
On a omputer-aided approah to theomputation of Abelian integralsTomas JohnsonDepartment of MathematisUppsala UniversityBox 480, 751 06 Uppsala, Swedenjohnson�math.uu.seWarwik TukerDepartment of MathematisUniversity of BergenJohannes Bruns gate 12, 5008 Bergen, Norwaywarwik.tuker�math.uib.noApril 30, 2008AbstratAn aurate method to ompute enlosures of Abelian integrals is de-veloped. It is applied to the study of bifurations of limit yles from ubiperturbations of ellipti Hamiltonians of degree four. We give examplesof perturbations suh that 2, 3, 3, and 4 limit yles bifurate from thetrunated pendulum, the saddle loop, the interior of the uspidal loop,and the interior of the �gure eight loop, respetively. Some methods to�nd perturbations with a given number of limit yles are illustrated inthe examples.1 IntrodutionNonlinear ordinary di�erential equations are one of the most ommon modelsused in any appliation of mathematial modelling. The most fundamental isperhaps the model of 1-dimension mehanial motion,
ẍ = f(x, ẋ). (1)In this paper we study families of suh equations

ẍ + ǫf(x, ẋ) + g(x) = 0, (2)depending on a small onstant ǫ.A fundamental question about suh systems is to determine the number andloation of limit yles bifurating from the orresponding planar vetor �eld
{

ẋ = −y
ẏ = ǫf(x, ẋ) + g(x)

(3)1



as ǫ → 0.In general, the question about the maximal number of limit yles, and theirloation, of a polynomial planar vetor �eld is the seond part of Hilbert's 16thproblem, whih is unsolved even for polynomials of degree 2. For an overview ofthe progress that has been made to solve this problem we refer to [20℄. Resultsfor the degree 2 ase, and a general introdution to the bifuration theory ofplanar polynomial vetor �elds an be found in [31℄. What is known, is thatany given polynomial vetor �eld an have only a �nite number of limit yles;this is proved in [11, 19℄.A restrited version of Hilbert's 16th problem, known as the weak, or some-times the tangential, or the in�nitesimal, Hilbert's 16th problem, asks for thenumber of limit yles that an bifurate from a perturbation of a Hamiltoniansystem, see e.g. [3℄. The weak Hilbert's 16th problem has been solved for thedegree 2 ase, see [2℄.Speial ases of Hamiltonian systems are the systems (2), whih we studyin this paper. If one assumes that f(x, ẋ) = f(x)ẋ, (2) is known as a Lienardequation. Suh equations have been thoroughly studied, and the ase where f ,and g have degree 3 has been solved, see [6, 7, 8, 9℄. We study general f ofdegree 3; the set-up of the problem is given in Setion 2.In this paper we present a rigorous, omputer-aided approah to �nd limityles of planar polynomial vetor �elds. A di�erent omputer-aided approahwas introdued by Malo in his PhD-thesis [22℄, (also desribed in [15, 16℄) whihis based on the onept of a rotated vetor �eld, as introdued in [5℄. Ourapproah is ompletely di�erent: we develop a method to rigorously omputewhat is known as an Abelian integral. A brief introdution to Abelian integralsis inluded in Setion 4. The onept of a omputer-aided proof in analysis isbased on tehniques to rigorously enlose the result of a numerial omputation.A basis for suh a proedure is interval analysis, introdued by Moore in [23℄.By alulating with sets rather than �oating points, it is possible to obtainguaranteed results on a omputer, enabling automated proofs for ontinuousproblems.The methods developed in this paper are neither restrited to any spei�degree of the polynomial funtions f , and g, nor to the ase of systems ofthe form (3). It an be used to ompute Abelian integrals of any polynomialperturbation from any family of ompat level urves, ovals, of a polynomialHamiltonian. In the examples given in this paper, however, we restrit to thease when f and g have degree 3.2 Ellipti Hamiltonians of degree 4We study the ellipti Hamiltonians of degree 4, given by
H(x, y) =

y2

2
+ a

x4

4
+ b

x3

3
+ c

x2

2
, (4)orresponding to the di�erential system,

{

ẋ = −Hy = −y
ẏ = Hx = ax3 + bx2 + cx.

