AUTOMATED COMPUTATION OF
ROBUST NORMAL FORMS
OF PLANAR ANALYTIC VECTOR FIELDS

TOMAS JOHNSON, WARWICK TUCKER

ABsTrRACT. We construct an auto-validated algorithm that calculates a close
to identity change of variables which brings a general saddle point into a nor-
mal form. The transformation is robust in the underlying vector field, and is
analytic on a computable neighbourhood of the saddle point. The normal form
is suitable for computations aimed at enclosing the flow close to the saddle,
and the time it takes a trajectory to pass it. Several examples illustrate the
usefulness of this method.

1. INTRODUCTION

It is well-known that computing a trajectory in the close vicinity of a fixed point
is associated with many problems. Numerical integration schemes (silently) break
down when the vector field tends to zero, and this usually results in completely
inaccurate results. Indeed, as the norm of the vector field decreases, the flow-time
needed to pass a saddle increases without bound. This means that no integration
scheme, rigorous or not, will function properly is this situation. There are, however,
many instances where it is necessary to be able to follow the flow of a vector field
arbitrarily close to a saddle.

We present a completely automated, rigorous method that produces analytical
estimates on the flow close to a given saddle. Equally important, it produces
explicit bounds, for a given accuracy of the analytic estimates, on the size of the
neighbourhood of the saddle on which the information is valid. This avoids the
need to numerically integrate the flow near a saddle: once a trajectory comes close
to the saddle, the bounds produced by our method give enclosures of where the
trajectory exits the neighbourhood, and its associated flow-time.

The approach is based on constructing a carefully chosen change of variables,
that bring the original vector field into the robust normal form presented in [14, 15].
The present paper can be seen as a quantitative companion to [15], where several
qualitative properties of robust normal forms are proved. Many of the ideas behind
the algorithm can be found in [14], where they were used for establishing that the
Lorenz equations support a strange attractor. In the present study we develop an
algorithm for general planar real analytic vector fields.

Consider the planar vector field

(1) &= Az + F(x),
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with A € §, where § := {diag(As, \u) : As < 0, A, > 0}, and where F is an analytic
function, with F(z) = O(2?). Note that any vector field with a saddle fixed point
can (locally) be brought into this form by an affine change of variables.

The purpose of this paper is to describe, and implement, an algorithm that finds
a square centred at the saddle in which we can enclose a trajectory and its flow-
time passing near the saddle. The output of the program includes estimates on the
norms of the change of variables, its inverse, and the nonlinear part of the normal
form, as well as the flow-time for passing the saddle.

2. THEORETICAL BACKGROUND AND NOTATION

This paper addresses the algorithmic aspects of the planar case of the robust
normal forms introduced in [14], and formalised in [15]. In order to simplify the
formulae, we use vector and multiindex notation. The components of a vector are
indexed by s and u for the stable and unstable direction, respectively. To make the
presentation self-contained, we revise the necessary concepts from [15], but refer
the reader to that paper for proofs and additional details.

The structure of (1) implies that the stable and unstable manifold of the origin
are tangent to the coordinate axes. Rather than attempting to find a coordinate
change that completely linearises (1) in accordance with Siegel’s theorem [12], we
compute normal forms that are robust in the sense that the set of eigenvalues where
they exist is open and dense. This is crucial from a computational point of view,
as we often only have an approximate knowledge of the eigenvalues. Our aim is to
change (1) into the normal form

(2) y=Ay+G(y),

by an analytic change of coordinates, z = y + ¢(y). We require that G, the non-
linear part of the new vector field, is such that the invariant manifolds of the saddle
are not only tangent to the coordinate axes, but actually coincide with them locally.
We also require that the vector field is at least linear on these invariant manifolds.
That is, if we let d(y) = min(|ys|, |y.|), then we ensure that G;(y) = O(d(y)'),
where [ is the order of flatness. This means that if g,, is a non-zero coefficient
in the series expansion of G, then mg > [ and m, > [. We call the non-negative
number |m| = m,, +m, the order of m, and define the set N> = {m € N?: |m| > 2}.
To formalise, let us split the space of multi-exponents into the sets

