
AUTOMATED COMPUTATION OFROBUST NORMAL FORMSOF PLANAR ANALYTIC VECTOR FIELDSTOMAS JOHNSON, WARWICK TUCKERAbstra
t. We 
onstru
t an auto-validated algorithm that 
al
ulates a 
loseto identity 
hange of variables whi
h brings a general saddle point into a nor-mal form. The transformation is robust in the underlying ve
tor �eld, and isanalyti
 on a 
omputable neighbourhood of the saddle point. The normal formis suitable for 
omputations aimed at en
losing the �ow 
lose to the saddle,and the time it takes a traje
tory to pass it. Several examples illustrate theusefulness of this method. 1. Introdu
tionIt is well-known that 
omputing a traje
tory in the 
lose vi
inity of a �xed pointis asso
iated with many problems. Numeri
al integration s
hemes (silently) breakdown when the ve
tor �eld tends to zero, and this usually results in 
ompletelyina

urate results. Indeed, as the norm of the ve
tor �eld de
reases, the �ow-timeneeded to pass a saddle in
reases without bound. This means that no integrations
heme, rigorous or not, will fun
tion properly is this situation. There are, however,many instan
es where it is ne
essary to be able to follow the �ow of a ve
tor �eldarbitrarily 
lose to a saddle.We present a 
ompletely automated, rigorous method that produ
es analyti
alestimates on the �ow 
lose to a given saddle. Equally important, it produ
esexpli
it bounds, for a given a

ura
y of the analyti
 estimates, on the size of theneighbourhood of the saddle on whi
h the information is valid. This avoids theneed to numeri
ally integrate the �ow near a saddle: on
e a traje
tory 
omes 
loseto the saddle, the bounds produ
ed by our method give en
losures of where thetraje
tory exits the neighbourhood, and its asso
iated �ow-time.The approa
h is based on 
onstru
ting a 
arefully 
hosen 
hange of variables,that bring the original ve
tor �eld into the robust normal form presented in [14, 15℄.The present paper 
an be seen as a quantitative 
ompanion to [15℄, where severalqualitative properties of robust normal forms are proved. Many of the ideas behindthe algorithm 
an be found in [14℄, where they were used for establishing that theLorenz equations support a strange attra
tor. In the present study we develop analgorithm for general planar real analyti
 ve
tor �elds.Consider the planar ve
tor �eld(1) ẋ = Λx+ F (x),Date: O
tober 29, 2008. 1



2 TOMAS JOHNSON, WARWICK TUCKERwith Λ ∈ S, where S := {diag(λs, λu) : λs < 0, λu > 0}, and where F is an analyti
fun
tion, with F (x) = O(x2). Note that any ve
tor �eld with a saddle �xed point
an (lo
ally) be brought into this form by an a�ne 
hange of variables.The purpose of this paper is to des
ribe, and implement, an algorithm that �ndsa square 
entred at the saddle in whi
h we 
an en
lose a traje
tory and its �ow-time passing near the saddle. The output of the program in
ludes estimates on thenorms of the 
hange of variables, its inverse, and the nonlinear part of the normalform, as well as the �ow-time for passing the saddle.2. Theoreti
al ba
kground and notationThis paper addresses the algorithmi
 aspe
ts of the planar 
ase of the robustnormal forms introdu
ed in [14℄, and formalised in [15℄. In order to simplify theformulae, we use ve
tor and multiindex notation. The 
omponents of a ve
tor areindexed by s and u for the stable and unstable dire
tion, respe
tively. To make thepresentation self-
ontained, we revise the ne
essary 
on
epts from [15℄, but referthe reader to that paper for proofs and additional details.The stru
ture of (1) implies that the stable and unstable manifold of the originare tangent to the 
oordinate axes. Rather than attempting to �nd a 
oordinate
hange that 
ompletely linearises (1) in a

ordan
e with Siegel's theorem [12℄, we
ompute normal forms that are robust in the sense that the set of eigenvalues wherethey exist is open and dense. This is 
ru
ial from a 
omputational point of view,as we often only have an approximate knowledge of the eigenvalues. Our aim is to
hange (1) into the normal form(2) ẏ = Λy +G(y),by an analyti
 
hange of 
oordinates, x = y + φ(y). We require that G, the non-linear part of the new ve
tor �eld, is su
h that the invariant manifolds of the saddleare not only tangent to the 
oordinate axes, but a
tually 
oin
ide with them lo
ally.We also require that the ve
tor �eld is at least linear on these invariant manifolds.That is, if we let d(y) = min(|ys|, |yu|), then we ensure that Gi(y) = O(d(y)l),where l is the order of �atness. This means that if gm is a non-zero 
oe�
ientin the series expansion of G, then ms ≥ l and mu ≥ l. We 
all the non-negativenumber |m| = mu +ms the order of m, and de�ne the set Ñ
2 = {m ∈ N