(5)2



We are interested in limit yles bifurating from the periodi solutions of (5),orresponding to integral urves of (4). The losed level-urves of (4) are alledovals. In a series of papers [6, 7, 8, 9℄, Dumortier and Li study ubi perturba-tions orresponding to Lienard equations. That is,
ẍ + ǫ(α + βx + γx2)ẋ + ax3 + bx2 + cx = 0, (6)or as a system,

{

ẋ = −Hy

ẏ = Hx + ǫ(α + βx + γx2)y.
(7)The purpose of this paper is to add a fourth term, δ y3

3
, to the perturbationand to explore what kind of bifurations we an prove to exist. We study theperturbed system,

{

ẋ = −Hy

ẏ = Hx + ǫ
(

(α + βx + γx2)y + δ y3

3

)

.
(8)The 1-form assoiated with this perturbation is

ω = −

(

(α + βx + γx2)y + δ
y3

3

)

dx. (9)For omputational e�ieny we primarily study its exterior derivative,
dω =

(

(α + βx + γx2) + δy2
)

dx ∧ dy. (10)For the ellipti Hamiltonians of degree four with ompat ovals, there are �vedi�erent lasses of phase portraits, see e.g [3℄. They are, the trunated pendulum,the saddle loop. the global entre, the uspidal loop, and the �gure-eight loop,illustrated in Figure 1(i-v). In this paper we study ases (i),(ii), (iv), and (v).In the ases of the uspidal loop and the �gure eight loop, we restrit our studyto the ovals inside the loops. The ases under study have the advantage thatonly ompat intervals of values of the Hamiltonian have to be onsidered.2.1 Known resultsIn [6, 7, 8, 9℄ Dumortier and Li prove that sharp bounds on the number of limityles bifurating from (7) are 1, 2, 4, 4, and 5, for the ases (i)-(v), respetively.They prove that the maximal number of limit yles inside the loops in bothases (iv), and (v) is 2.In [29℄ Petrov proves that the number of limit yles bifurating from (8) inase (v) is bounded by n + [n−1

2
] − 1 in eah of the two families of ovals insidethe �gure eight loop, for a polynomial perturbation of degree n. Liu studiesthe same ase in [21℄, where he proves that the total number of limit ylesbifurating from both families, is bounded by 2n−1, and 2n+1, for n even andodd, respetively. Liu also proves that the number of zeros outside the �gureeight loop is bounded by 2n + 1, and 2n + 3, for n even, and odd, respetively.Petrov has also studied ase (iii) � the global entre � in [30℄.3



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1.5 −1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1: The ellipti Hamiltonians of degree 4.3 Summation of the resultsTheorem 3.1. For the Ellipti Hamiltonian of degree 4, (4), there exists ubiperturbations with the following number of limit yles:(i) The trunated pendulum: two limit yles,(ii) The saddle loop: three limit yles,(iii) The uspidal loop: three interior limit yles,(iv) The �gure eight loop: four interior limit yles; two in eah eye.The examples mentioned in the theorem are illustrated in Figure 2. Notethat we only prove existene of the limit yles, their loations as drawn in the�gure are only approximations.4 Abelian integralsA lassial method to prove the existene of limit yles bifurating from afamily of ovals of a Hamiltonian, Γh ⊂ H−1(h), depending ontinuously on h,is to study Abelian integrals, or, more generally, the Melnikov funtion, see e.g.[3, 14℄. Some aution, however, must be taken regarding the orrespondenebetween limit yles and Abelian integrals, see e.g. [10℄. Given a Hamiltoniansystem and a perturbation,
{

ẋ = −Hy + ǫf(x, y)
ẏ = Hx + ǫg(x, y),

(11)4
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Figure 2: The limit yles from Theorem 3.1. Unstable limit yles are dashed.the Abelian integral is de�ned as
I(h) =