V, = {meN?:m,<lorm, <I},
U, = {mEN2 :mg > 1 and m,, > 1}.
Now we can define the set of admissible linear parts of (1) that we consider:
Fir={AeS meV,=>m\— X\ #0,i=u,s}.
It is proved in [15] that F; is open and has full Lebesgue measure in S. We will
often use the notion of filters of a (formal) power-series: if f(z) =}, /50 ama™,
we use the notation

[flu, = Z amz™, [flv, = Z amz™, and [f]m = am.

meU, mevV;

Also, we let f? denote the partial sum of the first d terms of f. We use the norms
ly| = max (Jys|, |yo|) and ||f]l, = max{|f(y)| : |y| < r}. The r-disc is denoted by
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B,., and at times we use the notation X\ and 5\, to denote the eigenvalue with the
smallest and largest absolute value, respectively.
We are now ready to state the two main theorems from [15]:

Theorem 2.1. Given an integer | > 2 and a system & = Az + F(x) where F(z) =
Z‘m|>2 amx™ is analytic, and A € Fi, there exists positive constants ro,r1, Ko, K1
and an analytic, close to identity change of variables x =y + ¢(y) with

16l < Kor®  (r <o),

such that © = Az + F(x) is transformed into the normal form y = Ay + G(y)
satisfying [G(y)]u, = G(y) and

|G| < Kqr? (r <mr).
In the second theorem, we let ¥ denote the flow of y = Ay + G(x).

Theorem 2.2. Under the same conditions as in Theorem 2.1, and given any k > 0
sufficiently small, there exists r > 0 such that for any trajectory in B, starting from
|xs| = r, we have the following enclosure of its point of exit:

\Ilu(ya Te(y)) = Sign(yu)r;

[As|t+r As|

Asl—r
Auy—r Autr
()T <o <o (27T

where T.(y) (the exit time) denotes the time spent inside of B,:

1 r 1 r

—10—<7— <—10—
ot B ST S 5o

We will also use the following lemma from [15].

Lemma 2.3. If (As, \y) are non-resonant for m € Vy, then the divisors mA — \;
are bounded away from zero. Furthermore, for all orders |m| > 1 + [(l -1) RH,

we have the following sharp lower bound:
ImA = Xl = [(Im| = DA+ (I = 1)A|
Finally, the following lemma, which in principle appears in [14], will be used.

Lemma 2.4. Ifr < ro(1—Koro), then ¢ has a well-defined inverse, y = x+¢~1(z)
in|z| <r* =7r—||9||, satisfying

o~ - < [l0l]:

To prove the convergence of ¢ and G we procede as in e.g. [6, 13], and use the
method of majorants. If f, g : C* — C", are two formal power series and | f,| < g,
for all multiindices m, and all the coefficients of g are real and positive, we say that
g magjorises f, denoted by f < g. Thus, the convergence radius of f is at least as
large as ¢g’s. We will majorise in two steps; given some f : C? — C2, we construct
g : C? — C such that f; < g, for all 4, and then construct h : C — C such that

9(z,2) < h(z).
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3. THE ALGORITHM

In this section we will describe an algorithm that computes explicit bounds on
the constants rg, 71, Ky, and x appearing in Theorems 2.1 and 2.2. This allows
us to interrupt a numerical integration scheme of the original vector field (1), and
instead use the analytical bounds from Theorem 2.2 to enclose the flow on passing
the saddle, together with bounds on the time it takes to pass the saddle.

The main ideas of the algorithm appear in [14], where robust normal forms are
computed for the Lorenz system. In [14], however, the algorithm was designed
exclusively for that particular system. The purpose of this paper is to construct a
general algorithm, that will take any planar vector field of the form (1), and trans-
form it into (2), together with explicit bounds on the aforementioned constants.

We note that several heuristic constants appear in the algorithm: ¢, n, pu, p,
N¢, €4, €g, and €. In the actual implementation all of these can be set by the
user in a configuration file. The algorithm has been implemented in a C++ program
using the C-XSC package [3, 5] for interval arithmetic [1, 8, 9, 10]. For automatic
differentiation [4] we use a modified version of the Taylor arithmetic package [2].

3.1. Outline. The algorithm has four main parts that will be described in detail
below:

1. we compute an [ such that A € F;, with [ <., where ¢ is a user-provided
order of flatness.

