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Abstract

An accurate method to compute enclosures of Abelian integrals is de-
veloped. It is applied to the study of bifurcations of limit cycles from cubic
perturbations of elliptic Hamiltonians of degree four. We give examples
of perturbations such that 2, 3, 3, and 4 limit cycles bifurcate from the
truncated pendulum, the saddle loop, the interior of the cuspidal loop,
and the interior of the figure eight loop, respectively. Some methods to
find perturbations with a given number of limit cycles are illustrated in
the examples.

1 Introduction

Nonlinear ordinary differential equations are one of the most common models
used in any application of mathematical modelling. The most fundamental is
perhaps the model of 1-dimension mechanical motion,

&= f(z, @) (1)
In this paper we study families of such equations
i+ef(z, ) +g(x) =0, (2)

depending on a small constant e.
A fundamental question about such systems is to determine the number and
location of limit cycles bifurcating from the corresponding planar vector field

&= —y
{y = ef(x,2)+g(x) (3)



as € — 0.

In general, the question about the maximal number of limit cycles, and their
location, of a polynomial planar vector field is the second part of Hilbert’s 16th
problem, which is unsolved even for polynomials of degree 2. For an overview of
the progress that has been made to solve this problem we refer to [20]. Results
for the degree 2 case, and a general introduction to the bifurcation theory of
planar polynomial vector fields can be found in [31]. What is known, is that
any given polynomial vector field can have only a finite number of limit cycles;
this is proved in [11, 19].

A restricted version of Hilbert’s 16th problem, known as the weak, or some-
times the tangential, or the infinitesimal, Hilbert’s 16th problem, asks for the
number of limit cycles that can bifurcate from a perturbation of a Hamiltonian
system, see e.g. [3]. The weak Hilbert’s 16th problem has been solved for the
degree 2 case, see [2].

Special cases of Hamiltonian systems are the systems (2), which we study
in this paper. If one assumes that f(z,2) = f(z)&, (2) is known as a Lienard
equation. Such equations have been thoroughly studied, and the case where f,
and ¢ have degree 3 has been solved, see [6, 7, 8, 9]. We study general f of
degree 3; the set-up of the problem is given in Section 2.

In this paper we present a rigorous, computer-aided approach to find limit
cycles of planar polynomial vector fields. A different computer-aided approach
was introduced by Malo in his PhD-thesis [22], (also described in [15, 16]) which
is based on the concept of a rotated vector field, as introduced in [5]. Our
approach is completely different: we develop a method to rigorously compute
what is known as an Abelian integral. A brief introduction to Abelian integrals
is included in Section 4. The concept of a computer-aided proof in analysis is
based on techniques to rigorously enclose the result of a numerical computation.
A basis for such a procedure is interval analysis, introduced by Moore in [23].
By calculating with sets rather than floating points, it is possible to obtain
guaranteed results on a computer, enabling automated proofs for continuous
problems.

The methods developed in this paper are neither restricted to any specific
degree of the polynomial functions f, and g, nor to the case of systems of
the form (3). It can be used to compute Abelian integrals of any polynomial
perturbation from any family of compact level curves, ovals, of a polynomial
Hamiltonian. In the examples given in this paper, however, we restrict to the
case when f and g have degree 3.

2 Elliptic Hamiltonians of degree 4

We study the elliptic Hamiltonians of degree 4, given by

2 a4 43 g2
H(x,y):%+az+b§+c7, (4)

corresponding to the differential system,

o=y = Y (5)
Y H, = ax®+bx?+cx.



We are interested in limit cycles bifurcating from the periodic solutions of (5),
corresponding to integral curves of (4). The closed level-curves of (4) are called
ovals. In a series of papers [6, 7, 8, 9], Dumortier and Li study cubic perturba-
tions corresponding to Lienard equations. That is,

i+ ela+ pr+yrH)i+ax® +ba? +cx =0, (6)
or as a system,
r= Hy (7)
y = H,+ela+ fz+ya?)y.