∫

Γh

f(x, y) dy − g(x, y) dx. (12)In this paper all perturbations are polynomial. The most important property ofAbelian integrals is desribed by the Poinaré-Pontryagin theorem. Let P be thereturn map de�ned on some setion transversal to the ovals of H , parametrisedby the values h of H , where h is taken from some bounded interval (a, b). Weonsider the displaement funtion d(h) = P (h)− h. The theorem by Poinaré-Pontryagin states that
d(h) = ǫ(I(h) + ǫφ(h, ǫ)), as ǫ → 0, (13)where φ(h, ǫ) is analyti and uniformly bounded on a ompat neighbourhoodof ǫ = 0, h ∈ (a, b).5 Computer-aided omputation of Abelian inte-grals5.1 Computer-aided proofsTo prove mathematial statements on a omputer, we need an arithmeti whihgives guaranteed results. Many omputer-aided proofs, inluding the results inthis paper, are based on interval analysis, e.g. [12, 17, 32℄. Interval analysis5



yields rigorous results for ontinuous problems, taking both disretisation androunding errors into aount. For a thorough introdution to interval analysiswe refer to [1, 23, 24, 25, 27℄.5.2 Outline of the approahThe main idea of this paper is to develop a very aurate, validated method toenlose the value of a general Abelian integral. Suh a method enables us tosample values of I(h). If we an �nd two ovals Γh1
, and Γh2

, suh that
I(h1)I(h2) < 0, (14)then there exists h∗ ∈ (h1, h2), suh that I(h∗) = 0.Sine Pǫ, the return map of the perturbed vetor �eld, is analyti and non-onstant, it has isolated �xed points. Thus, we have proved the existene of (atleast) one limit yle bifurating from Γh∗ .To onstrut perturbations suh that the assoiated Abelian integral has agiven number of zeros, the onstants, α, β, γ, and δ in the form ω have to behosen in a areful manner. The heuristi approah we have used to hoosethese onstants is desribed in Setion 6.5.3 Computing the integralsTo ompute the Abelian integral (12) of the form (9), we apply Stokes theoremto get
I(h) =

∫

Dh

dw, (15)where Dh denotes the interior of an oval Γh. The reason why we prefer to alu-late surfae integrals, rather than ontour integrals, is that we annot representthe ovals of H exatly. We an only �nd a over of the ovals, and the area of thisover yields the unertainty of our alulations, automatially handled by theinterval arithmeti. If we had hosen to ompute ontour integrals, all of ouromputations would have been subjeted to those errors, sine we would alwaysintegrate over an unknown loation. When alulating surfae integrals, how-ever, the e�et of the unertainty of the loation of the ovals only ontributes ona very small portion of the total area of Dh. Note that, inside Dh it is possibleto integrate dω exatly, that is, there are no trunation errors.The atual omputation of the integrals is performed in four steps; �rst we�nd a trapping region for the interesting family of ovals, seond we adaptivelysplit this region into three parts, one that overs the oval, one representing theinside and one representing the outside, third we hange the oordinates on theboxes overing the oval in order to minimise the area of the over, fourth weintegrate dω on the boxes representing the inside and the over of the oval.The �rst step is simple, sine we only onsider ovals that are situated inside ahomo- or heterolini orbit. A short branh�and�bound algorithm quikly �ndsa box enlosing the homo- or heterolini orbit; this box is our initial domainused for the main part of the program.In the seond step � the adaptive splitting of the domain � we perform aseries of tests to determine whether a box B intersets the oval, is inside it, oroutside it. We start by evaluating the Hamiltonian on B using monotoniity6



and entral forms; sine the Hamiltonians we study are su�iently simple, weimplement the derivatives symbolially. Three ases our: if H < h, then B isinside the oval, and we label B as suh. If H > h then B is outside the oval andwe ignore it. Finally, if h ∈ H , then we try to perform the hange of variablesas desribed below. If the hange of variables proedure fails, and the size of
B is greater than some stopping tolerane, minsize, then we split the box Binto four parts and re�examine them separately. If the size of B is smaller thanminsize, then it is labelled fail. If the hange of variables proedure works,then we label B as on.

2

4

13

Figure 3: The labelling of boxes interseting an oval.The third, and most ompliated, part of our program is the hange ofvariables in the boxes that interset the oval. Let b ∈ B be the midpoint of B.Compute
u = ∇H(b),and hoose v suh that

u ⊥ v and v1 ≥ 0.Using the labelling illustrated in Figure 3, let right and left be the sidesinterseted by the line b + tv, t ∈ R. Denote the intersetion points by p, and
q, respetively. The possible on�gurations of an intersetion of the oval with abox are illustrated in Figure 4. The restrition of H to the sides right and left,respetively, are one-dimensional funtions, and the loation of the intersetionsan be approximated, and their uniqueness proved, using the interval Newtonmethod [23℄ initialised from the points p, and q, respetively. Let,

accuracy = minsize/10.De�ne the points pup, pdown on the right-side and the points qup, qdown on theleft-side at the distane auray from p and q, respetively, as illustrated inFigure 5.If the following onditions hold, then the oval is inside the tube illustrated inFigure 5, and we an hange oordinates to get a small box, whih is guaranteedto ontain the segment of the oval passing through B. This small box representsthe error aused by the unknown loation of the oval.Condition 5.1.
sign (H(pup) − h) = sign(H(qup) − h)

