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Abstract. Wwe prove that the Lorenz equations support a strange attractor, as conjectured by
Edward Lorenz in 1963. We also prove that the attractor is robust, i.e., it persists
under small perturbations of the coefficients in the underlying differential equations.
The proof is based on a combination of normal form theory and rigorous numerical
computations. © Académie des Sciences/Elsevier, Paris

L’attracteur de Lorenz existe

Résumé.  Nous démontrons que les équations de Lorenz admettent un attracteur étrange, comme
{’a conjecturé Edward Lorenz en 1963. Nous montrons aussi que cet attracteur
est robuste, c’est-a-dire qu’il demeure aprés de petites perturbations des équations
différentielles sous-jacentes. La démonstration utilise a la fois la théorie des formes
normales et aussi des calculs rigoureux assistés par ordinateur. © Académie des
Sciences/Elsevier, Paris

Version francaise abrégée

Le systeme d’équations différentielles (&1, &2, %3) = (—ox1 + 02, 021 — T2 — X123, —BT3 + T122)
a été introduit en 1963 par Edward Lorenz (voir [4], [2], [7]). Nous démontrons que le flot du systeme
admet un attracteur transitif, tout comme 1’a conjecturé Lorenz il y a 35 ans.

La démonstration est divisée en deux parties : une partic globale qui consiste en des calculs
rigoureux assistés par ordinateur, et une partie locale qui est basée sur la théorie des formes normales.

Au lieu d’une démonstration mathématique traditionnelle, nous construisons un algorithme qui
démontre I’existence d’un attracteur étrange si les données initiales satisfont les propriétés élémentaires
des systemes hyperboliques. Cet algorithme est exécuté par un programme écrit en langage C. Le
code de source ainsi que la liste des données initiales qui sont utilisées dans la démonstration sont
accessibles a 1’adresse : http;//www.math.uu.se/~ warwick/thesis.html

Note présentée par Lennart CARLESON.
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1. Introduction

The following non-linear system of differential equations,

T = —0x1 + 0xs
g = 0T1 — Ty — T1T3 (1)
T3 = — (23 + 1129,

was introduced 1963 by Edward Lorenz (see [4]). As a crude model of atmospheric dynamics, these
equations led Lorenz to the discovery of sensitive dependence of initial conditions—an essential factor
of unpredictability in many systems. Numerical simulations for an open neighbourhood of the classical
parameter values ¢ = 10, § = 8/3 and g = 28 suggest that almost all points in phase space tend to
a strange attractor A—the Lorenz attractor. Based on numerical data, a geometric model describing
the dynamics of the flow was introduced by Guckenheimer and Williams (see [2], [7]). We prove that
this model does indeed give an accurate description of the dynamics of (1).

By the use of a Poincaré section, the flow of (1) can be reduced to a first return map R acting on
the section ¥ C {z3 = ¢ — 1}, as schematically illustrated in Figure 1.

7=

Figure 1. — The return map acting on X.

Figure 1. — L’application de retour agissant sur 3.

Note that R is not defined on the line I' = ¥ N W#(0): these points tend to the origin, and never
return to 3. Due to the fixed point at the origin, the return times are not bounded. This constitutes
a serious obstruction to any numerical approach. This is overcome by introducing a local change of
coordinates, and we prove the following properties of the return map R:

— there exists a compact set N C ¥ such that N \ I' is forward invariant under R, ie.,
R(N \T) C int(N). This ensures that the flow has an attracting set A with a large basin
of attraction. We can then form a cross-section of the attracting set: ANY = (>~  R"(N) = A.

~ On N, there exists a cone field € which is mapped strictly into itself by DR, i.e., for all z € N,
DR(z) - €(z) C €(R(x)). The cones of € are centered along two curves which approximate A,
and each cone has an opening of 10°.

— The tangent vectors in € are eventually expanded under the action of DR: there exists C > 0
and A > 1 such that for all v € €(z), € N, we have |DR"(z)v| > CA"|v|, n > 0. In fact, the
expansion is strong enough to ensure that R is topologically transitive on A (see below).

These three properties of R verify the conjecture made by Lorenz 35 years ago. With some further
efforts (see [6]), we can also say something about the statistical properties of the flow.

