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Abstract

The limit cycle bifurcations of a Z2 equivariant quintic planar Hamil-

tonian vector field under Z2 equivariant quintic perturbation is studied.

We prove that the given system can have at least 27 limit cycles. This

is an improved lower bound on the possible number of limit cycles that

can bifurcate from a quintic planar Hamiltonian system under quintic

perturbation.
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1 Introduction

Determining the number and location of (isolated) limit cycles for planar polyno-
mial ordinary differential equations was posed as a grand challenge in Hilbert’s
seminal address to the International Congress of Mathematicians in 1900. Of
the 23 problems presented by Hilbert, this (the 16th) turned out to be one of the
most persistent: despite more than a century of intense research, not even the
quadratic case has been resolved. For an overview of the progress that has been
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made to solve this problem we refer to [12]. Partial results for the quadratic
case, and a general introduction to the bifurcation theory of planar polynomial
vector fields can be found in [22]. What is known, is that any given polynomial
vector field can have only a finite number of limit cycles; this is proved in [7, 11].

A restricted version of Hilbert’s 16th problem introduced by Arnol’d, see
e.g. [2], known as the weak or tangential Hilbert’s 16th problem, asks for the
number of limit cycles that can bifurcate from a perturbation of a Hamiltonian
system, see e.g. [5]. The weak Hilbert’s 16th problem has been solved for the
quadratic case, see [4].

In order to find Hamiltonian systems such that their perturbations have a
maximum number of zeros, it is common to study symmetric Hamiltonians with
a maximal number of centres, see [3, 15, 27, 28]. The specific perturbations are
often constructed using the so-called detection function method, see [16]. In
[15] a quintic perturbation of a Z6 equivariant system, with 24 limit cycles is
constructed. As far as we know, this is the largest previously known lower bound
on the number of limit cycles that can bifurcate through quintic perturbation
of a quintic Hamiltonian vector field.

The aim of the present paper is to study the Z2 equivariant system from
[28], and prove that at least 27 limit cycles can bifurcate from it. We locate a
suitable perturbation by conducting a similar study as in [14]; this is described
in detail in Section 4.2. We stress that our approach is completely rigorous,
seeing that all numerics is done in interval arithmetic with directed rounding.

2 Abelian integrals

A classical method to prove the existence of limit cycles bifurcating from a
continuous family of level curves of a Hamiltonian, γh ⊂ H−1(h), depending
continuously on h, is to study Abelian integrals, or, more generally, the Melnikov
function, see e.g. [5, 8]. The closed level-curves of a polynomial Hamiltonian
are called ovals. We denote the interior of an oval Dh, i.e. ∂Dh = γh. Given a
Hamiltonian system and a perturbation,

{

ẋ = −Hy(x, y) + ǫf(x, y)
ẏ = Hx(x, y) + ǫg(x, y),

(1)

the Abelian integral, in general multi-valued, is defined as

I(h) =

∫

γh

f(x, y) dy − g(x, y) dx. (2)

We denote the integrand ω, and call it the 1-form associated with the pertur-
bation. In this paper all perturbations are polynomial.

The most important property of Abelian integrals is described by the Poincaré-
Pontryagin theorem.

Theorem 2.1 (Poincaré-Pontryagin). Let P be the return map defined on some
section transversal to the ovals of H, parametrised by the values h of H, where
h is taken from some bounded interval (a, b). Let d(h) = P (h) − h be the
displacement function. Then, d(h) = ǫ(I(h) + ǫφ(h, ǫ)), as ǫ → 0, where
φ(h, ǫ) is analytic and uniformly bounded on a compact neighbourhood of ǫ =
0, h ∈ (a, b).
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Proof. see e.g. [5].

As a consequence of the above theorem, one can prove that a simple zero
of I(h) corresponds to a unique limit cycle bifurcating from the Hamiltonian
system as ǫ → 0. In fact, to prove existence of a limit cycle, it suffices to have
a zero of odd order.

2.1 Computer-aided proofs

Seeing that our proof relies upon a great deal of numerical computations, we
have been very careful in validating the computational results. A numerical
algorithm is said to be auto-validating if it produces a mathematically correct
result, incorporating not only the discretisation errors of the numerical method,
but also the computer’s internal representation of the floating point numbers and
its rounding procedures. The basic object in any such algorithm is an interval,
whose endpoints are computer-representable floating points. All mathematical
operations are performed in interval arithmetic with directed rounding to ensure
the correctness of the result. For a thorough introduction to this topic we refer
to [1, 18, 19, 20, 21].

2.2 Computer-aided computation of Abelian integrals

We use the method developed in [13] to enclose the values of all Abelian integrals
I(h) appearing in our proof. This enables us to rigorously sample their values,
i.e., for some discrete values of h, we can determine intervals such that I(h) ∈
[I−(h), I+(h)]. If we can find two ovals γh1

, and γh2
, such that all elements of

[I−(h1), I
+(h1)] have the opposite sign as those of [I−(h2), I

+(h2)] then, by the
intermediate value theorem, there exists h∗ ∈ (h1, h2), such that I(h∗) = 0, and
a neighbourhood of γh∗ that is either attracting or repelling for the perturbed
vector field.