The purpose of this paper is to add a fourth term, 6%, to the perturbation
and to explore what kind of bifurcations we can prove to exist. We study the
perturbed system,

T = —-H,
Y Hm+e<(a+ﬂx+7x2)y+5%). (8)

The 1-form associated with this perturbation is

3
w=— ((a—i—ﬁx—l—vxz)y—i—d%) dx. (9)
For computational efficiency we primarily study its exterior derivative,
dw = ((a + B + ya?) + 6y2) dzx A dy. (10)

For the elliptic Hamiltonians of degree four with compact ovals, there are five
different classes of phase portraits, see e.g [3]. They are, the truncated pendulum,
the saddle loop. the global centre, the cuspidal loop, and the figure-eight loop,
illustrated in Figure 1(i-v). In this paper we study cases (i),(ii), (iv), and (v).
In the cases of the cuspidal loop and the figure eight loop, we restrict our study
to the ovals inside the loops. The cases under study have the advantage that
only compact intervals of values of the Hamiltonian have to be considered.

2.1 Known results

In [6, 7, 8, 9] Dumortier and Li prove that sharp bounds on the number of limit
cycles bifurcating from (7) are 1,2, 4,4, and 5, for the cases (i)-(v), respectively.
They prove that the maximal number of limit cycles inside the loops in both
cases (iv), and (v) is 2.

In [29] Petrov proves that the number of limit cycles bifurcating from (8) in
case (v) is bounded by n + [251] — 1 in each of the two families of ovals inside
the figure eight loop, for a polynomial perturbation of degree n. Liu studies
the same case in [21], where he proves that the total number of limit cycles
bifurcating from both families, is bounded by 2n—1, and 2n+ 1, for n even and
odd, respectively. Liu also proves that the number of zeros outside the figure
eight loop is bounded by 2n + 1, and 2n + 3, for n even, and odd, respectively.
Petrov has also studied case (iii) — the global centre — in [30].




Figure 1: The elliptic Hamiltonians of degree 4.

3 Summation of the results

Theorem 3.1. For the Elliptic Hamiltonian of degree 4, (4), there exists cubic
perturbations with the following number of limit cycles:

(i) The truncated pendulum: two limit cycles,

(ii) The saddle loop: three limit cycles,

(i5i) The cuspidal loop: three interior limit cycles,

(iv) The figure eight loop: four interior limit cycles; two in each eye.

The examples mentioned in the theorem are illustrated in Figure 2. Note
that we only prove existence of the limit cycles, their locations as drawn in the
figure are only approximations.

4 Abelian integrals

A classical method to prove the existence of limit cycles bifurcating from a
family of ovals of a Hamiltonian, I';, C H~!(h), depending continuously on h,
is to study Abelian integrals, or, more generally, the Melnikov function, see e.g.
[3, 14]. Some caution, however, must be taken regarding the correspondence
between limit cycles and Abelian integrals, see e.g. [10]. Given a Hamiltonian
system and a perturbation,

& = —H,+ef(x,y)
{y = Hry+eg(xay)v (11)
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Figure 2: The limit cycles from Theorem 3.1. Unstable limit cycles are dashed.

the Abelian integral is defined as

I(h) = g flz,y)dy — g(x,y) dz. (12)

In this paper all perturbations are polynomial. The most important property of
Abelian integrals is described by the Poincaré-Pontryagin theorem. Let P be the
return map defined on some section transversal to the ovals of H, parametrised
by the values h of H, where h is taken from some bounded interval (a,b). We
consider the displacement function d(h) = P(h) — h. The theorem by Poincaré-
Pontryagin states that

d(h) = e(I(h) + ep(h,€)), as €— 0, (13)

where ¢(h,¢) is analytic and uniformly bounded on a compact neighbourhood
of e=0, h € (a,b).