1198



The Lorenz attractor exists

THEOREM 1.1. — For the classical parameter values, the Lorenz equations support a robust strange
attractor A. Furthermore, the flow admits a unique SRB measure px with supp (ux) = A

The proof can be broken down into two main sections: one global part, which involves rigorous
computations, and one local part, which is based on normal form theory. The novelty of the method
of proof lies in that, rather than producing a traditional mathematical proof, we construct an algorithm
which, if successfully executed, proves the existence of the strange attractor. This algorithm is put
into effect via a C-program. The source codes and the list of initial data that are used in the proof
are available at: http;//www.math.uu.se/~ warwick/thesis.html

2. Local theory and normal forms

In this section we will construct a change of variables £ = { + ¢(¢{) which, in a small cube centered
at the origin, transforms the Lorenz equations £ = AE + F(€) (here in Jordan normal form)-into a
carefully selected normal form, which is virtually linear (although it is crucial that it need not be
completely linear). Inside the cube, we can then estimate the evolution of trajectories analytically,
and thereby we avoid the problem of having to use computers in regions where the flow times
are unbounded. Although there exist Ck-linearization theorems (see e.g. [1]), we choose to use a
method introduced by H. Poincaré. This method is based on an analytic change of coordinates,
and even though it introduces a small divisor problem, we feel that the desired estimates are more
straightforward to obtain using this method.

We will combine multi-index notation @,(" = @ny n,nCr ¢a°¢5° and vector notation ( =
(Cla<27<3)- AlSO, we define Cn S OlO(Cl) n OIO(CQ,C;;) if ny 2 10 and Nno + N3 2 10. In this
section we will work in a complex neighbourhood of the origin, and use the following max-norms:

¢ = max{|¢;| : i =1,2,3}, |[fllr = max{|f(O)] : [¢| <7}

The main estimates are summarized in the following proposition:

PROPOSITION 2.1. — There exists a close to identity change of variables £ = ( + ¢({) with
2
r
llgll- < DY r<i,

such that the Lorenz equations, £ = A& + F(€), are transformed into the normal form ¢ = AC+G(C),

where G(¢) € 0(¢;) N O°((2, (3), and satisfies
20

r
1—3 "3

Seeing that the change of variables and its inverse are analytic, we can use Cauchy-Riemann
estimates to gain information on their derivatives. Analogously, we can get estimates of the derivatives
of G. This allows us to estimate the exit of any trajectory or tangent vector entering the cube.

By splitting the 3-space of natural numbers into two disjoint sets: N3 = Uyg U Vo, where

\/10 = {(nl,ng,ng) e N3 g < 10 or (D) +n3 < ]-0}9
we may define the following filters, which act on formal vector-valued polynomials f(¢) =}, an(™

{F(O},, = D @™ and {f(Q}y,, = D anl™

nelUio n€Vio
Our Ansatz is to do the calculations with formal vector-valued polynomials, and solve for ¢ by direct
substitution. We arrive at the following functional equation:

IGl» < 7-107°

Lag(Q) = F(¢ + ¢(C) = DH(Q)G(C) - G(C), 2)
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where L4#(¢) = D¢(C)AC — A¢p((). The operator L, is linear, and it leaves the spaces of
homogeneous vector-valued polynomials of any degree invariant. On component level, we have
L4.:(¢™) = (nA — X\)C™. By filtering (2), we get for ¢ = 1, 2, 3,

0 i
LA2¢1 {F C+¢<))}\/10 and G C) {F <+¢ }Um Z ¢ (3)

The left-most equation can be formally solved by a power series

=D @ (i=1,2,3)
In|=2
provided none of the appearing divisors nA — A; (i = 1, 2, 3) vanish. The fact that any (™ appearing
in ¢ must satisfy n € V¢ is crucial for avoiding high-order resonances. It allows us to prove the
following computer-aided lemma, which gives the existence of a formal series for ¢.

LeMMA 2.2. — For any n € V1o with |n| > 2, the divisors nA — X\; (i = 1, 2, 3) are bounded away
from zero. Furthermore, for |n| > 58, there exists a sharp lower bound on the modulus of these divisors:

InX = X > |90 + (In| = 9)As — Xi| G=1,2,3).

The proof requires estimates of 19,386 low-order divisors. These are computed by a small
C-program, smalldiv.c. The sharp lower bound on the higher-order divisors is an analytic result.