2 : |m| ≥ 2}.To formalise, let us split the spa
e of multi-exponents into the sets
Vl := {m ∈ Ñ

2 : ms < l or mu < l},

Ul := {m ∈ Ñ
2 : ms ≥ l and mu ≥ l}.Now we 
an de�ne the set of admissible linear parts of (1) that we 
onsider:

Fl := {Λ ∈ S : m ∈ Vl ⇒ mλ− λi 6= 0, i = u, s}.It is proved in [15℄ that Fl is open and has full Lebesgue measure in S. We willoften use the notion of �lters of a (formal) power-series: if f(x) =
∑

|m|≥2 αmx
m,we use the notation

[f ]Ul
=
∑

m∈Ul

αmx
m, [f ]Vl

=
∑

m∈Vl

αmx
m, and [f ]m = αm.Also, we let fd denote the partial sum of the �rst d terms of f . We use the norms

|y| = max (|ys|, |yu|) and ||f ||r = max{|f(y)| : |y| < r}. The r-dis
 is denoted by



AUTOMATED COMPUTATION OF ROBUST NORMAL FORMS 3
Br, and at times we use the notation λ̌ and λ̂, to denote the eigenvalue with thesmallest and largest absolute value, respe
tively.We are now ready to state the two main theorems from [15℄:Theorem 2.1. Given an integer l ≥ 2 and a system ẋ = Λx+F (x) where F (x) =
∑

|m|≥2 amx
m is analyti
, and Λ ∈ Fl, there exists positive 
onstants r0, r1,K0,K1and an analyti
, 
lose to identity 
hange of variables x = y + φ(y) with

||φ||r ≤ K0r
2 (r < r0),su
h that ẋ = Λx + F (x) is transformed into the normal form ẏ = Λy + G(y)satisfying [G(y)]Ul

= G(y) and
||G||r ≤ K1r

2l (r < r1).In the se
ond theorem, we let Ψ denote the �ow of ẏ = Λy +G(x).Theorem 2.2. Under the same 
onditions as in Theorem 2.1, and given any κ > 0su�
iently small, there exists r > 0 su
h that for any traje
tory in Br starting from
|xs| = r, we have the following en
losure of its point of exit:

Ψu(y, τe(y)) = sign(yu)r;

r

(

|yu|

r

)

|λs|+κ

λu−κ

≤ Ψs(y, τe(y)) ≤ r

(

|yu|

r

)

|λs|−κ

λu+κ

,where τe(y) (the exit time) denotes the time spent inside of Br:
1

λu + κ
log

r

|yu|
≤ τe(y) ≤

1

λu − κ
log

r

|yu|We will also use the following lemma from [15℄.Lemma 2.3. If (λs, λu) are non-resonant for m ∈ Vl, then the divisors mλ − λiare bounded away from zero. Furthermore, for all orders |m| ≥ l +
⌈

(l − 1)
∣

∣

∣

λ̂

λ̌

∣

∣

∣

⌉,we have the following sharp lower bound:
|mλ− λi| ≥ |(|m| − l)λ̌+ (l − 1)λ̂|Finally, the following lemma, whi
h in prin
iple appears in [14℄, will be used.Lemma 2.4. If r < r0(1−K0r0), then φ has a well-de�ned inverse, y = x+φ−1(x)in |x| < r∗ = r − ||φ||r, satisfying

||φ−1||r∗ ≤ ||φ||rTo prove the 
onvergen
e of φ and G we pro
ede as in e.g. [6, 13℄, and use themethod of majorants. If f, g : Cn → Cn, are two formal power series and |fm| < gm,for all multiindi
es m, and all the 
oe�
ients of g are real and positive, we say that
g majorises f , denoted by f ≺ g. Thus, the 
onvergen
e radius of f is at least aslarge as g's. We will majorise in two steps; given some f : C2 → C2, we 
onstru
t
g : C2 → C su
h that fi ≺ g, for all i, and then 
onstru
t h : C → C su
h that
g(z, z) ≺ h(z).