5 Computer-aided computation of Abelian inte-
grals

5.1 Computer-aided proofs

To prove mathematical statements on a computer, we need an arithmetic which
gives guaranteed results. Many computer-aided proofs, including the results in
this paper, are based on interval analysis, e.g. [12, 17, 32]. Interval analysis



yields rigorous results for continuous problems, taking both discretisation and
rounding errors into account. For a thorough introduction to interval analysis
we refer to [1, 23, 24, 25, 27].

5.2 Outline of the approach

The main idea of this paper is to develop a very accurate, validated method to
enclose the value of a general Abelian integral. Such a method enables us to
sample values of I(h). If we can find two ovals Ty, and T';,, such that

I(h1)I(h2) <0, (14)

then there exists h* € (hq, he), such that I(h*) = 0.

Since P, the return map of the perturbed vector field, is analytic and non-
constant, it has isolated fixed points. Thus, we have proved the existence of (at
least) one limit cycle bifurcating from I'y-.

To construct perturbations such that the associated Abelian integral has a
given number of zeros, the constants, «, 3,7, and ¢ in the form w have to be
chosen in a careful manner. The heuristic approach we have used to choose
these constants is described in Section 6.

5.3 Computing the integrals

To compute the Abelian integral (12) of the form (9), we apply Stokes theorem
to get

I(h) = dw, (15)

Dy,

where Dy, denotes the interior of an oval I';,. The reason why we prefer to calcu-
late surface integrals, rather than contour integrals, is that we cannot represent
the ovals of H exactly. We can only find a cover of the ovals, and the area of this
cover yields the uncertainty of our calculations, automatically handled by the
interval arithmetic. If we had chosen to compute contour integrals, all of our
computations would have been subjected to those errors, since we would always
integrate over an unknown location. When calculating surface integrals, how-
ever, the effect of the uncertainty of the location of the ovals only contributes on
a very small portion of the total area of D;. Note that, inside Dy, it is possible
to integrate dw exactly, that is, there are no truncation errors.

The actual computation of the integrals is performed in four steps; first we
find a trapping region for the interesting family of ovals, second we adaptively
split this region into three parts, one that covers the oval, one representing the
inside and one representing the outside, third we change the coordinates on the
boxes covering the oval in order to minimise the area of the cover, fourth we
integrate dw on the boxes representing the inside and the cover of the oval.

The first step is simple, since we only consider ovals that are situated inside a
homo- or heteroclinic orbit. A short branch—and—bound algorithm quickly finds
a box enclosing the homo- or heteroclinic orbit; this box is our initial domain
used for the main part of the program.

In the second step — the adaptive splitting of the domain — we perform a
series of tests to determine whether a box B intersects the oval, is inside it, or
outside it. We start by evaluating the Hamiltonian on B using monotonicity



and central forms; since the Hamiltonians we study are sufficiently simple, we
implement the derivatives symbolically. Three cases occur: if H < h, then B is
inside the oval, and we label B as such. If H > h then B is outside the oval and
we ignore it. Finally, if h € H, then we try to perform the change of variables
as described below. If the change of variables procedure fails, and the size of
B is greater than some stopping tolerance, minsize, then we split the box B
into four parts and re—examine them separately. If the size of B is smaller than
minsize, then it is labelled fail. If the change of variables procedure works,
then we label B as on.

2

4

Figure 3: The labelling of boxes intersecting an oval.

The third, and most complicated, part of our program is the change of
variables in the boxes that intersect the oval. Let b € B be the midpoint of B.
Compute

u=VH(b),

and choose v such that
ulwv and wv; >0.

Using the labelling illustrated in Figure 3, let right and left be the sides
intersected by the line b + tv, t € R. Denote the intersection points by p, and
q, respectively. The possible configurations of an intersection of the oval with a
box are illustrated in Figure 4. The restriction of H to the sides right and left,
respectively, are one-dimensional functions, and the location of the intersections
can be approximated, and their uniqueness proved, using the interval Newton
method [23] initialised from the points p, and ¢, respectively. Let,

accuracy = minsize/10.

Define the points pyp, Pdown On the right-side and the points gup, gaown On the
left-side at the distance accuracy from p and ¢, respectively, as illustrated in
Figure 5.

