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1 Introduction

In this chapter, we will give a brief introduction to some aspects of chaos the-
ory. This task is by no means easy: despite more than four decades of intense
research in this area, there is still no general agreement as to what the word
chaos should really mean. In fact, there appears to exist almost a continuum
of definitions of a chaotic system, all slightly tweaked to suit each researcher’s
specific needs. In this overview, we will present several chaotic systems, such
as discrete interval maps and three-dimensional continuous strange attractors.

This account does by no means give a complete introduction to the vast
theory of chaotic dynamical systems. For some nice, and more comprehensive,
introductions to this topic, we refer to e.g. [HW91, Ro95, PT93, Vi97].

2 Dynamical Systems

A dynamical system is a set of rules that maps a state into the future. A
simple example is a function f acting on some state space U , sometimes also
referred to as the phase space. Given f : U → U , we can consider consecutive
iterates of an initial point x0 ∈ U :

xn+1 = f(xn), n ∈ N. (1)

It is customary to use the notation f0(x0) = x0; f
n+1(x0) = f(fn(x0)). The

sequence of iterates {f i(x)}∞i=0 is called the forward orbit of x under f . If the
map f is invertible, we can also talk about the backward orbit {f−i(x)}∞i=0. In
this setting, we think of the time as being discrete, and labelled by the index
i. Pairing the time variable with the space variable gives the following view
of the evolution of the dynamical system:

(t0, x0), (t1, f(x0)), . . . , (tn, fn(x0)), . . . (2)
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The main questions we are interested in relate to the long-term behavior
of the dynamical system: what is the asymptotic behavior of the orbits? Does
this depend on the choice of the initial condition x0? And how does it depend
on small variations of f? These are all questions that are instrumental in the
theory of dynamical systems.

Fig. 1. Iterates 100 to 1000 of fa with (a) a = 3.4 (b) a = 3.5 (c) a = 3.6.

Example 1. As a simple illustration, we consider the one-parameter function
fa : [0, 1] → [0, 1], defined by fa(x) = ax(1 − x), where a ∈ [0, 4]. For the
parameter values a = 3.4 and a = 3.5, the iterates of x0 = 0.25 converge
to a periodic orbit, see Fig. 1(a,b). In fact, almost any choice of x0 ∈ I will
display the same asymptotics. That the limiting behavior of the dynamical
system is very regular is also apparent from the histogram of the iterates, see
Fig. 2(a,b).

If we change the parameter to a = 3.6, the situation changes dramatically.
No longer is the trajectory confined to small regions of the phase space, see
Fig. 1(c). As the histogram in Fig. 2(c) indicates, the orbit repeatedly visits
almost every portion of the union of two intervals.

Fig. 2. Histograms of the 4000 first iterates of fa with (a) a = 3.4 (b) a = 3.5 (c)
a = 3.6.
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The fundamentally different behaviors of the system of Example 1 indicates
that the system undergoes some bifurcations as the parameter a is varied. We
will return to this topic later.

Another important class of dynamical systems are given by differential
equations ẋ = f(x). Now, the time is thought of as being continuous. Let us
denote the solution (or flow) by ϕ(x, t), i.e., we have

d

dt
ϕ(x, t) = f(ϕ(x, t)), ϕ(x, 0) = x. (3)

We can then ask exactly the same questions about the long-term behavior of
this dynamical system as above.

Example 2. Let us consider the following one-parameter planar polynomial
vector field:

ẋ = x2 + y2 + a

ẏ = y2 − x4.

Plotting the solutions to the system with a = 2 reveals no interesting dy-
namics, see Fig. 3(a). In the natural (x, y)-coordinate frame, all solutions flow
from y = +∞ to y = −∞. Thus the dynamics is entirely made up of tran-
sients. Setting a = −2, however, produces a system with several fixed points
of varying character, see Fig. 3(b). As a consequence, the solutions display
a more rich behavior, including sensitive dependence of initial conditions –
which we will return to later.

 
 

 
 

 
 

 
 

 
 

 
 

 

 

Fig. 3. (a) Regular flow with no fixed points for a = 2. (b) Two saddles, one spiral
source, and one spiral sink for a = −2.