4 TOMAS JOHNSON, WARWICK TUCKER3. The algorithmIn this se
tion we will des
ribe an algorithm that 
omputes expli
it bounds onthe 
onstants r0, r1, K0, and κ appearing in Theorems 2.1 and 2.2. This allowsus to interrupt a numeri
al integration s
heme of the original ve
tor �eld (1), andinstead use the analyti
al bounds from Theorem 2.2 to en
lose the �ow on passingthe saddle, together with bounds on the time it takes to pass the saddle.The main ideas of the algorithm appear in [14℄, where robust normal forms are
omputed for the Lorenz system. In [14℄, however, the algorithm was designedex
lusively for that parti
ular system. The purpose of this paper is to 
onstru
t ageneral algorithm, that will take any planar ve
tor �eld of the form (1), and trans-form it into (2), together with expli
it bounds on the aforementioned 
onstants.We note that several heuristi
 
onstants appear in the algorithm: ι, η, µ, ρ,
NG, ǫφ, ǫG, and ǫ. In the a
tual implementation all of these 
an be set by theuser in a 
on�guration �le. The algorithm has been implemented in a C++ programusing the C-XSC pa
kage [3, 5℄ for interval arithmeti
 [1, 8, 9, 10℄. For automati
di�erentiation [4℄ we use a modi�ed version of the Taylor arithmeti
 pa
kage [2℄.3.1. Outline. The algorithm has four main parts that will be des
ribed in detailbelow:1. we 
ompute an l su
h that Λ ∈ Fl, with l ≤ ι, where ι is a user-providedorder of �atness.2. we 
ompute the �rst few terms of the formal power series solution of thefun
tional equation for the 
hange of 
oordinates x = y + φ(y) using auto-mati
 di�erentiation. These �rst terms are used to estimate bounds on amajorant of φ. These estimates are then, �nally, used to prove the analyt-i
ity of φ, using indu
tion.3. we do the same kind of estimates for G; we 
ompute some terms in theformal power series solution of a se
ond fun
tional equation, and use theseto prove the analyti
ity of G by indu
tion.4. using the estimates on the 
oe�
ients of the analyti
 fun
tions φ, and G,we estimate the 
onstants K0 and κ that enable the user to swit
h from anumeri
al integration s
heme to the analyti
 estimates from Theorem 2.2.3.2. Verifying Λ ∈ Fl. We want to determine l su
h that Λ ∈ Fl. We will do thisby �rst 
onstru
ting Vl, and then removing its members that 
ause resonan
es.Proposition 3.1. If, for i = 1, ..., l

i
−λs

λu

/∈ N and i
λu

−λs

/∈ N,then Λ ∈ Fl+1.Proof. For l = 1, we note that V1 = {(0, i), (i, 0)}i≥2. The potential resonan
es aregiven by
muλu − λi = 0 and msλs − λi = 0and it is 
lear that no member of V1 satis�es any of these two equations. Hen
e,

F1 = S.For l ≥ 1, we have the re
ursive relation:
Vl+1 = Vl ∪ {(l, i), (i, l)}i≥l.



AUTOMATED COMPUTATION OF ROBUST NORMAL FORMS 5Thus we only have to 
onsider the following potential resonan
es:
muλu + lλs − λi = 0 and lλu +msλs − λi = 0with mu,ms ≥ l. For the 
ase i = s, we get
muλu + (l − 1)λs = 0 and lλu + (ms − 1)λs = 0with solutions mu = (l − 1)−λs

λu
and ms = 1 + l λu

−λs
, respe
tively. Analogously, forthe 
ase i = u, we get

(mu − 1)λu + lλs = 0 and (l − 1)λu +msλs = 0with solutions mu = 1 + l−λs

λu
and ms = (l − 1) λu

−λs
, respe
tively. Therefore itsu�
es to enfor
e(3) i

−λs

λu

/∈ N and i
λu

−λs

/∈ N, i = 1, ..., l.to establish that Λ ∈ Fl+1. �It follows from Proposition 3.1 that we have the relation:
Fl+1 = Fl\{Λ ∈ S : l

−λs

λu

∈ N, or l λu

−λs

∈ N}.To write a program that 
he
ks the 
ondition in Proposition 3.1 is simple, and thealgorithm returns a lower estimate on the largest l less than ι, su
h that Λ ∈ Fl.3.3. Computing φ and its radius of 
onvergen
e. By inserting x = y + φ(y)into (1), di�erentiating dire
tly, and 
omparing the sides, we get:
(I +Dφ)ẏ = Λ(y + φ(y)) + F (y + φ(y)).By inserting into (2), and simplifying, we get:(4) Dφ(y)Λy − Λφ(y) = F (y + φ(y)) −Dφ(y)G(y) −G(y).Let LΛ be the operator

LΛφ = Dφ(y)Λy − Λφ(y),where we note that (LΛ(ym
i ))i = (mλ− λi)y

m
i .Re
all, we want to 
ompute a normal form (2) whi
h is l-�at, that is [G]Ul

= G,and the non-�at terms in (4), whi
h we want to 
an
el with φ, 
ome from F .Therefore, by �ltering on the 
omponent level, we get the following two fun
tionalequations for φi and Gi:(5) (LΛφ)i = [Fi(y + φ(y))]Vl(6) Gi = [Fi(y + φ(y))]Ul
−
∂φi