2. we compute the first few terms of the formal power series solution of the
functional equation for the change of coordinates © = y + ¢(y) using auto-
matic differentiation. These first terms are used to estimate bounds on a
majorant of ¢. These estimates are then, finally, used to prove the analyt-
icity of ¢, using induction.

3. we do the same kind of estimates for GG; we compute some terms in the
formal power series solution of a second functional equation, and use these
to prove the analyticity of G by induction.

4. using the estimates on the coefficients of the analytic functions ¢, and G,
we estimate the constants Ky and « that enable the user to switch from a
numerical integration scheme to the analytic estimates from Theorem 2.2.

3.2. Verifying A € F;. We want to determine [ such that A € F;. We will do this
by first constructing V;, and then removing its members that cause resonances.

Proposition 3.1. If, fori=1,...,1

—Xs v
" ¢N and Z—A5¢N’

1

then A € Fiqq.

Proof. For | = 1, we note that Vq = {(0,4%), (¢,0) };>2. The potential resonances are
given by

MuAy — A =0 and mgAs — X\ =0
and it is clear that no member of V; satisfies any of these two equations. Hence,
F1=S8.

For [ > 1, we have the recursive relation:

Vig1 =V, U {(lai)a (i’l)}iZl'
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Thus we only have to consider the following potential resonances:
My s — XA =0 and Ay +msAs —A; =0
with m,,ms > [. For the case i = s, we get
My + (= 1DAs =0 and A, + (ms — 1A, =0

with solutions m, = (I — 1) j\)“" and ms =1+1 _)‘)'\‘ , respectively. Analogously, for
the case i = u, we get

(My — DAy +1As =0 and (I — 1A, +mshs =0

with solutions m, = 1+ l_)\i-‘ and mg = (I — 1) 3\5:;’ respectively. Therefore it
suffices to enforce

_>\s . )\u .
(3) i 3 ¢N and i—— ¢N, 1=1,..,1
to establish that A € Fj 4. O

It follows from Proposition 3.1 that we have the relation:

—As A
]-'Hl:]-'l\{AES:l)\‘ €N, orljeN}.

U S

To write a program that checks the condition in Proposition 3.1 is simple, and the
algorithm returns a lower estimate on the largest [ less than ¢, such that A € F;.

3.3. Computing ¢ and its radius of convergence. By inserting z = y + ¢(y)
into (1), differentiating directly, and comparing the sides, we get:

(I+ Do)y = Ay + o(y)) + Fy + ¢(y))-
By inserting into (2), and simplifying, we get:

(4) Do(y)Ay — Ap(y) = F(y + 6(y)) — Do(y)G(y) — G(y).
Let LA be the operator
Lad = Do(y)Ay — Ag(y),
where we note that (L (y!)); = (mA — X))y
Recall, we want to compute a normal form (2) which is I-flat, that is [Gly, = G,
and the non-flat terms in (4), which we want to cancel with ¢, come from F.

Therefore, by filtering on the component level, we get the following two functional
equations for ¢; and Gj:

(5) (Lad)i = [Fi(y + o(y))]v,
© G: = [Fiy + 60l — 5Guls) = 52Gulw)

Since A € Fy, and [¢]y, = ¢ by construction, we can solve (5) recursively,

To bound the solutions of (5) we want to procede as in [14], and prove the
convergence of the change of variables using majorants and induction. Two heuristic
constants ng, and n; > ng are needed. They determine the range of coefficients of
the formal power series of ¢, that should be used in the induction proof. Let

A

i)

N() =1+ {(l 1)
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be the constant from Lemma 2.3 from which the explicit lower bound holds. For
the induction to work it is required that n; > N(I).

We put n1 = [(1+7n)N(1)], and ng = LHT”N(Z)J, where n > 0, and —1 < pu <79
are two given constants.

Let ¢;(z) = Zmlﬁ a; mz™ be the sought change of variables. We will com-
pute the «;,,’s with |m| < n, using automatic differentiation, and then put éx =
2=k Max(|as ml, [@u,m|). The dy’s will be used as the first terms in a majorant
of ¢s and ¢,. Sometimes we will use &; = 1, to simplify the argument of some
functions.