3 Fixed points

Given a dynamical system in terms of an iterated map (1), the simplest orbit
is that of a fixed point, i.e., a point x∗ that remains unaltered by the map
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itself: x∗ = f(x∗). For a differential equation (3), a fixed point x∗ corresponds
to a vanishing vector field: f(x∗) = 0. In what follows, we will let Fix(f)
denote the fixed points of f .

Assuming that f is at least C1, it is the linearization Df(x∗) of the system
that, generically, reveals the character of the fixed point. We say that a fixed
point is hyperbolic if there is expansion/contraction in all eigenspaces of the
linearized system. For maps1, this means that no eigenvalues of the matrix
Df(x∗) lie on the unit circle. Eigenspaces in which we have contraction are
called stable; those in which we have expansion are called unstable.

A fixed point of a map whose linearization has only real eigenvalues of
modulus less (greater) than one is called a sink (source). If it has eigenval-

Fig. 4. Phase portraits of (a) a source, (b) a saddle, (c) a spiral sink.

ues of both types, it is called a saddle. In dimensions greater than one, the
eigenvalues can be complex-valued; they then come in conjugate pairs. In the
planar case, a fixed point having a pair of non-real eigenvalues inside (out-
side) the unit disc is called a spiral sink (spiral source), see Fig. 4. Of course,
in higher dimensions, we can have combinations of the above. The point is
that, at a hyperbolic fixed point, we can give an approximate description of
the local behavior of the dynamical system. This is made more precise by the
Hartman-Grobman Theorem:

Theorem 1 (Hartman-Grobman). Let U ⊂ R
n be open, and let f ∈

C1(U, Rn). If x∗ ∈ U is a hyperbolic fixed point of f , then there exists a
homeomorphism h that maps a neighborhood of x∗ to a neighborhood of the
origin, and such that h ◦ f = Df(x∗) ◦ h.

For differential equations the Hartman-Grobman theorem says that the flows
ϕ(x, t) and ϕx∗(x, t) of the original, and linearized vector fields, respectively,
can be conjugated near a fixed point x∗:

h(ϕ(x, t)) = ϕx∗(h(x), t). (4)

1 For differential equations the imaginary axis plays the same role as the unit
circle does for maps. Eigenvalues with negative real parts correspond to stable
eigenspaces.
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For a proof of this theorem, and some differentiable variants, see [Be78, Ha60,
Ha64, Ne64, Se85, St57, St58]. In principle, this theorem tells us that the dy-
namics near a hyperbolic fixed point is close to that of the linearized system,
in the topological sense. From a qualitative point of view, this is very useful,
seeing that we can completely analyze the linear system. From a quantitative
point of view, however, we are not given much information about the home-
omorphism h. In particular, we have no idea how large the neighborhood U
can be taken. In order to obtain estimates of this type, a very careful analysis
must be carried out. In the case of a saddle fixed point, the relative sizes of
the eigenvalues may play a delicate role, see e.g. [Si52].

We emphasize the importance of demanding that the fixed point be hyper-
bolic. If this were not the case, an arbitrarily small perturbation could alter
the dynamics completely. Thus hyperbolicity guarantees (local) robustness for
the system.

Example 3. Returning to the quadratic map fa(x) = ax(1− x) of Example 1,
we see that it has at most two fixed points: one at the origin, and (for a > 1)
one at x∗

a = 1 − 1
a . The linearizations at these fixed points are Df(0) = a,

and Df(x∗) = a(1− 2x∗) = a− 2, respectively. This implies that the origin is
stable for a ∈ [0, 1), and unstable for a > 1. The second fixed point is stable
for a ∈ (1, 3), and unstable for a > 3.

Example 4. Returning to the vector field of Example 2, we see that its first
component ẋ = x2+y2+a = 0 has no real solutions for a = 2. Thus the system
lacks fixed points for this parameter value. For a = −2, however, the first
component has an entire continuum of solutions: x2+y2 = 2. Propagating this
constraint into the second component ẏ = y2 − x4 = 0, yields four solutions:
(1, 1), (1,−1), (−1, 1), (−1,−1). The linearization of the vector field is given
by the Jacobian matrix:

Df(x, y) =

(

2x 2y
−4x3 2y

)

. (5)

Inserting the coordinates for the fixed points into (5), and computing the
eigenvalues of the resulting matrices is straight-forward. It reveals that the
fixed points are of type: spiral source, saddle, saddle, and spiral sink, respec-
tively.