Knowing that the formal power series for ¢ defined by (3) is well defined, we want to show that it
actually converges. By using standard techniques of majorants (see e.g [5]), the problem is reduced to
proving the convergence of a single variable power series 9(r) = Y oo, cxr* satisfying ||¢||- < %(r).
The coefficients of 1 are given by the following recursive scheme

k—1 2
(r +y° cirl) } (k=2,3,...), (4)
=2

k

Ck'f‘k =

(k)

where [ a,("], = axC®, and Q(k) = min{[An — X\;| : |n| = k, n € Vi, ¢ = 1, 2, 3}. Due to
the recursiveness, the first coefficients have a large effect on the radius of convergence. In order to
enlarge this radius, we postpone the use of (4). Instead, we estimate the 186,576 first coefficients
a;n of ¢ (computed by another small C-program, coeff.c) and set ¢; = Zln|=k max;—123|n|
for k = 2,...,70 before using (4). This gives a considerably better estimate on the bound of ||||,..
Using similar techniques on the right-most part of (3), we get also get a bound on the normal form
G. Here the situation is somewhat simpler as there are no divisors present.

3. Rigorous numerics

First, we present our candidate for the trapping region N. This set consists of two disjoint
components, N~ and N, each made up of 350 adjacent rectangles belonging to the return plane
z3 = 27 (= p — 1). We will call these small rectangles Nii, and write

350

350
N=N UN*t= (UN;) U (UN+)
=1 i=1

The two components of N have the same symmetry as the Lorenz equations, i.e., N;L = S(N),
where S(z1,23,23) = (—21,—%2,23). Thanks to this symmetry, we only have to perform the
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computations on one component of N. When it is not relevant which component we are considering,
we omit the + labeling of the small rectangles.

Dealing with one N; at a time, we compute a pseudo-path that strictly contains the flow of N;. The
pseudo-paths are obtained by introducing several intermediate return planes 1™, which are either
x1x9-planes or xox3-planes, according to whether |Z;| < |Z3| or vise-versa, respectively. The initial
rectangle N; is flowed to the first plane II(!) by using an Euler method with rigorous error estimates.
In the plane II(V), we take the rectangular hull of the largest image of N;, giving us a new starting
rectangle R(V. This rectangle is then flowed to TI®) and so on. If a rectangle R(™ has grown too
large it is partitioned into smaller rectangles, which are then treated separately. This whole procedure
is repeated until we return to X from above, as illustrated in Figure 1. Due to the contracting forces,
the pseudo-return of N; will consist of many overlapping rectangles Q;;, j = 1,...,k(z), whose
union strictly contains R(N;).

The use of rectangles significantly simplifies the computations: when flowing between two
intermediate planes I1(™), TI(™+1), it is generically the corners of R(™) that yield the largest
rectangular hull R(m+1) ¢ [I(m+1) This fact allows us to reduce the error analysis to small pieces
of R{™), which greatly reduces the local errors. With only finite precision, however, this property
becomes “pseudo-generic”, and has to be confirmed at every stage. The exceptional cases are treated
slightly different.

Turning to the question concerning the cone field, we define the field by equipping each N; with
an initial cone. Each cone is represented by the two angles o, o its boundary vectors u(®, v(®)
make with the x;-axis. As mentioned before, we always take 60 = a;L —a; = /18, We then use
similar techniques as just described: when a rectangle has been flowed from o to M+ we are
provided with a box containing the path of the rectangle. The algorithm also gives us upper and lower
bounds on the flow time involved. By solving the nine equations governing the partial derivatives of
the flow, we obtain rigorous bounds on the evolution of the tangent vectors flowing through the box.
By translating the flowed vectors onto the intermediate plane 1™+ and by selecting (incorporating
the errors) the pair of vectors u(™+1), »(m+1) making the largest angle 6™+, we ensure that the
resulting cone contains all images of tangent vectors from the initial cone. At the return, each rectangle
Q; ; is thus equipped with a cone represented, as above, by two angles 3, ﬂif =1 k().

When computing the minimal expansion in each cone, we start with the widest pair of vectors, ul™),
v(™) at each intermediate plane (™ as described above. If gim+1) < 6(m™) | the minimal expansion
£(m) is attained on the boundary of the cone, i.e., (™) is the smallest growth factor of the images of
u(™ ™) 1f (m+1) > (™) however, we must adjust this estimate by a factor which is quadratically
close to unity in (™1, At the return each rectangle Q; ; is equipped with an expansion estimate
& j= an(;é) egy), and £; = min; &; ; gives an estimate for all vectors of the cone associated with V;.