∂ys

Gs(y) −
∂φi

∂yu

Gu(y).Sin
e Λ ∈ Fl, and [φ]Vl
= φ by 
onstru
tion, we 
an solve (5) re
ursively,To bound the solutions of (5) we want to pro
ede as in [14℄, and prove the
onvergen
e of the 
hange of variables using majorants and indu
tion. Two heuristi

onstants n0, and n1 > n0 are needed. They determine the range of 
oe�
ients ofthe formal power series of φ, that should be used in the indu
tion proof. Let

N(l) := l +

⌈

(l − 1)

∣

∣

∣

∣

∣

λ̂

λ̌

∣

∣

∣

∣

∣

⌉

,



6 TOMAS JOHNSON, WARWICK TUCKERbe the 
onstant from Lemma 2.3 from whi
h the expli
it lower bound holds. Forthe indu
tion to work it is required that n1 > N(l).We put n1 = ⌈(1 + η)N(l)⌉, and n0 = ⌊ 1+µ
2 N(l)⌋, where η > 0, and −1 < µ < ηare two given 
onstants.Let φi(x) =

∑∞
|m|=2 αi,mx

m be the sought 
hange of variables. We will 
om-pute the αi,m's with |m| ≤ n1 using automati
 di�erentiation, and then put α̂k =
∑

|m|=k max(|αs,m|, |αu,m|). The α̂k's will be used as the �rst terms in a majorantof φs and φu. Sometimes we will use α̂1 = 1, to simplify the argument of somefun
tions.To 
al
ulate αi,m, with |m| = k, we evaluate a k-Taylor model of Fi

(

x+ φk−1(x)
),and divide its mth term by mλ− λi:(7) αi,m =

[

Fi

(

x+ φk−1(x)
)]

m

|λm− λi|Note, the 
oe�
ients at a 
ertain level only depend on the previous levels. Thisis be
ause F does not 
ontain 
onstant or linear terms.If n0 and n1 are su�
iently large, then the �rst terms 
omputed above are agood approximation of a majorant φ̂, and we use these to determine an approximateradius of 
onvergen
e for φ̂. The validity of this radius of 
onvergen
e will be provedlater. Therefore we determine, using a least squares estimator, 
onstants C andM ,su
h that
α̂k ≤ CMk, n0 < k ≤ n1.Thus, a 
andidate radius of 
onvergen
e is s := 1

M
, whi
h needs to be veri�ed.We will 
onsider a slightly larger majorant of φi. If

Fi(x) =

∞
∑

|m|=2

ci,mx
m,we de�ne

ĉk :=
∑

|m|=k

max(|cs,m|, |cu,m|),and set
F̂ :=

∞
∑

k=2

ĉkx
k.

F̂ is 
learly a majorant of Fi. We de�ne,(8) A :=

ρ
∑

k=2

ĉks
k−2 +

(

||Fs||2s + ||Fu||2s

s2

(

1

2

)ρ

(ρ+ 3)

)

,where ρ is a given natural number.Lemma 3.2. F̂ (x) ≤ A|x|2, on |x| < s.Proof. The terms of F̂ up to order ρ are 
learly bounded by the left sum in (8),sin
e ĉk ≥ 0, and |x| < s. For the 
oe�
ients ci,m, standard Cau
hy-estimates give
|ci,m| ≤

||Fi||ζ
ζm . Thus, sin
e there are (k + 1) terms with |m| = k,

ĉk ≤ (k + 1)
||Fs||ζ + ||Fu||ζ

ζk



AUTOMATED COMPUTATION OF ROBUST NORMAL FORMS 7Using ζ = 2s, this yields
(9) ∑∞

k=ρ+1 ĉkx
k ≤ (||Fs||2s + ||Fu||2s)

∑∞
k=ρ+1(k + 1)

(

|x|
2s

)k

≤ ||Fs||2s+||Fu||2s

4s2 x2
∑∞

k=ρ+1(k + 1)
(

|x|
2s

)k−2

≤ ||Fs||2s+||Fu||2s

4s2 x2
(

2
∑∞

k=ρ+1

(

1
2

)k−2

+
∑∞

k=ρ+1(k − 1)
(

1
2

)k−2
)

= ||Fs||2s+||Fu||2s

s2 x2
(

1
2

)ρ
(ρ+ 3)