4 Periodic orbits

Following the fixed point, the simplest dynamical object is a periodic orbit.
For a map f , a point x0 is said to have period n ≥ 1 if fn(x0) = x0. It has
principal period n if n is minimal. The corresponding periodic orbit is the
(finite) set of points {x0, x1, . . . , xn−1}. Note that this set is invariant under
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the map f . In what follows, we let Pern(f) denote the set of principal period-n
orbits of f .

Just like with fixed points, we can study the stability of periodic orbits.
These objects can be attracting, repelling, of saddle type, etc. For a map f ,
we simply note that a period-n point x0 is a fixed point of the map g = fn.
Thus we can apply all theory about fixed points to g, and this directly carries
over to the period-n orbit of f . In practice, it is useful to note that we have
the following identity:

Dg(x0) = D(fn)(x0) =

n−1
∏

i=0

Df(xi), (6)

which is a direct consequence of the chain rule:

D(fn)(x0) = D(f(fn−1))(x0) = Df(fn−1(x0))D(fn−1)(x0)

= Df(xn−1)D(fn−1)(x0).

In other words, the Jacobian matrix of g = fn, evaluated at x0, is the product
of the n Jacobians of the map f , evaluated along the periodic orbit.

Consider the following ordering of the positive integers:

3 > 5 > 7 > 9 > · · · > 2 · 3 > 2 · 5 > 2 · 7 > · · · >

22 · 3 > 22 · 5 > 22 · 7 > · · · > 23 > 22 > 2 > 1.

A well-known result for maps is the following:

Theorem 2 (Sharkovsky). Let f : M → M be a continuous map, where M
is an interval or the real line. If f has a periodic point of period m and m > n
in the above ordering, then f also has a periodic point of period n.

In particular, this means that if f has a period-3 orbit, then it has orbits of
all periods. Note that this theorem is topological, and thus reveals nothing
about the stability of the periodic orbits.

4.1 Flows and their return maps

We will now describe a useful relation between discrete-time (maps) and
continuous-time (flows) dynamical systems. Consider the system of ordinary
differential equations

ẋ = f(x), (7)

where the vector field f is a Ck function: f : R
d → R

d. Let ϕ(x, t) denote the
flow of (7), i.e.,

d
dtϕ(x, t) = f(ϕ(x, t)),

and suppose that the system (7) has a periodic solution of period τ0 > 0,
containing the point x0, i.e., ϕ(x0, τ0 + t) = ϕ(x0, t) for all t ∈ R. Let Σ be
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an (d− 1)-dimensional surface transverse to the vector field at x0, see Fig. 5.
By this, we mean that the basis of Σ and the vector f(x0) span Rd, i.e.,
the flow is not tangent to Σ near x0. Then we can find an open set U ⊂ Σ
containing x0 such that for all x ∈ U , there exists a τ(x) close to τ0 such
that ϕ(x, τ(x)) ∈ Σ. The point ϕ(x, τ(x)) is called the first return of x, and

Σ

Fig. 5. The surface Σ and two trajectories.

the map R which associates a point with its first return is called the return
map: R(x) = ϕ(x, τ(x)). Note that, by construction, we have τ(x0) = τ0 and
R(x0) = x0. Thus a fixed point of R corresponds to a periodic orbit of (7),
and a periodic point of period n corresponds to a periodic orbit of (7) piercing
Σ n times before closing.