To calculate a,,, with [m| = k, we evaluate a k-Taylor model of F; (x + ¢*~!(z)),
and divide its mth term by mA — A;:

[Fi (@ + " (@)],,
|)\m — >\z|
Note, the coefficients at a certain level only depend on the previous levels. This
is because F' does not contain constant or linear terms.
If ng and ny are sufficiently large, then the first terms computed above are a
good approximation of a majorant qAS, and we use these to determine an approximate
radius of convergence for gﬁ The validity of this radius of convergence will be proved

later. Therefore we determine, using a least squares estimator, constants C' and M,
such that

(7) Ajom =

dp <CM*, ng <k <ny.

Thus, a candidate radius of convergence is s := %, which needs to be verified.

We will consider a slightly larger majorant of ¢;. If

o0
Fi(x) = Z Cima™,

|m|=2
we define

ék = Z maX(|C37m|, |Cu,m|)7

|m|=k

o0
F= § epah.
k=2

F' is clearly a majorant of F;. We define,

and set

52

p p
F9 S EL S 1
(8) A= Zéksk72+ <|| ||2 +|| ||2 (5) (p_|_3)),
k=2

where p is a given natural number.
Lemma 3.2. F(z) < Alz|?, on |z| < s.

Proof. The terms of F' up to order p are clearly bounded by the left sum in (8),
since & > 0, and |z| < s. For the coefficients ¢; ,,,, standard Cauchy-estimates give

leim| < H?# Thus, since there are (k + 1) terms with |m| =k,

sl + 11 Fulle

k< (k+1) o
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Using ¢ = 2s, this yields

k
S pen et < (B + [Fulles) 27200 0+ 1) (5)

o) < UPlleatliFullze ;2 S k) (%Y*Q
< ABlgfileeg2 (232 (3)F
3 =) (1)
HFS||2SS+2HFHH2Sx2 (%)p(p—i—i’))
O
Let

(k) = ‘(k; DA+ (- 1)&‘ ,
be the lower bound on |mA — A;| from Lemma 2.3.
Proposition 3.3. If
A(s) S
—— 2 C|<1
Q(n1—|—1) < kZ:lakS +m )
then ¢; is analytic on Bs.

Proof. By the above lemma, ¢; is majorised by ¢, where ¢"t = SRk, agat is as
above, and

. A k—1(, )2
akzw[(gé (r)?*],, k>ni.
Note that ng and n; are constructed so that max(2ng, N;) < ny. Thus, (for n > ny)
A SN
Apiy1 = m ;akawrl,k.

Assume, for some n > ni, we have proved that & < CMP* holds for ng < k < n.
If we can prove that d,+1 < CM n+1 the convergence of ¢ follows by induction.

p— A no oA~ oA n—ng PN
Ontl = Qo+ (Zk:l QpQpt1—k + Zk:no-i-l QpOnt1—k
n A A
+ Ek:nanJrl akan-l—l—k)
- _A no A A n—ng A
= QM+ 2 oty Grbng1—k + Zk:no-l-l akanﬂ,k)

(use the induction hypothesis, &r < CM*, ng < k < n)

A n ~ n4+l1— n—n n
< aids (22,;1 aCMnHI=k Ym0 o2t
= o525 (2300, &M F + (n — 2ng)C) CM™H?

A
Q(r;;rl) k=17 . )
< Q(n+1) (2 Dopey QM 4 nC) cCM™

The expression before CM"+! is decreasing in n for n > ny, since Q(n) ~ n|\.
Therefore, to prove the induction step, it suffices to prove that the expression is
less than one for n = n;. Thus, the close to identity change of variables converges
to an analytic function on |z| < 74 = s. O
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3.4. Computing G and its radius of convergence. It was proved above that
there exists an analytic change of variables ¢ on |z| < 74. After changing the
coordinates, the system is of the form

&= Az + G(x),

where [G]y, = 0. We want to estimate the radius of convergence of G.

Let g% be as in the above section, then a majorant for G is given by G, defined
by

(10) gk = [F(m + qgk71) + 2(&k+172l)/ék71]k’

where we note that g, = 0, for 0 < k < 21, since [G]y, = 0. The §;’s are computed
using automatic differentiation.

