mid(j+1),0,’r*’) % Plots a red star where the maximum is.

hold off

x=mid(x);

drawnow

end

if(convergence)

K=Y.sup+Z.sup;

W=W.sup;

K=[max(K(1:end-1));K(end)];

W=[max(W(1:end-1));W(end)];

else

error(’No convergence’)

end

jacob.m

function dydx=jacob(x,y)

% The equation eps1*u_xx=(u^2/2)_x is rewritten as (u_x,v_x)=(v,uv/eps1).

% Therefore the jacobian is [0 1;v/eps1 u/eps1].

global eps1

dydx=[0 1;y(2)/eps1 y(1)/eps1];

odefun.m

function dydx=odefun(x,y)

% The equation eps1*u_xx=(u^2/2)_x is written as a first order system.

global eps1

dydx=[y(2); y(1)*y(2)/eps1];

bcfun.m

function z=bcfun(ya,yb)

% The equivalent boundary conditions u(-1)-1=0 and u(1)+1=0 are set.

z=[ya(1)-1

yb(1)+1];

exactu.m

21

function y=exactu(x,eps1)

% Returns the "almost" exact solution y=-tanh(rx)/tanh(r).

% where r can only be computed numerically.

if e>0.5

r=fzero(@(r) r*tanh(r)-1/2/eps1,1/sqrt(2*eps1)); % For large epsilons rtanh(r) is small

else % so rtanhr\approx r^2. Use 1/sqrt(2*eps1) as a starting guess.

r=fzero(@(r) r*tanh(r)-1/2/eps1,1/(2*eps1));

% For small epsilons rtanh(r) is large

end % so rtanhr\approx r. Use 1/(2*eps1) as a starting guess.

y=-tanh(r*x)/tanh(r);

makeYint.m

function Yint=makeYint(eps1,xint,uint)

% Computes Y for Assumption 1.

n=length(uint);

uint=[1;uint]; % The left boundary is added.

h=xint(2:end)-xint(1:end-1);

d=abs(uint(2:end)-uint(1:end-1)); % Needed for the maximal derivative.

m1=abs(uint(1:end-1))’;

m2=abs(uint(2:end))’;

m=max([m1.sup;m2.sup]);

Yinf=intval(max(h.sup.*d.sup.*m’))/8/eps1 % The infinite dimensional part.

uint=uint(2:end); % The left boundary is removed.

Yint=abs((speye(n)-makeBint(eps1,xint,uint))\(Fintint(eps1,xint,uint)-uint));

Yint=[Yint;Yinf];

makeBint.m

function Bint=makeBint(eps1,xint,uint)

% Computes the matrix \tilde{B}.

n=length(uint);

uint=[1;uint]; % The left boundary is added.

hint=xint(2:end)-xint(1:end-1);

Bint=spdiags(hint.*(uint(2:end)/3+uint(1:end-1)/6),0,n,n); % Diagonal elements.

for j=1:n-1

Bint(j+1:n,j)=hint(j)*(uint(j)/6+uint(j+1)/3)+hint(j+1)*(uint(j+2)/6+uint(j+1)/3);~

% Below the diagonal.

end

d=hint.^2.*(uint(1:end-1)+uint(2:end))/12; % Double integral contribution.

d(1:n-1)=d(1:n-1)+hint(2:end).^2.*(uint(3:end)/12+uint(2:end-1)/4)+hint(2:end).*~

hint(1:end-1).*(uint(1:end-2)/6+uint(2:end-1)/3)+(1-xint(3:end)).*(hint(1:end-1).*~

(uint(1:end-2)/6+uint(2:end-1)/3)+hint(2:end).*(uint(3:end)/6+uint(2:end-1)/3));

Bint=(Bint-(1+xint(2:end))*d’/2)/eps1;

Fintint.m

function PiF=Fintint(eps1,xint,uint)

% Computes F(u^h)(x_i)

n=length(uint);

uint=[1;uint];

hint=xint(2:end)-xint(1:end-1);

s(1)=hint(1)*(uint(1)^2+uint(1)*uint(2)+uint(2)^2);

for k=2:n

22

s(k)=s(k-1)+hint(k)*(uint(k)^2+uint(k)*uint(k+1)+uint(k+1)^2);

end

s=s’; % The single integral contribution.

t=hint.*(uint(2:end).^2+2*uint(2:end).*uint(1:end-1)+3*uint(1:end-1).^2)/4;~

% The double integral contribution.