One can show that, under the conditions stated above, and for sufficiently
small U , the return map is a Ck diffeomorphism of U onto a subset of Σ.
In other words: the return map is as smooth as the vector field. This means
that, if k ≥ 1, then the partial derivatives of R are well defined. By studying
the Jacobian DR(x0) of the return map, we can determine the stability of
the periodic orbit, as outlined in the previous section. We say that a periodic
orbit γ of (7) is hyperbolic if any member of Σ ∩ γ is a hyperbolic periodic
point for the return map R. In practice, we compute the Jacobian by solving
the first variational equations associated to the flow. This is a d2-dimensional
linear system of differential equations which is solved along with the original
d-dimensional system:

ẋ(t) = f(x(t)), x(0) = x0, (8)

v̇(t) = Df(x(t))v(t), v(0) = I. (9)

Whereas locating fixed points for a differential equation is a purely alge-
braic task (we simply solve the, possibly nonlinear, equation f(x) = 0), the
task of finding periodic orbits is highly non-trivial. Indeed, it is not even known
how many isolated periodic orbits a planar, quadratic differential equation can
have. To this day, the record is 4, but nobody has yet proved that this is the
true upper bound. This question is a part of Hilbert’s 16th problem, which
asks for the maximal number (and relative location) of limit cycles for planar
polynomial differential equations. Even finding non-trivial lower bounds for
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restricted families of planar polynomial vector fields poses a big challenge.
For a recent overview of this problem, see [Il02].

5 Bifurcations

The theory of bifurcations deals with the behavior of a family of dynamical
systems. In general, the family under study has finitely many parameters that
change the character of the system’s dynamics when varied. It is often the
case that only one parameter is varied at a time; although in some situations
two or maybe three parameters can be handled simultaneously.

Example 5. Consider the family of maps Ea(x) = ex − a. We will study what
happens to the dynamics as the scalar parameter a is varied.

For a < 1 the system has no fixed points. For a = 1 the origin is the
unique fixed point (it solves the equation ex − 1 = x). This fixed point is not
hyperbolic: its associated eigenvalue is 1. When a > 1, there are two distinct
hyperbolic fixed points, which have bifurcated from from the origin. One of
these fixed points is stable; the other is unstable.

The transition as the parameter a passes through 1 is known as a saddle-
node- or simply a tangential bifurcation. We illustrate the mechanism behind
such a bifurcation in Fig. 6. The formal definition of a saddle-node bifurcation

Fig. 6. The saddle-node bifurcation: (a) before, (b) during, and (c) after the bifur-
cation.

is stated below.

Definition 1 (saddle-node bifurcation). A smooth, one-parameter family
of maps {fa} undergoes a saddle-node bifurcation at a0 if there exists an open
interval I and a positive number ǫ such that

(1) a ∈ (a0 − ǫ, a0) ⇒ Fix(fa|I) = ∅;
(2) a = a0 ⇒ Fix(fa|I) = {x∗} and f ′

a0
(x∗) = 1;

(3) a ∈ (a0, a0 + ǫ) ⇒ Fix(fa|I) = {x∗
1, x

∗
2}.
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a

(x∗, a0)

x
a = p(x)

Fig. 7. The saddle-node bifurcation: the graph represents the location of the fixed
points. It is dotted when unstable.

Of course, we may reverse the direction of the bifurcation with respect to the
parameter a.

In the following theorem, explicit conditions are stated that imply the exis-
tence of a saddle-node bifurcation. Given a family of maps, the four conditions
are easy to check. The proof relies on the implicit function theorem.

Theorem 3 (Saddle-node bifurcation). Given a C2 map f , assume that
(1) fa0

(x∗) = x∗, (2) f ′
a0

(x∗) = 1, (3) f ′′
a0

(x∗) 6= 0, and (4) ∂fa

∂a |a=a0
(x∗) 6= 0

hold. Then there exists an interval I containing the fixed point x∗ and a smooth
function p : I → R with p(x∗) = a0 such that fp(x)(x) = x, p′(x∗) = 0, and
p′′(x∗) 6= 0.

The graph of p describes the location of the two fixed points with respect to
the parameter a, see Fig. 7.

We now turn to a second kind of bifurcation that can occur.

Example 6. Returning to the logistic family fa(x) = ax(1 − x), recall from
Example 3 that, when a > 1, there are two fixed points: the origin (unstable)
and x∗

a = 1 − 1
a , which is stable for 1 < a < 3. When a passes through 3 the

fixed point looses its stability: f ′
3(x

∗
3) = −1. In the range 3 < a < 3.445, both

the origin and x∗
a are unstable, and a stable period-2 orbit has bifurcated from

x∗
a.