�Let
Ω(k) :=

∣

∣

∣
(k − l)λ̌+ (l − 1)λ̂

∣

∣

∣
,be the lower bound on |mλ− λi| from Lemma 2.3.Proposition 3.3. If

A(s)

Ω(n1 + 1)

(

2

n0
∑

k=1

α̂ks
k + n1C

)

< 1,then φi is analyti
 on Bs.Proof. By the above lemma, φi is majorised by φ̂, where φ̂n1 =
∑n1

k=2 α̂kx
k is asabove, and

α̂k =
A

Ω(k)

[

(φk−1(r))2
]

k
, k > n1.Note that n0 and n1 are 
onstru
ted so that max(2n0, Nl) < n1. Thus, (for n ≥ n1)

αn+1 =
A

Ω(n+ 1)

n
∑

k=1

α̂kα̂n+1−k.Assume, for some n ≥ n1, we have proved that α̂k ≤ CMk holds for n0 < k ≤ n.If we 
an prove that α̂n+1 ≤ CMn+1, the 
onvergen
e of φ follows by indu
tion.
αn+1 = A

Ω(n+1)

(

∑n0

k=1 α̂kα̂n+1−k +
∑n−n0

k=n0+1 α̂kα̂n+1−k

+
∑n

k=n−n0+1 α̂kα̂n+1−k

)

= A
Ω(n+1)

(

2
∑n0

k=1 α̂kα̂n+1−k +
∑n−n0

k=n0+1 α̂kα̂n+1−k

)

(use the indu
tion hypothesis, α̂k ≤ CMk, n0 < k ≤ n
)

≤ A
Ω(n+1)

(

2
∑n0

k=1 α̂kCM
n+1−k +

∑n−n0

k=n0+1 C
2Mn+1

)

= A
Ω(n+1)

(

2
∑n0

k=1 α̂kM
−k + (n− 2n0)C

)

CMn+1

≤ A
Ω(n+1)

(

2
∑n0

k=1 α̂kM
−k + nC

)

CMn+1The expression before CMn+1 is de
reasing in n for n ≥ n1, sin
e Ω(n) ∼ n|λ̌|.Therefore, to prove the indu
tion step, it su�
es to prove that the expression isless than one for n = n1. Thus, the 
lose to identity 
hange of variables 
onvergesto an analyti
 fun
tion on |x| < rφ = s. �



8 TOMAS JOHNSON, WARWICK TUCKER3.4. Computing G and its radius of 
onvergen
e. It was proved above thatthere exists an analyti
 
hange of variables φ on |x| < rφ. After 
hanging the
oordinates, the system is of the form
ẋ = Λx+G(x),where [G]Vl

= 0. We want to estimate the radius of 
onvergen
e of G.Let φ̂ be as in the above se
tion, then a majorant for G is given by Ĝ, de�nedby(10) ĝk = [F̂ (x + φ̂k−1) + 2(φ̂k+1−2l)′Ĝk−1]k,where we note that ĝk = 0, for 0 ≤ k < 2l, sin
e [Ĝ]Vl
= 0. The ĝk's are 
omputedusing automati
 di�erentiation.We use (10) to 
ompute ĝk, for 2l ≤ k ≤ NG, where NG is an integer largerthan 2l. These values are used to 
ompute 
andidate 
onstants D and K, su
h that

ĝk ≤ DKk. To do this, we again use our least squares estimator. We require that
K > M ; the reason being that 1

K
will be used to estimate the radius of 
onvergen
efor G, and G is only of interest within the radius of 
onvergen
e of φ. Let

Ψ(n) := A
(

(

2
∑n0

k=1 α̂kM
−k + C(n− 2n0)

)

C
D

(

M
K

)n+1
)

+ 2

(

∑n0

k=2 kα̂kK
1−k + CM

(

M
K

)n0 (n0+1)−(n0)
M
K

(1−M
K )2

)Proposition 3.4. If Ψ(NG) < 1, then G is analyti
 on BK−1 .Proof. Assume that we have proved ĝk ≤ DKk, for k ≤ n. If we 
an prove that
ĝn+1 ≤ DKn+1, the 
onvergen
e of G follows by indu
tion. As in the proof ofProposition 3.3, we use the 
onstant A to get a bound on F̂ , whi
h gives us thebound

ĝn+1 ≤ A
n
∑

k=1

α̂kα̂n+1−k + 2
n+2−2l
∑

k=2

kα̂kĝn+2−k.We 
all the �rst sum Σ1, and the se
ond sum Σ2. If we 
an prove that AΣ1 +2Σ2 isbounded by Ψ(n)DKn+1, where Ψ : N → R is a de
reasing fun
tion, we are done.
Σ1 ≤