If the following conditions hold, then the oval is inside the tube illustrated in
Figure 5, and we can change coordinates to get a small box, which is guaranteed
to contain the segment of the oval passing through B. This small box represents
the error caused by the unknown location of the oval.

Condition 5.1.

sign (H(pup) —h) = sign(H (qup) — )
= —sign(H (Pdown) — h) -
= —Sign(H(Qdmun) - h)
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Figure 4: The possible configurations of the intersection of an oval and a box.
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Figure 5: Constructing a small, local enclosure of the oval.

Let l,p, and l4own denote the line segments between p.,, and qup, and paown
and ggown, respectively. Denote by H’ differentiation with respect to the para-
metrisation of the line [,;, and lgoyn, respectively.

Condition 5.2.
0¢ (H(lup) —h) or 0¢ H'(lyy)

0 ¢ (H(ldmun) - h) or 0 ¢ Hl(ldoum,)-

Let othersidel, and otherside2 be the two other sides of the box B, that
is,
othersidel U otherside2Uright Uleft = {1,2,3,4}.

Condition 5.3.
', Nothersidel =0 and I'j Notherside2 = 0,

We enclose the segment of the oval inside of the box between two straight
lines: Condition 5.1 guarantees that the points pup, Pdown; Qup, and gdown are
on different sides of the oval as in Figure 5, Condition 5.2 guarantees that the
lines [,p and lgown do not intersect the oval, and Condition 5.3 guarantees that
the oval does not cross the other sides of the box. Recall that the uniqueness
of p and ¢ is proved as they are approximated. Hence, we have proved that
the segment of the oval crossing the box has exactly two intersections with the
boundary of the box, and that it is confined to the region between [, and lgown.-

If (5.1), (5.2), and (5.3), hold, then we set accuracy=accuracy/2, re-calculate
Dups Pdown Gup, A0d Gdown, and try to verify (5.1), (5.2), and (5.3). This proce-
dure is iterated until (5.1), or (5.2) do not hold. Finally, we label B as on.

The fourth and final part of our integration algorithm, is the actual integra-
tion. The integration is done separately for the boxes that are labelled, inside,
fail, and on.



If B is inside we compute

/a:i I de A dy — sup(By)i*t B inf(B)+! sup(Bg) Tt B inf(By)I+!
LY Y it1 i+ 1 Tl ir1l )

If B is labelled fail, we know that B might intersect the oval, that is, we have
neither been able to prove intersection, nor non-intersection. Therefore, we must
include any possible result; the integral over B is calculated as the interval hull
of 0 and the largest, and smallest, respectively, result of (16) calculated on a
subbox B C B.

Boxes labelled fail cause large over-estimations. Fortunately such boxes
are rare, typically less than 5% of the on-boxes, see Section 6. If minsize is
taken sufficiently small, the effect of the fail-boxes is negligible.

B,

1

By

Figure 6: The change of variables splitting.

The boxes that are labelled on, are split into five parts, as illustrated in
Figure 6. By construction, none of the triangles, T, T, or boxes B, B, in the
splitting of B intersect the oval, thus it suffices to evaluate H in one point of
each, and hence they can all be labelled as inside or outside. The boxes
By, B, are then treated as above, that is, if they are labelled inside they are
integrated according to (16), and if they are labelled outside they are neglected.
A triangle labelled outside is also neglected, the integrals on triangles labelled
inside are enclosed by the formula

/ 2y’ da A dy € OTIOTI|T)|, (17)
T

where 0T is the box hull of T, and |T| is the area of T'. This gives a reasonably
narrow enclosure of the integral, since the width of (0T is typically small. The
parallelepiped, P, which covers the segment of the oval, remains to be studied.
When we integrate over P, the same problem as in the fail case occurs; we
do not know how much of the parallelepiped to include. Therefore, we have to
take the hull of all possible outcomes. Hence, the integrals are computed as

/ o'y’ dz A dy € Hull (o, DPfDP2j|P|) , (18)
P

where P is the box hull of P and |P] is the area of P.
The value of the Abelian integral is enclosed by summing over all the com-
puted integrals that are labelled as either inside, fail, or on.