PiF=-xint(2:end)+(2*s-(1+xint(2:end))*sum(hint.*(t+[0;s(1:end-1)])))/eps1/12

Zh.m

function Zint=Zh(eps1,W,uint,xint)

% Computes Z for Assumption 2.

N=length(uint);

hint=xint(2:end)-xint(1:end-1);

b=[1;uint];

a=abs(b);

W=[0;W]; %The error vanishes on the left boundary.

% The first N components

%---

% Simple integral contribution.

r=b(1)*b(2);

if r.sup<0

AC(1)=hint(1)*((a(1)^2+a(2)^2)/(a(1)+a(2))/2+W(1)+W(2));

% AC=(The cumulative sum of the sum of A and C)/W(end)

else

AC(1)=hint(1)*((a(1)+a(2))/2+W(1)+W(2));

end

D(1)=hint(1)*(W(1)^2+W(1)*W(2)+W(2)^2)/3;

for j=2:N

r=b(j)*b(j+1);

if r.sup<0

AC(j)=AC(j-1)+hint(j)*((a(j)^2+a(j+1)^2)/(a(j)+a(j+1))/2+W(j)+W(j+1));

else

AC(j)=AC(j-1)+hint(j)*((a(j)+a(j+1))/2+W(j)+W(j+1));

end

D(j)=D(j-1)+hint(j)*(W(j)^2+W(j)*W(j+1)+W(j+1)^2)/3;

end

ACD=W(end)*AC+D; % ACD=The cumulative sum of the sum of A, C and D.

% Double integral contribution.

r=b(1)*b(2);

if r.sup<0

s=hint(1)^2*(W(end)*((a(2)^3+3*a(2)*a(1)^2+2*a(1)^3)/(a(1)+a(2))^2/6+(2*W(1)+W(2))/3)+~

(3*W(1)^2+2*W(1)*W(2)+W(2)^2)/12);

else

s=hint(1)^2*(W(end)*((2*a(1)+a(2))/6+(2*W(1)+W(2))/3)+(3*W(1)^2+2*W(1)*W(2)+~

W(2)^2)/12);

end

for j=2:N

r=b(j)*b(j+1);

if r.sup<0

s=s+hint(j)*((W(end)*((a(j+1)^3+3*a(j+1)*a(j)^2+2*a(j)^3)/(a(j)+a(j+1))^2/6+~

(2*W(j)+W(j+1))/3)+(3*W(j)^2+2*W(j)*W(j+1)+W(j+1)^2)/12)*hint(j)+ACD(j-1));~

% ACD is the double sum contribution.

else

s=s+hint(j)*((W(end)*((2*a(j)+a(j+1))/6+(2*W(j)+W(j+1))/3)+(3*W(j)^2+2*W(j)*W(j+1)~

23

+W(j+1)^2)/12)*hint(j)+ACD(j-1)); % ACD is the double sum contribution.

end

end

q=ACD’+(xint(2:end)+1)*(2*W(end)^2+s/2);

Zshort=abs(inv(speye(N)-makeBint(eps1,xint,uint)))*q;

%--

% Last component of Z

G(1)=hint(1)*(2*(W(1)*a(1)+W(2)*a(2))+W(1)*a(2)+W(2)*a(1));

for j=2:N

G(j)=G(j-1)+hint(j)*(2*(W(j)*a(j)+W(j+1)*a(j+1))+W(j)*a(j+1)+W(j+1)*a(j));

end

G=G/6;

s=s+hint(1)^2*(3*W(1)*a(1)+W(1)*a(2)+W(2)*a(1)+W(2)*a(2))/12;

% Using that s is already summed over A, B, C, D, E and F.

for j=2:N

s=s+hint(j)*((3*W(j)*a(j)+W(j)*a(j+1)+W(j+1)*a(j)+W(j+1)*a(j+1))*hint(j)/12+G(j-1));~

% G is the double sum contribution.

end

for j=1:N

M(j)=hint(j)*((W(end)+max(W(j).sup,W(j+1).sup))*(W(end)+max(W(j).sup,W(j+1).sup)~

+max(a(j).sup,a(j+1).sup))+W(end)^2+s/2);

end

Zinf=intval(max(M.sup))/2

Zint=[Zshort;Zinf]/eps1;

24