= −sign(H(pdown) − h)
= −sign(H(qdown) − h)

.7
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pFigure 4: The possible on�gurations of the intersetion of an oval and a box.PSfrag replaements
qup

qdown

pup

pdown

p

qFigure 5: Construting a small, loal enlosure of the oval.Let lup, and ldown denote the line segments between pup and qup, and pdownand qdown, respetively. Denote by H ′ di�erentiation with respet to the para-metrisation of the line lup, and ldown, respetively.Condition 5.2.
0 /∈ (H(lup) − h) or 0 /∈ H ′(lup)

0 /∈ (H(ldown) − h) or 0 /∈ H ′(ldown).Let otherside1, and otherside2 be the two other sides of the box B, thatis,
otherside1∪ otherside2∪ right ∪ left = {1, 2, 3, 4}.Condition 5.3.

Γh ∩ otherside1 = ∅ and Γh ∩ otherside2 = ∅,We enlose the segment of the oval inside of the box between two straightlines: Condition 5.1 guarantees that the points pup, pdown, qup, and qdown areon di�erent sides of the oval as in Figure 5, Condition 5.2 guarantees that thelines lup and ldown do not interset the oval, and Condition 5.3 guarantees thatthe oval does not ross the other sides of the box. Reall that the uniquenessof p and q is proved as they are approximated. Hene, we have proved thatthe segment of the oval rossing the box has exatly two intersetions with theboundary of the box, and that it is on�ned to the region between lup and ldown.If (5.1), (5.2), and (5.3), hold, then we set auray=auray/2, re-alulate
pup, pdown, qup, and qdown, and try to verify (5.1), (5.2), and (5.3). This proe-dure is iterated until (5.1), or (5.2) do not hold. Finally, we label B as on.The fourth and �nal part of our integration algorithm, is the atual integra-tion. The integration is done separately for the boxes that are labelled, inside,fail, and on. 8



If B is inside we ompute
∫

B

xiyj dx ∧ dy =

(

sup(B1)
i+1

i + 1
−

inf(B1)
i+1

i + 1

) (

sup(B2)
j+1

j + 1
−

inf(B2)
j+1

j + 1

)

.(16)If B is labelled fail, we know that B might interset the oval, that is, we haveneither been able to prove intersetion, nor non-intersetion. Therefore, we mustinlude any possible result; the integral over B is alulated as the interval hullof 0 and the largest, and smallest, respetively, result of (16) alulated on asubbox B̃ ⊂ B.Boxes labelled fail ause large over-estimations. Fortunately suh boxesare rare, typially less than 5% of the on-boxes, see Setion 6. If minsize istaken su�iently small, the e�et of the fail-boxes is negligible.PSfrag replaements
Bl

Bu

Tl

Tu

P

Figure 6: The hange of variables splitting.The boxes that are labelled on, are split into �ve parts, as illustrated inFigure 6. By onstrution, none of the triangles, Tl, Tu, or boxes Bl, Bu in thesplitting of B interset the oval, thus it su�es to evaluate H in one point ofeah, and hene they an all be labelled as inside or outside. The boxes
Bl, Bu are then treated as above, that is, if they are labelled inside they areintegrated aording to (16), and if they are labelled outside they are negleted.A triangle labelled outside is also negleted, the integrals on triangles labelledinside are enlosed by the formula

∫

T

xiyj dx ∧ dy ∈ �T i
1�T j

2 |T |, (17)where �T is the box hull of T , and |T | is the area of T . This gives a reasonablynarrow enlosure of the integral, sine the width of �T is typially small. Theparallelepiped, P , whih overs the segment of the oval, remains to be studied.When we integrate over P , the same problem as in the fail ase ours; wedo not know how muh of the parallelepiped to inlude. Therefore, we have totake the hull of all possible outomes. Hene, the integrals are omputed as
∫