I(h’) € EBEinside (16) + ZTGinside (17)
+ D Besasy Hull(0, (16)) (19)
+ ZPEon (18)



6 Computational results

In this section we apply the methods developed in Section 5.3 to the elliptical
Hamiltonians of degree four, described in Section 2. The main idea we use in
all examples is to integrate monomial forms at some points, and then to specify
the coeflicients of w such that I(h) is zero at the sampled points. Therefore, let

I;(h) = /D z'y? da A dy. (20)
h

For the cases (i), (ii), (iv), where we give examples of perturbations yielding
bifurcations with less limit cycles than coefficients, we sample at the corre-
sponding number of h-values, uniformly distributed between the saddle loops
and the singularity. Together with a normalisation of one of the coefficients, this
procedure gives a linear system of equations, from which candidate coefficients
can be deduced.

Given some candidate coefficients of the form w, we calculate the I;;(h), at
intermediate ovals. If the linear combination of the I;;(h) has validated sign
changes between the sample points we are done: it has been proved that the
corresponding perturbation yields bifurcations with the given number of limit
cycles as e — 0.

All computations were performed on a Intel Xeon 2.0 Ghz, 64bit processor
with 7970Mb of RAM. The program was compiled with gcc, version 3.4.6. The
software for interval arithmetic was provided by the CXS-C package, version
2.1.1, see [4, 18].

6.1 The truncated pendulum

The Hamiltonian with a phase portrait called the truncated pendulum, see
Figure 1(i), is given by, see [6],

H=%-=—+—. (21)

The corresponding differential system has one centre and two saddles; the sad-
dles are connected by two heteroclinic orbits at H = i.

We compute the values of I;;(hy) for (4, j) € {(0,0),(2,0),(0,2)}, and hy =
kﬁ, where k = 1, ..., 5; the coefficient in front of I1( is assumed to be zero. The
values are shown in Table 1.

hk | Ioo 120 102
e [0.2649,0.2672]  [0.005695,0.005845] 0.005433,0.005601]

7} [
% [0.5405,0.5437]  [0.02433,0.02475] [0.02215,0.02253]
= | [0.8287,0.8327]  [0.05894,0.05990] [0.05052,0.05126]
% [1.135,1.140] [0.1150,0.1166] [0.09139,0.09248]
21 [

[1.470,1.475] [0.2035,0.2057] 0.1454,0.1468]

Table 1: The computed enclosures for the truncated pendulum.

We put § = 1, and solve the linear system for the coefficients «, and =, so
that } 5 5
alls + Iy + 10 =0, k=24, (22)

10



where IVZ"" denotes the midpoint of I;;(hx). The approximate solution that we
use as our perturbation is @« = —0.009510238485402, and v = —0.700351938113869.
To prove that the perturbed system has two limit cycles at H = -, and

129
H = %, respectively, we compute I(h), at the intermediate ovals,

I(&) = [-0.001191,-0.0009075],
I(%) = [4+0.0006606,+0.002093], (23)
I(Z) = [-0.01257,-0.009753].

Hence, the system with the given perturbation has two limit cycles, one attract-
ing from approximately H = %, and one repelling from approximately H = 1—12,
see Figure 2(i). The run-time of the program was 33 seconds, a total of 648

boxes were used to cover the 5 ovals, 76 of these belong to the fail class.

6.2 The Saddle loop

The Hamiltonian with a phase portrait called the saddle loop, see Figure 1(ii),
is given by, see [6],

where A € (1,00). The corresponding differential system has one centre sur-
rounded by a homoclinic orbit. We study A = 4, to give an example and display
what our method can do; another choice of A should give similar results. For
this Hamiltonian, the homoclinic orbit is located at H = %.