We use (10) to compute gi, for 20 < k < Ng, where Ng is an integer larger
than 2[. These values are used to compute candidate constants D and K, such that
gr < DK*. To do this, we again use our least squares estimator. We require that
K > M; the reason being that % will be used to estimate the radius of convergence
for G, and G is only of interest within the radius of convergence of ¢. Let

U(n) = AT @M+ O —2n0) § (4)")
no A _ no (no+1)—(no)
+ 2 (ZH kg K'F + CM (%) %)

Proposition 3.4. If ¥(Ng) < 1, then G is analytic on By 1.

Proof. Assume that we have proved g < DK k for k < n. If we can prove that
Gni1 < DK™*! the convergence of G follows by induction. As in the proof of
Proposition 3.3, we use the constant A to get a bound on F', which gives us the
bound

n n+2-—21
Int+1 < Azdkdn-l—l—k +2 Z kb gnyo—k-
k=1 k=2

We call the first sum X1, and the second sum X5. If we can prove that AY; 42X is
bounded by ¥(n)DK"*! where ¥ : N — R is a decreasing function, we are done.

D€ XL, aOM IR I O LS OM R
= (2 22'0:1 OAszik +C(n— 2710)) CM" !
< (@i @M *+ 0 —2n0)) § (4)") DE™,

since K > M, the bound on ¥; is decreasing in n.

To £ D (SR, kaK T 4 OSIER  pMER
< (S kaK T OM YR, k(M) ) DR
_ (220_2 kdkKl_k + CM (%)no (noJ(rll)MU)lg)%) DKn-l—l
K
the expression in front of DK"*! is independent of n. Thus, ¥ is a decreasing

function, which proves the bound g, < DKP* for all k. The analyticity of G on
r = % follows. [l
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3.5. Computing the bounds. Let, ro = €41y, 12 = €gri, and r3 = e min(rg,72),
where 0 < €4, €g, € < 1, are given numbers.

That is, B, is the domain of ¢ that we will use to estimate ||¢|| and ||¢~1]|,
and *B,, is the domain of G that we will use to estimate x. To ensure that our
estimates hold we may never leave these domains. B,, is the box where we will
actually change coordinates.

To guarantee that the change of variables is done in the domain of G, we need
that r3 + 73 Ko < ro. By construction, the flow stays inside the domain of G, since
the only place that the flow can leave the box is on the unstable side. To guarantee
that the final change of coordinates is done in the part of the domain of ¢, where
the estimate on ||¢~!|| holds, we need that rs < ro(1 — Koro), since then r* < rq,
where r* is such that r5 = r* — ||@||,+.

To compute Ky we note that on |z| < rg, we have that

]l < o(r) Ykt Gt + O3, L MEE

< (X, aprt P+ CME Y no-1 MFrf)
n ~ — r9)"0 "
< 02 (S aark? + oap ity
Thus, if we put
o M nofl
(11) Ko:= daprk2 4 caz o™
o 1-— M?”()

then
lollr < Kor?.

To estimate ||¢~!||-, we need to find 7* such that r = r* — ||¢||, since then, by
Lemma 2.4, ||[¢71||, <||¢||»+. A trivial calculation yield

« 1 1 r
" Tk, T \arZ Ky

Thus,
1 1 r
12 < Ko(r* )2 < — — 1 — [ —— — —.
( ) ||¢ || — 0(71 ) —_ 2KO r 4K§ KO
Finally, the constant « is computed as
DK?
TR

We want that £ < min(—>As, Ay, [As + Ay|); if this is not the case, we decrease 79
and/or 3.

4. EXAMPLES

4.1. Example 1. We start with a simple example that also illustrates how the
results depend on the distance from resonance. The vector field under study is

Ty = —Ty
(13) iy = 2 +0.0522 - 0.95x,
+  5((438.4905 — 25.2469z — 452.7899x2)x,, — 741.034123 /3)

which has previously been examined in [7]. It is a perturbation of a Hamiltonian
system, given by 6 = 0. The Hamiltonian system has a resonance of flat-order
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1, since at a saddle of a planar Hamiltonian vector field the stable and unstable
eigenvalues have the same modulus.

We describe the results in detail for § = 1073, and also include Table 1, which
illustrates how the convergence radii, and norm bounds depend on the distance
from the resonance. We have chosen [ = 10, since this is the lowest value of [ that,
after optimisation of €5 = 0.1,ec = 0.5, and € = 0.9, yields k < 2753, which is the
machine precision using IEEE double precision floating point arithmetic.