P

xiyj dx ∧ dy ∈ Hull(0, �P i
1�P j

2 |P |
)

, (18)where �P is the box hull of P and |P | is the area of P .The value of the Abelian integral is enlosed by summing over all the om-puted integrals that are labelled as either inside, fail, or on.
I(h) ∈

∑

B∈inside
(16) +

∑

T∈inside
(17)

+
∑

B∈fail
Hull(0, (16))

+
∑

P∈on
(18)

(19)9



6 Computational resultsIn this setion we apply the methods developed in Setion 5.3 to the elliptialHamiltonians of degree four, desribed in Setion 2. The main idea we use inall examples is to integrate monomial forms at some points, and then to speifythe oe�ients of ω suh that I(h) is zero at the sampled points. Therefore, let
Iij(h) =

∫

Dh

xiyj dx ∧ dy. (20)For the ases (i), (ii), (iv), where we give examples of perturbations yieldingbifurations with less limit yles than oe�ients, we sample at the orre-sponding number of h-values, uniformly distributed between the saddle loopsand the singularity. Together with a normalisation of one of the oe�ients, thisproedure gives a linear system of equations, from whih andidate oe�ientsan be dedued.Given some andidate oe�ients of the form ω, we alulate the Iij(h), atintermediate ovals. If the linear ombination of the Iij(h) has validated signhanges between the sample points we are done: it has been proved that theorresponding perturbation yields bifurations with the given number of limityles as ǫ → 0.All omputations were performed on a Intel Xeon 2.0 Ghz, 64bit proessorwith 7970Mb of RAM. The program was ompiled with g, version 3.4.6. Thesoftware for interval arithmeti was provided by the CXS-C pakage, version2.1.1, see [4, 18℄.6.1 The trunated pendulumThe Hamiltonian with a phase portrait alled the trunated pendulum, seeFigure 1(i), is given by, see [6℄,
H =

y2

2
−

x4

4
+

x2

2
. (21)The orresponding di�erential system has one entre and two saddles; the sad-dles are onneted by two heterolini orbits at H = 1

4
.We ompute the values of Iij(hk) for (i, j) ∈ {(0, 0), (2, 0), (0, 2)}, and hk =

k 1

24
, where k = 1, ..., 5; the oe�ient in front of I10 is assumed to be zero. Thevalues are shown in Table 1.

hk I00 I20 I02
1

24
[0.2649,0.2672℄ [0.005695,0.005845℄ [0.005433,0.005601℄

2

24
[0.5405,0.5437℄ [0.02433,0.02475℄ [0.02215,0.02253℄

3

24
[0.8287,0.8327℄ [0.05894,0.05990℄ [0.05052,0.05126℄

4

24
[1.135,1.140℄ [0.1150,0.1166℄ [0.09139,0.09248℄

5

24
[1.470,1.475℄ [0.2035,0.2057℄ [0.1454,0.1468℄Table 1: The omputed enlosures for the trunated pendulum.We put δ = 1, and solve the linear system for the oe�ients α, and γ, sothat

αǏhk

00 + γǏhk

20 + Ǐhk

02 = 0, k = 2, 4 , (22)10



where Ǐhk

ij denotes the midpoint of Iij(hk). The approximate solution that weuse as our perturbation is α = −0.009510238485402, and γ = −0.700351938113869.To prove that the perturbed system has two limit yles at H = 1

12
, and

H = 2

12
, respetively, we ompute I(h), at the intermediate ovals,

I( 1

24
) = [−0.001191,−0.0009075],

I( 3

24
) = [+0.0006606, +0.002093],

I( 5

24
) = [−0.01257,−0.009753].