We compute the values of I;;(h) for (i,j) € {(0,0),(1,0),(2,0),(0,2)}, for

hr = k%, where k = 1,...,7. The values are shown in Table 2.

hi | oo I10 I20 Io2

% [0.2968,0.2969]  [0.002706,0.002707]  [0.003572,0.003573]  [0.01387,0.01388]
S | [0.5990,0.5991]  [0.01136,0.01137] [0.01484,0.01485] [0.05583,0.05584]
E [0.9073,0.9074] [0.02700,0.02701] [0.03486,0.03487] [0.1263,0.1264]
15| [1.223,1.224] [0.05106,0.05107] [0.06509,0.06511] [0.2261,0.2262]
bt [1.548,1.549] [0.08569,0.08570] [0.1077,0.1078] [0.3560,0.3561]
# [1.887,1.888] [0.1345,0.1346) [0.1665,0.1666)] [0.5169,0.5167]
% [2.246,2.247] [0.2054,0.2055] [0.2492,0.2493] [0.7105,0.7106]

Table 2: The computed enclosures for the saddle loop.

We put v = 1, and solve the linear system for the coefficients «, 8, and 6,
so that 5 5 § §
ol + BIME + Ik + 610 =0, k=2,4,6. (25)

The approximate solution we use as our perturbation is o = —0.000010932964822,
8 = —0.991766031106913, and § = —0.063860197399010.
To prove that the perturbed system has three limit cycles bifurcating from

H= %, H= 1—66, and H = 1%, respectively, we compute I(h) at the intermediate
ovals:
I(Z) = [~0.000001405,—0.0000009097],
I(z) = [+0.0000001299, +0.000001812], (26)
I(g) = [-0.000004034, —0.0000009977],
1(3—2) = [+0.00003338, +0.00003793].

11



Hence, the system with the given perturbation has three limit cycles, one at-
tracting from approximately H = %, and two repelling from approximately
H = %, and H = % , respectively, see Figure 2(ii). The run-time of the pro-
gram was 94 minutes and 33 seconds, a total of 85916 boxes were used to cover

the 7 ovals, 3944 of these belong to the fail class.

6.3 The Cuspidal loop

The Hamiltonian with a phase portrait called the cuspidal loop, see Figure 1(iv),
is given by, see [7],

2 4
Y z L 3
H=="+—+- 2
7 Tt 3% (27)
The corresponding differential system has one centre at H = —% surrounded

by a cuspidal loop, located at H = 0.
We compute the values of I;;(h) for (i,j) € {(0,0),(1,0),(2,0),(0,2)}, for

h = —k%, where k =1, ..., 7. The values are shown in Table 3.
hy Too T1o I20 Io2
— & 10:5344,0.5345] 0.4739,-0.4738] 0.4496,0.4497] [1.823,1.824]102

[0.4414,0.4414]
[0.3577,0.3578]
[0.2797,0.2798]
[0.2057,0.2058]
[0.1348,0.1349]

0.4030,-0.4029]
0.3339,-0.3338]

0.1985,-0.1984]
0.1318,-0.1317]

0.3867,0.3868]
0.3232,0.3233|

0.1949,0.1950]
0.1303,0.1304]

[1.315,1.316]107%
[9.003,9.004]10—3
[5.687,5.688]10~3
[3.161,3.162]1073
[1.389,1.391]10—3

a [
F |
[-0.2658,-0.2657] [0.2593,0.2594]
[ [
a [
a [

[0.06637,0.06638] 0.06566,-0.06565] 0.06530,0.06531]  [3.440,3.441]10~%

Table 3: The computed enclosures for the cuspidal loop.

We put v = 1, and solve the linear system for the coefficients «, (3, and 9,
so that § 5 5 5
alle + BITG + Iy + 8105 =0,

k=246 (28)

The approximate solution that we use as our perturbation is a = 0.233937272601683,
0 =1.234119595803674, and § = 0.559050361812264.
To prove that the perturbed system has three limit cycles bifurcating from

H=—-% H=—-% and H = —2, respectively, we compute I(h), at the
intermediate ovals,
I(-&) = [+0.0001742, +0.00001815],
[(_%) = [-0.00001366, —0.000007643], (29)
I(—-2) = [+0.000001450, +0.000006194],
I(—%) = [-0.000005781, —0.000002956].