Since Pǫ, the return map of the perturbed vector field, is analytic and non-
constant, it has isolated fixed points. Thus, a zero of I implies the existence of
(at least) one limit cycle bifurcating from γh∗ .

In order to construct a perturbation such that the associated Abelian integral
has a given number of zeros, the perturbation has to be chosen in a careful
manner. The heuristic approach we have used to construct such a perturbation
is described in Section 4.1.

3 The Hamiltonian

We study the Hamiltonian, described in [28] :

H(x, y) =
x2

2
−

9x4

8
+

x6

3
+

y2

2
−

73y4

144
+

2y6

27
(3)

corresponding to the differential system,






ẋ = −y
(

1 − 16y2

9

)(

1 − y2

4

)

ẏ = x
(

1 − 4x2
)

(

1 − x2

2

)

.
(4)
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The system has 25 equilibrium points and 19 periodic annuli, appearing in 9
classes, see Figure 1. We label the classes of periodic annuli Γ1 – Γ9, in the
order of increasing h, see Figure 2 and Table 1.
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−1

0

1

2

3

Figure 1: Phase portrait of the unperturbed Hamiltonian system.

We are interested in limit cycles bifurcating from the periodic solutions of
(4), corresponding to integral curves of (3).

We follow [28], and study the following Z2 equivariant perturbation of the
Hamiltonian system (4),

p(x, y) := α00

2
+ α20

4
x2 + α02

4
y2 + α40

6
x4 + α22

6
x2y2 + α04

6
y4

f(x, y) := xp(x, y)
g(x, y) := yp(x, y)

(5)

Thus, the Abelian integral (2) reads,

I(h) =
∫

γh

f dy − g dx =
∫

γh

xp dy − yp dx =
∫

Dh

(

2p + x ∂p
∂x

+ y ∂p
∂y

)

dx ∧ dy

=
∫

Dh

(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4
)

dx ∧ dy.

4 Results

Theorem 4.1. Consider the Hamiltonian vector field (4), perturbed as in (5).
Then one can choose αij , such that, as ǫ → 0, at least 27 limit cycles appear in
the configuration,

(Γ2
1)

4(Γ2)
2(Γ3)

2(Γ6)(Γ8)
2(Γ3

9)
4,
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Figure 2: The periodic annuli, Γ1 − Γ9.
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Periodic annulus hmin hmax Expand/Contract
1 -2.2037 -1.3105 expand

2 -1.3704 -1.3105 expand

3 -1.3105 -0.6993 expand

4 -0.8333 -0.6993 expand

5 -0.6693 ∞ expand

6 -0.6693 0.0599 contract

7 0.0000 0.0599 expand

8 0.0599 0.1340 contract

9 0.1340 0.1939 contract

Table 1: The domains of the periodic annuli. The labels contract and expand

refer to the behaviour of the ovals in an annulus as h increases.

see Figure 3.
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Figure 3: The ovals, from which the limit cycles bifurcate.

We use Z(n + 1, m) to denote the maximum number of limit cycles that
can bifurcate from a Hamiltonian vector field of degree n, under a perturbation
of order m. Obviously, Z(n) := Z(n + 1, n) ≤ H(n), where H(n) denotes the
maximum number of limit cycles that a nth degree planar polynomial system
can have. Some known results are Z(2) = 2 [4], Z(3) ≥ 12 [25], Z(4) ≥ 15 [29],
Z(5) ≥ 24 [3], Z(6) ≥ 35 [23], Z(7) ≥ 49 [17], Z(9) ≥ 80 [26], and Z(11) ≥ 121
[24].

Corollary 4.2. Z(5) ≥ 27.
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4.1 Strategy

In this section we apply the methods developed in [13] to the Hamiltonian system
described above. The first part of our approach is to integrate monomial forms
at some points, h1, . . . , hN , and then to specify the coefficients of

dω =
(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4
)

dx ∧ dy, (6)

such that the Abelian integrals vanish:

I(hℓ) =

∫

γh
ℓ

ω = 0, ℓ = 1, . . . , N. (7)

Therefore, let

Iij(h) =

∫

Dh

xiyj dx ∧ dy, (8)

where ∂Dh = γh. Then we have the following linear decomposition

I(h) = α00I00(h)+α20I20(h)+α02I02(h)+α40I40(h)+α22I22(h)+α04I04(h). (9)

Given some candidate coefficients of the form ω, we calculate the Iij(h) at
intermediate ovals, h̃1 < h1 < h̃2 < · · · < hN < h̃N+1. If the linear combination
(9) of the Iij(h̃) has validated sign changes between the sample points we are
done: it has been proved that the corresponding perturbation yields bifurcations
with at least the given number of limit cycles as ǫ → 0.