(23)Hene, the system with the given perturbation has two limit yles, one attrat-ing from approximately H = 2

12
, and one repelling from approximately H = 1

12
,see Figure 2(i). The run-time of the program was 33 seonds, a total of 648boxes were used to over the 5 ovals, 76 of these belong to the fail lass.6.2 The Saddle loopThe Hamiltonian with a phase portrait alled the saddle loop, see Figure 1(ii),is given by, see [6℄,

H =
y2

2
−

x4

4
−

λ − 1

3
x3 +

λ

2
x2, (24)where λ ∈ (1,∞). The orresponding di�erential system has one entre sur-rounded by a homolini orbit. We study λ = 4, to give an example and displaywhat our method an do; another hoie of λ should give similar results. Forthis Hamiltonian, the homolini orbit is loated at H = 3

4
.We ompute the values of Iij(h) for (i, j) ∈ {(0, 0), (1, 0), (2, 0), (0, 2)}, for

hk = k 3

32
, where k = 1, ..., 7. The values are shown in Table 2.

hk I00 I10 I20 I02
3

32
[0.2968,0.2969℄ [0.002706,0.002707℄ [0.003572,0.003573℄ [0.01387,0.01388℄

6

32
[0.5990,0.5991℄ [0.01136,0.01137℄ [0.01484,0.01485℄ [0.05583,0.05584℄

9

32
[0.9073,0.9074℄ [0.02700,0.02701℄ [0.03486,0.03487℄ [0.1263,0.1264℄

12

32
[1.223,1.224℄ [0.05106,0.05107℄ [0.06509,0.06511℄ [0.2261,0.2262℄

15

32
[1.548,1.549℄ [0.08569,0.08570℄ [0.1077,0.1078℄ [0.3560,0.3561℄

18

32
[1.887,1.888℄ [0.1345,0.1346℄ [0.1665,0.1666℄ [0.5169,0.5167℄

21

32
[2.246,2.247℄ [0.2054,0.2055℄ [0.2492,0.2493℄ [0.7105,0.7106℄Table 2: The omputed enlosures for the saddle loop.We put γ = 1, and solve the linear system for the oe�ients α, β, and δ,so that

αǏhk

00 + βǏhk

10 + Ǐhk

20 + δǏhk

02 = 0, k = 2, 4, 6 . (25)The approximate solution we use as our perturbation is α = −0.000010932964822,
β = −0.991766031106913, and δ = −0.063860197399010.To prove that the perturbed system has three limit yles bifurating from
H = 3

16
, H = 6

16
, and H = 9

16
, respetively, we ompute I(h) at the intermediateovals:

I( 3

32
) = [−0.000001405,−0.0000009097],

I( 9

32
) = [+0.0000001299, +0.000001812],

I(15

32
) = [−0.000004034,−0.0000009977],

I(21

32
) = [+0.00003338, +0.00003793].

(26)11



Hene, the system with the given perturbation has three limit yles, one at-trating from approximately H = 6

16
, and two repelling from approximately

H = 3

16
, and H = 9

16
, respetively, see Figure 2(ii). The run-time of the pro-gram was 94 minutes and 33 seonds, a total of 85916 boxes were used to overthe 7 ovals, 3944 of these belong to the fail lass.6.3 The Cuspidal loopThe Hamiltonian with a phase portrait alled the uspidal loop, see Figure 1(iv),is given by, see [7℄,

H =
y2

2
+

x4

4
+

1

3
x3, (27)The orresponding di�erential system has one entre at H = − 1

12
surroundedby a uspidal loop, loated at H = 0.We ompute the values of Iij(h) for (i, j) ∈ {(0, 0), (1, 0), (2, 0), (0, 2)}, for

hk = −k 1

96
, where k = 1, ..., 7. The values are shown in Table 3.

hk I00 I10 I20 I02

−

1

96
[0.5344,0.5345℄ [-0.4739,-0.4738℄ [0.4496,0.4497℄ [1.823,1.824℄10−2

−

2

96
[0.4414,0.4414℄ [-0.4030,-0.4029℄ [0.3867,0.3868℄ [1.315,1.316℄10−4

−

3

96
[0.3577,0.3578℄ [-0.3339,-0.3338℄ [0.3232,0.3233℄ [9.003,9.004℄10−3

−

4

96
[0.2797,0.2798℄ [-0.2658,-0.2657℄ [0.2593,0.2594℄ [5.687,5.688℄10−3

−

5

96
[0.2057,0.2058℄ [-0.1985,-0.1984℄ [0.1949,0.1950℄ [3.161,3.162℄10−3

−

6

96
[0.1348,0.1349℄ [-0.1318,-0.1317℄ [0.1303,0.1304℄ [1.389,1.391℄10−3

−

7

96
[0.06637,0.06638℄ [-0.06566,-0.06565℄ [0.06530,0.06531℄ [3.440,3.441℄10−4Table 3: The omputed enlosures for the uspidal loop.We put γ = 1, and solve the linear system for the oe�ients α, β, and δ,so that