One major advantage of our numerical method is that we totally eliminate the problem of having to
control the global effects of rounding errors due to the computer’s internal floating point representation.
This is achieved by using a high-dimensional analogue of interval arithmetic. Each object £ (e.g. a
rectangle or a tangent vector) subjected to computation is equipped with a maximal absolute error Az,
and can thus be represented as a box 2+ Az = [E1 — Ag,,E1+ Az, ] x - X [E, — Az, ,En + Az ]
When following an object from one intermediate plane to another, we compute upper bounds on the
images of =; + As,, and lower bounds on the images of 2, — A=,, 4 = 1,...,n. This results in a
new box = + Az, which strictly contains the exact image of = + A=. To ensure that we have strict
inclusion, we use quite rough estimates on the upper and lower bounds. This gives us a margin which
is much larger than any error caused by rounding possibly could be. Hence, the rounding errors are
taken into account in the computed box = £ Az, and we may continue to the following intermediate
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plane by restarting the whole process.

As long as we do not flow close to a fixed point, the local return maps are well defined
diffeomorphisms, and the computer can handle all calculations. Some rectangles, however, will
approach the origin (which is a fixed point), and then the computations must be interrupted as
discussed in the previous section.

4. Conclusions

The main C-program verifies that the union Ufg Q;,; is strictly contained in N for each ¢, and
thus we conclude that R(V \ I") C int (V), as desired. It also checks that if Q;; N Ny # 0, then
ap <f;; < ﬂ;fj < aj . This proves the existence of a forward invariant cone field: for all z € N,
DR(z) - €(z) C C(R(x)).

We now turn to the question of expansion. Much to our surprise, we found regions in N which were
contracted in all directions under R. In view of the geometric model, which is uniformly expanding
in one direction, this was not anticipated. We prove, however, that all tangent vectors within the
cone field are eventually expanded under DR. More precisely, given any orbit zg,21, ..., where
x; = R’(z,), we can divide it into non-overlapping pieces [z, . .., Tk, ] [Trot1s -+ -+ Tk, ], - .. Where
all but the first piece accumulate an expansion factor greater than two. This value is crucial for the
conclusion of transitivity (see [7]). We also show that k;; — k; < 29, which gives a very crude
lower estimate of the positive Lyapunov exponent: A > ¥/2 > 1.024. To prove these claims, we use
some of the output from the computer runs to produce both forward and backward pseudo-orbits of
R with associated expansion estimates.

Since the flow of (1) is uniformly volume-contracting and transversal to N, a finite iterate: of
the return map R is area-contracting on N. This property together with the existence of a forward
invariant unstable cone field implies that R admits an invariant stable foliation with C!*° leaves
(see [3], § 3). The singular map f induced by taking quotients along the stable leaves acts on an
interval I = [—a,a], and satisfies the following properties:

— the restriction of f to [—a,0) and (0, @] is of class C'** with f'(z) > K > 0 for all z # 0;
— there exists C' > 0, A > 1 such that (f™)(z) > CA\", for all n > 0;
— for any interval J C I there exists n > 0 such that f*(J) = I.

It follows that f admits a unique finite SRB measure p; with supp (us) = I. From this measure
it is possible to construct an SRB measure pp with supp (ur) = A for the return map R, and also
an SRB measure px for the flow (see [6]).

References

[1] Belitskii G.R., Equivalence and Normal Forms of Germs of Smooth Mappings, Russian Math. Surv. 33 (1978) 107-177.
[2] Guckenheimer J., Williams R.F., Structural Stability of Lorenz Attractors, Publ. Math. 50 (1979) 307-320.

[3} Hirsch M.W., Pugh C.C., Shub M., Invariant Manifolds, Lect. Notes in Math. 583, Springer-Verlag, 1977.

[4] Lorenz E.N., Deterministic Non-periodic Flow, J. Atmos. Sci. 20 (1963) 130-141.

[5] Siegel C.L., Moser J.K., Lectures on Celestial Mechanics, Springer-Verlag, 1971.

[6] Viana M., Stochastic Dynamics of Deterministic Systems, Braz. Math. Collog. 21, IMPA, 1997.

{7] Williams R.F., The Structure of Lorenz Attractors, Publ. Math. 50 (1979) 321-347.

1202