This is known as a period doubling- or simply a flip bifurcation. We illustrate
the mechanism behind such a bifurcation in Fig. 8.

We formalize the bifurcation in the following definition.

Definition 2 (period-doubling bifurcation). A smooth, one-parameter
family of maps {fa} undergoes a period-doubling bifurcation at a0 if there
exists an open interval I and a positive number ǫ such that

(1) a ∈ (a0 − ǫ, a0 + ǫ) ⇒ Fix(fa|I) = x∗;
(2) a ∈ (a0 − ǫ, a0) ⇒ x∗is stable, and Per2(fa|I) = ∅;
(3) a ∈ (a0, a0 + ǫ) ⇒ x∗is unstable, and Per2(fa|I) = {x∗

1, x
∗
2} is stable.
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Fig. 8. The period-doubling bifurcation: (a) before, (b) during, and (c) after the
bifurcation. Note that we are plotting the second iterate of the map.

Again, we may reverse the direction of the bifurcation with respect to the
parameter a. We may also reverse the stabilities, i.e., exchange the roles of
stable and unstable in the definition. In the following theorem, explicit condi-
tions are stated that imply the existence of a saddle-node bifurcation. Given
a family of maps, the four conditions are easy to check. Again, the proof relies
on the implicit function theorem.

Theorem 4 (Period-doubling bifurcation). Given a C3 map f , assume
that (1) fa0

(x∗) = x∗, (2) f ′
a0

(x∗) = −1, (3) f ′′′
a0

(x∗) 6= 0, and (4)
∂(f2

a
)

∂a |a=a0
(x∗) 6= 0 hold. Then there exists an interval I containing the fixed

point x∗, and a smooth function p : I → R such that fp(x)(x) 6= x, but
f2

p(x) = x.

Note that conditions (1)+(2) imply that there is a differentiable curve of fixed
points x∗(a) for a near a0: fa(x∗(a)) = x∗(a). These conditions also imply that
(f2

a0
)′′(x0) = 0, which means that the graph of f2 has an inflection point at

the bifurcation. Ensuring that the cubic term in the Taylor expansion of f2

is non-zero (condition (3)) gives rise to the bifurcation illustrated in Fig. 8.
The graph of p describes the location of the period-2 points with respect

to the parameter a, see Fig. 9.

a

(x∗, a0)

x

a = p(x)

Fig. 9. The period-doubling bifurcation: The thin line represents the fixed point.
It is dotted when unstable. The thick line represents the period-2 orbit.
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Note that both bifurcations are applicable to the function g = fn, and
can thus be carried over to periodic orbits. In the case of the period-doubling
bifurcation, this can give rise to a period-doubling cascade. This is an infinite
sequence of period-doublings, generating the periods 2, 4, 8, 16, . . . .

There are many more bifurcations that can occur, especially in higher-
dimensional systems. We mention here the pithfork bifurcation and the Hopf
bifurcation, both of which we shall encounter in the final sections.

6 Invariant manifolds

For a Ck vector field f : R
d → R

d, with a hyperbolic fixed point x∗, we can
define its associated stable and unstable manifolds.

W s(x∗) = {x : lim
t→+∞

ϕ(x, t) = x∗}
Wu(x∗) = {x : lim

t→−∞
ϕ(x, t) = x∗}.

Analogously, for a Ck map f : R
d → R

d, we have

W s(x∗) = {x : lim
i→+∞

f i(x) = x∗},

Wu(x∗) = {x : lim
i→−∞

f i(x) = x∗}.

These sets are injectively immersed Ck submanifolds of R
d, and have the same

dimensions as their corresponding linear subspaces. If the stable manifold is
an open set, then W s(x∗) is called the basin of attraction of x∗. Note that
the stable and unstable manifolds are indeed invariant under the dynamical
system: as sets they remain unchanged, although individual points are moved
about within them. We can extend these definitions to the case when x∗ is a
periodic point of period n simply by replacing f by fn.

Knowing the location of a system’s fixed points, together with their stable
and unstable manifolds gives a very detailed picture of the overall dynamics.