∑n0

k=1 α̂kCM
n+1−k +

∑n−n0

n0+1 C
2Mn+1 +

∑n
n−n0+1 CM

kα̂n+1−k

=
(

2
∑n0

k=1 α̂kM
−k + C(n− 2n0)

)

CMn+1

≤
(

(

2
∑n0

k=1 α̂kM
−k + C(n− 2n0)

)

C
D

(

M
K

)n+1
)

DKn+1,sin
e K > M , the bound on Σ1 is de
reasing in n.
Σ2 ≤ D

(

∑n0

k=2 kα̂kK
n+2−k + C

∑n+2−2l
k=n0+1 kM

kKn+2−k
)

≤
(

∑n0

k=2 kα̂kK
1−k + CM

∑∞
k=n0+1 k

(

M
K

)k−1
)

DKn+1

=

(

∑n0

k=2 kα̂kK
1−k + CM

(

M
K

)n0 (n0+1)−(n0)
M
K

(1−M
K )

2

)

DKn+1the expression in front of DKn+1 is independent of n. Thus, Ψ is a de
reasingfun
tion, whi
h proves the bound ĝk ≤ DKk for all k. The analyti
ity of G on
r1 := 1

K
follows. �



AUTOMATED COMPUTATION OF ROBUST NORMAL FORMS 93.5. Computing the bounds. Let, r0 = ǫφrφ, r2 = ǫGr1, and r3 = ǫmin(r0, r2),where 0 < ǫφ, ǫG, ǫ < 1, are given numbers.That is, Br0
is the domain of φ that we will use to estimate ||φ|| and ||φ−1||,and Br2

is the domain of G that we will use to estimate κ. To ensure that ourestimates hold we may never leave these domains. Br3
is the box where we willa
tually 
hange 
oordinates.To guarantee that the 
hange of variables is done in the domain of G, we needthat r3 + r23K0 < r2. By 
onstru
tion, the �ow stays inside the domain of G, sin
ethe only pla
e that the �ow 
an leave the box is on the unstable side. To guaranteethat the �nal 
hange of 
oordinates is done in the part of the domain of φ, wherethe estimate on ||φ−1|| holds, we need that r3 < r0(1 −K0r0), sin
e then r∗ < r0,where r∗ is su
h that r3 = r∗ − ||φ||r∗ .To 
ompute K0 we note that on |x| < r0, we have that

||φ||r ≤ φ̂(r) =
∑n0

k=2 α̂kr
k + C

∑∞
k=n0+1M

krk

≤ r2
(
∑n0

k=2 α̂kr
k−2
0 + CM2

∑∞
k=n0−1M

krk
0

)

≤ r2
(

∑n0

k=2 α̂kr
k−2
0 + CM2 (Mr0)n0−1

1−Mr0

)

.Thus, if we put(11) K0 :=

n0
∑

k=2

α̂kr
k−2
0 + CM2 (Mr0)

n0−1

1 −Mr0
,then

||φ||r ≤ K0r
2.To estimate ||φ−1||r, we need to �nd r∗ su
h that r = r∗ − ||φ||r∗ sin
e then, byLemma 2.4, ||φ−1||r ≤ ||φ||r∗ . A trivial 
al
ulation yield

r∗ =
1

2K0
− r −

√

1

4K2
0

−
r

K0
.Thus,(12) ||φ−1||r ≤ K0(r

∗)2 ≤
1

2K0
− r −

√

1

4K2
0

−
r

K0
.Finally, the 
onstant κ is 
omputed as

κ :=
DK2l

1 −Kr2
r2l−1
2 .We want that κ ≪ min(−λs, λu, |λs + λu|); if this is not the 
ase, we de
rease r2and/or r3. 4. Examples4.1. Example 1. We start with a simple example that also illustrates how theresults depend on the distan
e from resonan
e. The ve
tor �eld under study is(13) ẋs = −xu

ẋu = x3
s + 0.05x2

s − 0.95xs

+ δ((438.4905− 25.2469xs − 452.7899x2
s)xu − 741.0341x3

u/3)whi
h has previously been examined in [7℄. It is a perturbation of a Hamiltoniansystem, given by δ = 0. The Hamiltonian system has a resonan
e of �at-order
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1, sin
e at a saddle of a planar Hamiltonian ve
tor �eld the stable and unstableeigenvalues have the same modulus.We des
ribe the results in detail for δ = 10−3, and also in
lude Table 1, whi
hillustrates how the 
onvergen
e radii, and norm bounds depend on the distan
efrom the resonan
e. We have 
hosen l = 10, sin
e this is the lowest value of l that,after optimisation of ǫφ = 0.1, ǫG = 0.5, and ǫ = 0.9, yields κ < 2−53, whi
h is thema
hine pre
ision using IEEE double pre
ision �oating point arithmeti
.We start by introdu
ing the linear 
hange of variables, x = Tξ, that transforms(13) to the form (1). Note that this transformation yields interval en
losures of theeigenvalues