We start by introducing the linear change of variables, x = T'¢, that transforms
(13) to the form (1). Note that this transformation yields interval enclosures of the
eigenvalues

As = —0.77978852302649%5, A, = 1.21827902302649g;,

which are used during the computations. The diagonalised system is put into the
algorithm.

The algorithm starts by verifying that A € Fy, and computes N(10) = 25.
Using ¢ = 0.2, and n = 0.08, yields ng = 13, and n; = 30. Therefore, we need
to internally represent all functions by their Taylor models of order 30. Next, ¢3,
and ¢30 are computed using the recursive formula (7), and used to compute qA53O.
The least squares estimator of the coefficients of q330 yields

Qe < 0.08 x 397F, ng < k < ny,

i.e. C =0.08, and M = 397. We compute F‘3O, and use s = % as the candidate
radius of convergence to compute A = 1.64. To prove that ¢ converges we verify
Proposition 3.3. This yields r, = 2.52 x 1073, 79 = 2.52 x 10™%, and Equation 11
gives Ko = 22.6.

The algorithm now turns to the majorisation of G. We compute gy, for 21 < k <
41, using the recursive formula (10). The least squares estimator of the coefficients
of G, yields

Gr <1.03x 10718 x 2490%, 21 <k < 4,

ie. D=1.03x107'% and K = 2490*. These values are used to verify Proposition
3.4. This yields 7 = 4.02 x 1074, ro = 2.01 x 1074, r3 = 1.81 x 107%, and
K =9.74 x 1072,

Finally, we verify that we compute within the domains of validity of the con-
stants Ko, and k. When we enter the box |{| < r3, we apply ¢, which al-
ters the coefficient by at the most Kor?, that is we might start computing with
Yu = (14 Kor3)rs < 1.82 x 10~%. Inequality 2.2 gives the bound, ys = ¥ (y, 7 (y) <

[Asl+r

(1+ Kor3)rs ((HKO”)”) 7T < 1.84 x 1074, We use Equation 12, and compute

o™ 1]y, < ﬁ Ys— ,/411( -& < 8x10~7. Thus, the flow exits the computations

inside of the box |£] < 1.85x10~*, which is inside of |¢| < min(rg, ra, 70(1—Koro)) =
ro = 2.01 x 10~%, where the bounds on Ky, x, and ||¢~!|| are valid.

4.2. Example 2. In our second example, we follow a solution curve close to a
graphic. A graphic is an invariant set of a flow consisting of saddles and separatrices,
see e.g. [11]. Consider the following vector field

(6 +y)(z* — 1)
(—z+0y)(y*> = 1)’

7

(14) J
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1) T 71 T3 Ky K
1073 [ 252 x 1073 4.02x 107% 1.81 x 1074 22.6 9.74 x 10~
107% | 6.85 x 1072 1.35x 102 6.09 x 1073 6.52 7.17 x 10719
1077 [ 9.97 x 1073 146 x 1073 6.59 x 10™* 7.45 x 10T! 3.15 x 10720
1072 | 1.14 x 1073 146 x107* 6.59x 107° 8.42x 1072 3.13 x 102!
1071 [ 1.30 x 1074 1.46 x 1075 6.59 x 107% 9.67 x 1013 3.14 x 10~22
10713 [ 121 x107° 1.45x 1076 6.53 x 1077 8.94 x 10t*  4.46 x 10~23
1071% | 1.07 x 107% 1.28 x 1077 5.79x 1078 7.90x 10T® 1.37 x 10~22
10717 | 8.62x 1078 1.11 x 107® 5.02x 1072 8.28 x 1076 3.08 x 10720

TABLE 1. Convergence radii and norm estimates in Example 1 as
0 is varied.

where we will consider § = —0.2. If § = 0, this is a Hamiltonian field with the first
integral H = M There are five critical points, an unstable focus [centre
if 6 = 0] at the origin and four saddles at (£1,+1), see Figure 1. This example is
simple enough so that we can determine most qualitative properties by hand, which

1.5F
1 =
0.5
or f (
-0.5 \\
jiH ut
1.5k ‘
“15 -1 -05

[

15

FIGURE 1. Phase portrait of the system from Example 2.