Hence, the system with the given perturbation has three limit cycles: one at-
tracting from approximately H = —4—28, and two repelling from approximately
H = —4—18, and H = —4%, respectively, see Figure 2(iii). The run-time of the
program was 54 minutes and 13 seconds, a total of 55898 boxes were used to

cover the 7 ovals, 2566 of these belong to the fail class.

12



6.4 The Figure eight loop

The Hamiltonian with a phase portrait called the figure eight loop, see Figure
1(v), is given by,

So Tt g (30)
where X\ € (0,1), see [9]. The corresponding differential system has two centres,
at H = —5(20 + 1), and H = —:-A3(\ + 2), that are surrounded by a figure

eight loop, located at H = 0. As A grows the right loop grows; A = 1 is a
symmetric figure eight loop. We choose to study A = 0.95; a motivation why
we want A large is given below.

In [29] Petrov proves that when restricting to one family of ovals, surrounding
one of the two centres, the space of Abelian integrals has dimension 4, and that
the space has the Chebyshev property, that is, the number of zeros of a function
in this space is less than the dimension of the space. He also proves that this
bound is sharp. To construct an example with more than three limit cycles
surrounding either of the two centres, we can therefore not use the previous
method.

Our heuristic argument to guess parameters is the following: we start by
integrating at 100 uniformly distributed ovals, in each eye of the loop. We do
this with moderate accuracy, which gives a fast and sufficiently precise result.
Since we have chosen to study a figure eight loop that is not far from being
symmetric, it is reasonable to assume that the two branches behave similarly,
which makes it probable that we should be able to determine coefficients so
that each branch has two zeros. To determine such zeros, we solve the following
linear system:

I8 (—0.0362) 1I15(—0.0362) Iio(—0.0362) I5,(—0.0362) o 1

I8 (—0.1208)  I1o(—0.1208) I4o(—0.1208) I},(—0.1208) g | | -1

I8 (—0.1812) I'g(—0.1812) I4o(—0.1812) I},(—0.1812) vy | |1

I5(—0.1054)  I75(—0.1054) I5y(—0.1054) I3,(—0.1054) D) —1
(31)

where Ifj(h), and Ij;(h), denote the monomial Abelian integrals calculated on
the left and right ovals, respectively.

This gives the approximate solution o = 438.4905, f = —25.2469, v =
—452.7899, and § = —741.0341, which we use as our perturbation. The graph
of the resulting function is given in Figure 7, which appears to have 4 zeros.
This, of course, has to be proved.

To prove that the perturbation constructed above has 4 zeros, we procede
as in the previous examples, and compute enclosures of the Abelian integral at
intermediate ovals. On the left branch we calculate 7(—0.0121), I(—0.0846),
and I(—0.1933), and on the right branch we compute I(—0.0105), I(—0.0738),
and 1(—0.1686). The result is given in Tables 4, and 5.

Finally, we compute I'(h), and I"(h) at the intermediate ovals,

+8.698, +9.290],

(—0.0121) [

(—0.0846) = [—2.204,—1.780],

7'(-0.1933) = [+0.9121,+1.119), (32)
I7(=0.0105) = [+11.56,+12.10],

I"(—0.0738) = [-1.181,-0.7959),

I"(~0.1686) = [+0.2095, +0.3847]

13
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-0’25 -0.2 -0.15 -0.1 -0.05 0

Figure 7: The two branches of the Abelian Integral for the figure eight loop.

h |1, 1, 1L, 1,
-0.0121 | [1.206,1.207] [1.034,-1.033] [0.9945,0.9951]  [0.1290,0.1293]
-0.0846 | [0.7661,0.7665] [