λs = −0.7797885230264994
89, λu = 1.2182790230264995

88,whi
h are used during the 
omputations. The diagonalised system is put into thealgorithm.The algorithm starts by verifying that Λ ∈ F10, and 
omputes N(10) = 25.Using µ = 0.2, and η = 0.08, yields n0 = 13, and n1 = 30. Therefore, we needto internally represent all fun
tions by their Taylor models of order 30. Next, φ30
u ,and φ30

s are 
omputed using the re
ursive formula (7), and used to 
ompute φ̂30.The least squares estimator of the 
oe�
ients of φ̂30 yields
α̂k ≤ 0.08 × 397k, n0 < k ≤ n1,i.e. C = 0.08, and M = 397. We 
ompute F̂ 30, and use s = 1

M
as the 
andidateradius of 
onvergen
e to 
ompute A = 1.64. To prove that φ 
onverges we verifyProposition 3.3. This yields rφ = 2.52 × 10−3, r0 = 2.52 × 10−4, and Equation 11gives K0 = 22.6.The algorithm now turns to the majorisation of G. We 
ompute ĝk, for 2l ≤ k ≤

4l, using the re
ursive formula (10). The least squares estimator of the 
oe�
ientsof Ĝ, yields
ĝk ≤ 1.03 × 10−18 × 2490k, 2l ≤ k ≤ 4l,i.e. D = 1.03× 10−18, and K = 2490k. These values are used to verify Proposition3.4. This yields r1 = 4.02 × 10−4, r2 = 2.01 × 10−4, r3 = 1.81 × 10−4, and

κ = 9.74 × 10−21.Finally, we verify that we 
ompute within the domains of validity of the 
on-stants K0, and κ. When we enter the box |ξ| < r3, we apply φ, whi
h al-ters the 
oe�
ient by at the most K0r
2
3 , that is we might start 
omputing with

yu = (1+K0r3)r3 < 1.82× 10−4. Inequality 2.2 gives the bound, ys = ψ(y, τe(y) ≤

(1 +K0r3)r3

(

(1+K0r3)r3

r3

)

|λs|+κ

λu−κ

≤ 1.84× 10−4. We use Equation 12, and 
ompute
||φ−1||ys

≤ 1
2K0

−ys−
√

1
4K2

0

− ys

K0
≤ 8×10−7. Thus, the �ow exits the 
omputationsinside of the box |ξ| < 1.85×10−4, whi
h is inside of |ξ| < min(r0, r2, r0(1−K0r0)) =

r2 = 2.01 × 10−4, where the bounds on K0, κ, and ||φ−1|| are valid.4.2. Example 2. In our se
ond example, we follow a solution 
urve 
lose to agraphi
. A graphi
 is an invariant set of a �ow 
onsisting of saddles and separatri
es,see e.g. [11℄. Consider the following ve
tor �eld(14) ẋ = (δx + y)(x2 − 1)
ẏ = (−x+ δy)(y2 − 1)

,
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δ rφ r1 r3 K0 κ

10−3 2.52 × 10−3 4.02 × 10−4 1.81 × 10−4 22.6 9.74 × 10−21

10−5 6.85 × 10−2 1.35 × 10−2 6.09 × 10−3 6.52 7.17 × 10−19

10−7 9.97 × 10−3 1.46 × 10−3 6.59 × 10−4 7.45 × 10+1 3.15 × 10−20

10−9 1.14 × 10−3 1.46 × 10−4 6.59 × 10−5 8.42 × 10+2 3.13 × 10−21

10−11 1.30 × 10−4 1.46 × 10−5 6.59 × 10−6 9.67 × 10+3 3.14 × 10−22

10−13 1.21 × 10−5 1.45 × 10−6 6.53 × 10−7 8.94 × 10+4 4.46 × 10−23

10−15 1.07 × 10−6 1.28 × 10−7 5.79 × 10−8 7.90 × 10+5 1.37 × 10−22

10−17 8.62 × 10−8 1.11 × 10−8 5.02 × 10−9 8.28 × 10+6 3.08 × 10−20Table 1. Convergen
e radii and norm estimates in Example 1 as
δ is varied.
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Figure 1. Phase portrait of the system from Example 2.
where we will 
onsider δ = −0.2. If δ = 0, this is a Hamiltonian �eld with the �rstintegral H = −y2x2+x2+y2