αǏhk

00 + βǏhk

10 + Ǐhk

20 + δǏhk

02 = 0, k = 2, 4, 6 . (28)The approximate solution that we use as our perturbation is α = 0.233937272601683,
β = 1.234119595803674, and δ = 0.559050361812264.To prove that the perturbed system has three limit yles bifurating from
H = − 1

48
, H = − 2

48
, and H = − 3

48
, respetively, we ompute I(h), at theintermediate ovals,

I(− 1

96
) = [+0.0001742, +0.00001815],

I(− 3

96
) = [−0.00001366,−0.000007643],

I(− 5

96
) = [+0.000001450, +0.000006194],

I(− 7

96
) = [−0.000005781,−0.000002956].

(29)Hene, the system with the given perturbation has three limit yles: one at-trating from approximately H = − 2

48
, and two repelling from approximately

H = − 1

48
, and H = − 3

48
, respetively, see Figure 2(iii). The run-time of theprogram was 54 minutes and 13 seonds, a total of 55898 boxes were used toover the 7 ovals, 2566 of these belong to the fail lass.

12



6.4 The Figure eight loopThe Hamiltonian with a phase portrait alled the �gure eight loop, see Figure1(v), is given by,
H =

y2

2
+

x4

4
+

1 − λ

3
x3 −

λ

2
x2, (30)where λ ∈ (0, 1), see [9℄. The orresponding di�erential system has two entres,at H = − 1

12
(2λ + 1), and H = − 1

12
λ3(λ + 2), that are surrounded by a �gureeight loop, loated at H = 0. As λ grows the right loop grows; λ = 1 is asymmetri �gure eight loop. We hoose to study λ = 0.95; a motivation whywe want λ large is given below.In [29℄ Petrov proves that when restriting to one family of ovals, surroundingone of the two entres, the spae of Abelian integrals has dimension 4, and thatthe spae has the Chebyshev property, that is, the number of zeros of a funtionin this spae is less than the dimension of the spae. He also proves that thisbound is sharp. To onstrut an example with more than three limit ylessurrounding either of the two entres, we an therefore not use the previousmethod.Our heuristi argument to guess parameters is the following: we start byintegrating at 100 uniformly distributed ovals, in eah eye of the loop. We dothis with moderate auray, whih gives a fast and su�iently preise result.Sine we have hosen to study a �gure eight loop that is not far from beingsymmetri, it is reasonable to assume that the two branhes behave similarly,whih makes it probable that we should be able to determine oe�ients sothat eah branh has two zeros. To determine suh zeros, we solve the followinglinear system:

2

6

6

4

I l

00(−0.0362) I l

10(−0.0362) I l

20(−0.0362) I l

02(−0.0362)

I l

00(−0.1208) I l

10(−0.1208) I l

20(−0.1208) I l

02(−0.1208)

I l

00(−0.1812) I l

10(−0.1812) I l

20(−0.1812) I l

02(−0.1812)
Ir

00(−0.1054) Ir

10(−0.1054) Ir

20(−0.1054) Ir

02(−0.1054)

3

7

7

5

2

6

6

4

α

β

γ

δ

3

7

7

5

=

2

6

6

4

1
−1
1
−1

3

7

7

5(31)where I l
ij(h), and Ir

ij(h), denote the monomial Abelian integrals alulated onthe left and right ovals, respetively.This gives the approximate solution α = 438.4905, β = −25.2469, γ =
−452.7899, and δ = −741.0341, whih we use as our perturbation. The graphof the resulting funtion is given in Figure 7, whih appears to have 4 zeros.This, of ourse, has to be proved.To prove that the perturbation onstruted above has 4 zeros, we proedeas in the previous examples, and ompute enlosures of the Abelian integral atintermediate ovals. On the left branh we alulate I(−0.0121), I(−0.0846),and I(−0.1933), and on the right branh we ompute I(−0.0105), I(−0.0738),and I(−0.1686). The result is given in Tables 4, and 5.Finally, we ompute I l(h), and Ir(h) at the intermediate ovals,