We recall that, in general, the Abelian integral is multi-valued, and the
abovementioned computations are done for each continuous family of ovals sep-
arately. In the equivariant case at hand, I(h) is identically the same on each
of the different annuli within one annulus-class. Thus, one can trivially split
the set of ovals corresponding to H = h into natural subsets. This is crucial
for the success of our approach, since for each limit cycle we find there will be
one [three] additional cycles that can be found be rotating the first cycle by an
angle π [π

2
] for the annuli Γ2, Γ3, Γ4, and Γ8 [Γ1, and Γ9].

4.2 Generating candidate coefficients

Using the tools developed in [13], the computation of verified sign changes of
the Abelian integral is automatic, once we have a set of proper coefficients. To
choose such candidate coefficients, however, is non-trivial. The reason is that
the regions in the parameter space yielding a large number of zeros is, typically,
small. We sample each of the monomials Ik

ij , where k ∈ {1, ..., 9} denotes in
which annulus the integral is computed, at 100 uniformly distributed points in
the respective domains. Generically, it is expected that the space of Abelian
integrals on one branch should be Chebyshev, see e.g. [10], i.e. the number of
zeros of a function in the space is one less than the dimension of the space.

The first step is to choose some ovals where we force the Abelian integral
to be zero, by solving the corresponding linear system for the coefficients of
ω. Note, this method can automatically give any configuration of limit cycles
generated by 5 zeros. We see from Figure 1 that it is desirable to maximise the
number of zeros on Γ1 and Γ9, since such limit cycles have multiplicity four. If
this procedure is done arbitrarily, only up to 20 limit cycles would be guaranteed.
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To find a better set of candidate coefficients we note that the system has the
following properties: (i) the domains of I1(h) and I2(h) overlap, see Table 1;
(ii) the annuli Γ2

1 and Γ2 are surrounded by the annulus Γ3, and the annuli Γ2
9

are surrounded by the annulus Γ8, see Figure 1. Property (i) indicates that
it should be possible, as in [14], to force I1(h) and I2(h) to oscillate together,
see Figure 4. Property (ii) indicates that it should be possible, as in the figure
eight case in [13], to get two extra cycles surrounding the annuli Γ2

1 and Γ2, and
Γ2

9, respectively. By taking property (i), and (ii) into account, we can locate a
suitable candidate form ω.

−1.38 −1.36 −1.34 −1.32 −1.3
−0.02

0

0.02

0.04

0.06

Figure 4: The Abelian integrals on ovals 1 (solid) and 2 (dashed), oscillating
together.

4.3 Computational results

Using the method described above to generate candidate coefficients for ω, we
get the result listed in Table 2.

α00 2.176832745375219
α20 0.203687169951339
α02 -4.663680776344302
α40 -8.410822908376025
α22 4.313536179874701
α04 1.000000000000000

Table 2: The generated coefficients of the perturbation (5).

The next step is to validate that the generated coefficients yield the expected
behaviour. Therefore, we enclose the value of the corresponding Abelian inte-
grals at intermediate ovals. As is shown in Table 3, the generated coefficients
correspond to a perturbation for which the claimed number of limit cycles bi-
furcate from the given Hamiltonian. The graphs of the Abelian integrals for
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Γ1, Γ2, Γ3, Γ6, Γ8, and Γ9, from which it bifurcates limit cycles, are shown in
Figure 5.

Periodic annulus h I(h)
1 -1.840000 [6.88,7.11]×10−2

1 -1.380000 -[1.55,1.19]×10−2

1 -1.310500 [2.43,2.83]×10−2

2 -1.345600 -[1.18,1.12]×10−2

2 -1.310500 [4.16,4.31]×10−2

3 -1.267300 [2.17,2.27]×10−1

3 -0.700000 -[7.88,7.85]×100

6 -0.600000 -[1.66,1.65]×101

6 0.058000 [1.33,1.34]×100

8 0.060000 [1.86,1.87]×10−1

8 0.131500 -[1.38,1.04]×10−3

9 0.134100 -[3.22,3.06]×10−4

9 0.141300 [9.56,11.0]×10−5

9 0.163700 -[3.36,2.36]×10−5

9 0.186100 [2.04,2.53]×10−5

Table 3: The computed enclosures of the Abelian integrals.

All computations were performed on a AMD Opteron 848 2.2GHz, 64bit
processor with 16Gb of RAM. The program was compiled with gcc, version
3.4.6. The software for interval arithmetic was provided by the CXS-C package,
version 2.1.1, see [6, 9]. The total run-time of the validated program [13], to
calculate the 15 Abelian integrals necessary for the proof, was 50 minutes.

5 Conclusions

We have applied the method developed in [13] to study an equivariant quintic
Hamiltonian vector field under quintic perturbation, previously studied in [28].
Our approach differs from the one utilised in [28] in two ways. First, we vary all
parameters together, whereas in [28] the detection function method, developed
in [16], is used, which means that the parameters are determined in two steps; in
the first step all parameters except one are determined, and in the final search
only one parameter is varied. Our approach to variation of the coefficients
yields a perturbation with a larger number of limit cycles than was previously
established for the quintic case. The new bound Z(5) ≥ 27, improves the
result Z(5) ≥ 24 in [3]. Second, after determining candidate coefficients, we
validate that they have the desired properties. The second step makes our
result mathematically rigorous.
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