2 . There are �ve 
riti
al points, an unstable fo
us [
entreif δ = 0℄ at the origin and four saddles at (±1,±1), see Figure 1. This example issimple enough so that we 
an determine most qualitative properties by hand, whi
hallows us to fo
us our attention to the appli
ation of our algorithm.The 
urves x = ±1 and y = ±1 are invariant under the �ow of (14). In fa
t,they are the separatri
es of the saddles. We only 
onsider the �ow inside of thegraphi
. For δ = 0, H = 0 
orresponds to the origin, and H = 1
2 to the graphi
. Todetermine the properties of the �ow of (14), we begin by noting that, for δ < 0, theve
tor �eld is transversal to the solution 
urves of the unperturbed system. Indeed,
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2 , then
2rṙ = −y2xẋ − yx2ẏ + yẏ + xẋ

= (−y2x+ x)(δx + y)(x2 − 1) + (−yx2 + y)(−x+ δy)(y2 − 1)
= δ(x(x2 − 1)(−y2x+ x) + y(y2 − 1)(−yx2 + y))
= δ(x2(−y2x2 + x2) + y2(−y2x2 + Y 2) − 2r2 + x2y2)
= δ(2r2(x2 + y2) − 2r2 − x2y2) = δ(x2 + y2)(2r2 − 1)
> 0Thus, if we leave the neighbourhood of one saddle on H = C, we enter theneighbourhood of the next one outside of H = C. It follows that we do not needany numeri
al integrator to estimate the distan
e to the graphi
 from above. Wewill start in a neighbourhood of a saddle, use our 
omputed analyti
al estimates topass it and then enter at the next one at the same level 
urve of H . In additionwe only need to 
onsider one of the saddles, sin
e the system is symmetri
. Wetherefore translate (−1,−1) to the origin and get the system:(15) ẋs = −2.2xs − xux

2
s − 0.1x3

s + 2xuxs + 1.3x2
s

ẋu = 1.8xu − 0.1x3
u + x2

uxs − 0.7x2
u − 2xuxs

,Our program yields the output shown in Table 2.Resonan
e of order 9 dete
tedl = 9, N_l = 19Order of Taylor approximations = 23n_0 = 10, n_1 = 23C = [0.0180,0.0181℄ M= [3.9853,3.9854℄A = [4.5520,4.5521℄Phi is analyti
 on the disk with radius = [0.2509, 0.2510℄K_0 <= [2.3223,2.3224℄ on the disk r_0 = [0.0376,0.0377℄D = [1.2701E-010,1.2702E-010℄ K = [12.5616,12.5617℄G is analyti
 on the disk with radius = [0.0796,0.0797℄kappa <= [1.5544E-017,1.5545E-017℄ on the disk r_2 = [0.0262,0.0263℄We re
ommend that you 
hange to the normal formon the disk with radius r_3 = [0.0210,0.0211℄Table 2. The output generated by the program in example 2.We will 
hange to the normal form on B0.02, i.e. r = 0.02, and 
onsider thetraje
tory that starts at (xs, xu) = (0.02, 0.01) in the translated 
oordinate system.By Theorem 2.2, together with the bounds on K0 and κ, we 
an 
al
ulate where itwill leave B0.02. We start the 
al
ulation with yi < (1 +K0xi)xi, and then use ourbounds on the �ow inside B0.02, to get the following bound at yu = 0.02

ys ≤ (1 +K0r)r

(

(1 +K0xu)xu

r

)

|λs|−κ

λu+κ

.Thus, on the outgoing stable 
oordinate we have the following bound,
xs ≤ (1 +K0r)r

(

(1 +K0xu)xu

r

)

|λs|−κ

λu+κ

+ ||φ−1||.By the transversality and symmetry properties of the system, we enter the neigh-bourhood of the next saddle outside of (r, xs), and so on. If we follow our traje
tory
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e from the graphi
, and lower bounds on thelap times, shown in Table 3.
lap xu laptime0 0.01 01 7.1 × 10−3 1.72 3.0 × 10−3 2.83 3.8 × 10−4 5.64 3.7 × 10−6 125 1.2 × 10−10 266 3.0 × 10−17 58Table 3. Converging to the graphi
.To 
ompare with the performan
e of a standard numeri
al integrator we do thesame 
omputations using the ode45 solver in MATLAB, whi
h in
orre
tly starts�u
tuating around xu = 10−7, the result is shown in Table 4.
lap xu laptime0 0.01 01 3.9 × 10−7 232 8.0 × 10−8 383 1.3 × 10−7 394 7.9 × 10−8 395 9.8 × 10−8 396 1.3 × 10−7 39Table 4. Numeri
al integration 
lose to the graphi
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