I l(−0.0121) = [+8.698, +9.290],
I l(−0.0846) = [−2.204,−1.780],
I l(−0.1933) = [+0.9121, +1.119],
Ir(−0.0105) = [+11.56, +12.10],
Ir(−0.0738) = [−1.181,−0.7959],
Ir(−0.1686) = [+0.2095, +0.3847]

. (32)
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Figure 7: The two branhes of the Abelian Integral for the �gure eight loop.
h I

l

00
I

l

10
I

l

20
I

l

02-0.0121 [1.206,1.207℄ [-1.034,-1.033℄ [0.9945,0.9951℄ [0.1290,0.1293℄-0.0846 [0.7661,0.7665℄ [-0.7073,-0.7068℄ [0.6902,0.6907℄ [0.05829,0.05839℄-0.1933 [0.2219,0.2222℄ [-0.2178,-0.2175℄ [0.2160,0.2164℄ [0.005326,0.005340℄Table 4: The omputed enlosures for the left branh of the �gure eight loop.
h I

r

00
I

r

10
I

r

20
I

r

02-0.0105 [1.077,1.078℄ [0.8773,0.8778℄ [0.8033,0.8039℄ [0.1006,0.1008℄-0.0738 [0.6846,0.6851℄ [0.6002,0.6006℄ [0.5573,0.5577℄ [0.04545,0.04553℄-0.1686 [0.1984,0.1987℄ [0.1848,0.1850℄ [0.1744,0.1747℄ [0.004154,0.004164℄Table 5: The omputed enlosures for the right branh of the �gure eight loop.Hene, the system with the given perturbation has four limit yles, one attrat-ing and one repelling inside eah loop, see Figures 2(iv) and 8. The run-timeof the program was, for the left (right) branh, 82 (78) seonds, a total of 1182(1166) boxes were used to over the 3 ovals, 82 (56) of these belong to the faillass.To prove that the unstable separatries of the saddle are attrated to a limityle enlosing the �gure eight loop, as indiated in Figure 8, we �rst alulate
Io(h), the outer Abelian integral, for some h > 0 values with low auray to�nd an indiation of a sign hange. It appears that a limit yle bifurates froman oval lose to H = 0.1. Therefore, we ompute Io(0.09), and Io(0.11),

Io(0.09) = [+8.715, +24.83],
Io(0.11) = [−25.37,−9.821].

(33)These alulations verify that the perturbed system has an attrating limit
h Io

00
Io

10
Io

20
Io

020.09 [3.576,3.587℄ [-0.1843,-0.1709℄ [2.560,2.575℄ [0.5307,0.5376℄0.11 [3.776,3.786℄ [-0.1862,-0.1740℄ [2.708,2.724℄ [0.6044,0.6109℄Table 6: The omputed enlosures for the outside of the �gure eight loop.14



yle bifurating from an oval outside the �gure eight loop. The run-time of theprogram was 39 seonds, a total of 496 boxes were used to over the 2 ovals, 52of these belong to the fail lass.
 
 

 
 

Figure 8: The perturbed �gure eight loop, with ǫ = 0.001.7 ConlusionsWe have presented a method to rigorously alulate Abelian integrals. Themethod an be applied to study any polynomial perturbation of a polynomialHamiltonian vetor �eld. We have applied the method to the ase of elliptiHamiltonians of degree 4, and given some indiations of what happens in the aseof a general perturbation, ompared to the Liénard ase, studied by Dumortierand Li in [6, 7, 8, 9℄.The method an be used in several ways: either one an use it to verify that aspei� perturbation guessed by some other method indeed has a ertain numberof zeros, or one an use it as in Setion 6.4 to sample and plot the monomialAbelian integrals. In the latter ase, if a good hoie of parameters an be madefrom the approximate knowledge of the monomial Abelian integrals, then onean re-use the program to verify that guess, as is done in Setion 6.4.A major hallenge is to devie a method whih an be used to guess whatperturbations to investigate. One suh method that appears in the literatureis that of a detetion funtion, as used in e.g. [33℄. Another problem, whihwe have ignored in this paper, is that typially when one has a Hamiltoniandepending on parameters, the maximal number of limit yles that an bifuratefrom one member of this family, will only appear for some speial values of theparameters. It would therefore be desirable to develop onditions indiatinghow to hoose one andidate system from a family. In Setion 6.4 we give aompletely heuristi argument why we want to have λ large.15
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