allows us to focus our attention to the application of our algorithm.
The curves © = +1 and y = £1 are invariant under the flow of (14). In fact,

they are the separatrices of the saddles. We only consider the flow inside of the
graphic. For § = 0, H = 0 corresponds to the origin, and H = % to the graphic. To
determine the properties of the flow of (14), we begin by noting that, for 6 < 0, the

11

vector field is transversal to the solution curves of the unperturbed system. Indeed,
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2.2, 2, 2
let 2 = w, then

27 = —y’xi — yr’y +yy + i
= (—y’z+ )0z +y)(=* - 1)
= O(z(@® = 1)(~y*x +2) +y(y® — 1)(~yz* +y))
= §(a?(—y2a® + 22) + y2(—y%2? + Y?) — 2% + 22y?)
= 6(2r% (2 +y?) — 2r? — 22%y2) = 5(2® +y?)(2r2 - 1)
> 0

_|_

(—yz® +y)(—x 4 0y)(y* — 1)

Thus, if we leave the neighbourhood of one saddle on H = C, we enter the
neighbourhood of the next one outside of H = C'. It follows that we do not need
any numerical integrator to estimate the distance to the graphic from above. We
will start in a neighbourhood of a saddle, use our computed analytical estimates to
pass it and then enter at the next one at the same level curve of H. In addition
we only need to consider one of the saddles, since the system is symmetric. We
therefore translate (—1, —1) to the origin and get the system:

Ty = —22xs— xux% — 0.133? + 2x,xs + 1.33:2

(15) T, = 1.8x, — 0.13:;01 + xia:s — 0.7xi — 2%,

)

Our program yields the output shown in Table 2.

Resonance of order 9 detected

1=9,N1-=19

Order of Taylor approximations = 23

n_ 0 =10, n_1 = 23

C = [0.0180,0.0181] M= [3.9853,3.9854]

A = [4.5520,4.5521]

Phi is analytic on the disk with radius = [0.2509, 0.2510]
K_0 <= [2.3223,2.3224] on the disk r_0 = [0.0376,0.0377]

D = [1.2701E-010,1.2702E-010] K = [12.5616,12.5617]

G is analytic on the disk with radius = [0.0796,0.0797]
kappa <= [1.5544E-017,1.5545E-017] on the disk r_2 = [0.0262,0.0263]
We recommend that you change to the normal form

on the disk with radius r_3 = [0.0210,0.0211]

TABLE 2. The output generated by the program in example 2.

We will change to the normal form on B¢ 2, i.e. 7 = 0.02, and consider the
trajectory that starts at (xs,z,) = (0.02,0.01) in the translated coordinate system.
By Theorem 2.2, together with the bounds on K and x, we can calculate where it
will leave Bg p2. We start the calculation with y; < (1+ Koz;)z;, and then use our
bounds on the flow inside 2B 2, to get the following bound at y, = 0.02

sl—r

(1+ Koxu)xu> Nutr
— )

ys < (1+ Kor)r (

Thus, on the outgoing stable coordinate we have the following bound,
Asl—r

1+ Koxy)xy \ etr _

o) ™7 gy,

xs < (14 Kor)r ( .

By the transversality and symmetry properties of the system, we enter the neigh-
bourhood of the next saddle outside of (r, z;), and so on. If we follow our trajectory
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get the upper bounds on its distance from the graphic, and lower bounds on the

lap times, shown in Table 3.

lap | z, laptime
0 [0.01 0
1 |71x1073 1.7
2 [3.0x103 2.8
3 |38x107¢ 5.6
4 |37x10°6 12
5 [ 1.2x 10710 26
6 |3.0x10°17 58

TABLE 3. Converging to the graphic.

To compare with the performance of a standard numerical integrator we do the

same computations using the ode45 solver in MATLAB, which incorrectly starts

flu

[1

[2

3
[4
[5

6

[7

8
[9

[10

ctuating around x,, = 1077, the result is shown in Table 4.

lap | xy, laptime

0 |0.01 0

1 {39x%x1077 23

2 |8.0x10"8 38

3 [1.3x107" 39

4 |7.9x10°8 39

5 |19.8x 108 39

6 |1.3x10°7 39

TABLE 4. Numerical integration close to the graphic.
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