[

- [
-0.7073,-0.7068]  [0.6902,0.6907]  [0.05829,0.05839]
- [

-0.1933 | [0.2219,0.2222] 0.2178,-0.2175]  [0.2160,0.2164] 0.005326,0.005340]

Table 4: The computed enclosures for the left branch of the figure eight loop.

h | I 1o 150 15

-0.0105 | [1.077,1.078] [0.8773,0.8778] [0.8033,0.8039]  [0.1006,0.1008]
-0.0738 | [0.6846,0.6851]  [0.6002,0.6006] [0.5573,0.5577]  [0.04545,0.04553]
-0.1686 | [0.1984,0.1987]  [0.1848,0.1850]  [0.1744,0.1747]  [0.004154,0.004164]

Table 5: The computed enclosures for the right branch of the figure eight loop.

Hence, the system with the given perturbation has four limit cycles, one attract-
ing and one repelling inside each loop, see Figures 2(iv) and 8. The run-time
of the program was, for the left (right) branch, 82 (78) seconds, a total of 1182
(1166) boxes were used to cover the 3 ovals, 82 (56) of these belong to the fail
class.

To prove that the unstable separatrices of the saddle are attracted to a limit
cycle enclosing the figure eight loop, as indicated in Figure 8, we first calculate
I°(h), the outer Abelian integral, for some h > 0 values with low accuracy to
find an indication of a sign change. It appears that a limit cycle bifurcates from
an oval close to H = 0.1. Therefore, we compute 1°(0.09), and 7°(0.11),

1°(0.09) = [+8.715,+24.83],

1°(0.11) = [-25.37,-9.821]. (33)

These calculations verify that the perturbed system has an attracting limit

h | 1§ 17 15 15,
0.09 | [3.576,3.587] [-0.1843,-0.1709] [2.560,2.575] [0.5307,0.5376]
0.11 | [3.776,3.786]  [-0.1862,-0.1740]  [2.708,2.724]  [0.6044,0.6109]

Table 6: The computed enclosures for the outside of the figure eight loop.
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cycle bifurcating from an oval outside the figure eight loop. The run-time of the
program was 39 seconds, a total of 496 boxes were used to cover the 2 ovals, 52
of these belong to the fail class.

Figure 8: The perturbed figure eight loop, with € = 0.001.

7 Conclusions

We have presented a method to rigorously calculate Abelian integrals. The
method can be applied to study any polynomial perturbation of a polynomial
Hamiltonian vector field. We have applied the method to the case of elliptic
Hamiltonians of degree 4, and given some indications of what happens in the case
of a general perturbation, compared to the Liénard case, studied by Dumortier
and Li in [6, 7, 8, 9].

The method can be used in several ways: either one can use it to verify that a
specific perturbation guessed by some other method indeed has a certain number
of zeros, or one can use it as in Section 6.4 to sample and plot the monomial
Abelian integrals. In the latter case, if a good choice of parameters can be made
from the approximate knowledge of the monomial Abelian integrals, then one
can re-use the program to verify that guess, as is done in Section 6.4.

A major challenge is to device a method which can be used to guess what
perturbations to investigate. One such method that appears in the literature
is that of a detection function, as used in e.g. [33]. Another problem, which
we have ignored in this paper, is that typically when one has a Hamiltonian
depending on parameters, the maximal number of limit cycles that can bifurcate
from one member of this family, will only appear for some special values of the
parameters. It would therefore be desirable to develop conditions indicating
how to choose one candidate system from a family. In Section 6.4 we give a
completely heuristic argument why we want to have A large.
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7.1 Future work

We intend to apply the presented method to hyperelliptic Hamiltonians, for
which few results have been proved; the most important is the result by Novikov
and Yakovenko [26], which states that the number of limit cycles that can bifur-
cate from a hyperelliptic Hamiltonian is bounded by a certain tower function.
Results on the exact number of zeros in some special cases can be found in [13].

The most important further development of the algorithm is to find a sound
way to select perturbations, when the space of Abelian integrals does not have
the Chebyshev property.
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