Example 7. Returning to the vector field of Example 2, we illustrate this fact
by plotting the stable (blue) and unstable (red) manifolds of the two saddle
points, located at (−1, 1) and (1,−1), see Fig. 10. Note that the interior of the
region bounded by the stable manifolds of the two saddles constitutes the two-
dimensional stable manifold of the spiral sink at (−1,−1), and thus its basin
of attraction. In the same manner, the two-dimensional unstable manifold of
the spiral source at (1, 1) is bounded by the unstable manifolds of the two
saddles.

In the center of Fig. 10(a), we can clearly see a compact region S =
cl(W s(−1,−1) ∩ Wu(1, 1)). This set is invariant under the flow: ϕ(S, t) = S
for all t ∈ R. The boundary of S contains the four fixed points of the system,
and is an invariant set too.
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Fig. 10. (a) The stable (blue) and unstable (red) manifolds of the two saddle points.
(b) The same invariant sets, but on a larger domain.

Finally, note that points outside W s(−1,−1)∪Wu(1, 1) are separated into
a left part UL and a right part UR, see Fig 10(b). Both (invariant) sets lack
interesting dynamics: a point is simply transported to infinity both forward
and backward in time.
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Fig. 11. The one-dimensional unstable manifold of the saddle point.

In general, the stable and unstable manifolds can form very complicated
sets. A classic example is the unstable manifold of the origin for the Lorenz
equations (more about this system later). In Fig. 11 we show a part of the
one-dimensional unstable manifold of the saddle fixed point at the origin.

7 Hyperbolic sets

Let k ≥ 1, and consider a Ck diffeomorphism f : R
d → R

d having a hyperbolic
fixed point x∗. According to standard results in spectral theory, there then
exists a splitting R

d = E
s
x∗ ⊕E

u
x∗ , where the invariant subspaces E

s
x∗ and E

u
x∗

correspond to the spectrum inside and outside the unit circle, respectively.
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This means that we can find constants σ ∈ (0, 1) and C > 0 such that for all
n ∈ N,

‖Dfn
x∗|Es

x∗‖ ≤ Cσn and ‖Df−n
x∗ |Eu

x∗‖ ≤ Cσn

for some norm ‖ · ‖ on R
d. The subspaces E

s
x∗ and E

u
x∗ are called the stable

and unstable subspaces for the fixed point x∗. We can extend the notion of a
hyperbolic fixed point to a whole set.

Consider a compact set Λ ⊂ R
d which is invariant under f , i.e., f(Λ) = Λ.

We say that Λ is a hyperbolic set for f if there exists a splitting R
d = E

s
x ⊕E

u
x

for each x ∈ Λ, such that

1. E
s
x and E

u
x vary continuously with x,

2. the splitting is invariant, i.e., Dfx · Es
x = E

s
f(x) and Dfx · E

u
x = E

u
f(x),

3. there are constants σ ∈ (0, 1) and C > 0 such that for all n ∈ N,

‖Dfn
x |Es

x‖ ≤ Cσn and ‖Df−n
x |Eu

x‖ ≤ Cσn.

7.1 Cone fields

In practice, it is impossible to explicitly find the invariant set Λ, not to mention
the splitting E

s ⊕ E
u, except in the most trivial cases. Fortunately, we shall

soon see that hyperbolicity is a robust property, and one can thus make do with
pretty crude approximations of both Λ and the subbundles of the splitting.
By robust, we mean that the defining hypotheses are open in the C1-topology.

Definition 3. A compact region N ⊂ R
d is called a trapping region for f

provided f(N) ⊂ int(N), where int(N) denotes the interior of N .

Given a trapping region N , we can construct the maximal invariant set of N :

Λ =
∞
⋂

i=0

f i(N).

It is clear that any other invariant set in N must be a proper subset of Λ.
Seeing that the sequence {f i(N)}∞i=0 is nested, we can approximate Λ by
considering high iterates of N . Any property valid in an open neighborhood
of Λ will then also hold for fk(N) if we take k sufficiently large.

Let F
s⊕F

u be a continuous splitting approximating E
s ⊕E

u. Given α ≥ 0
we define the stable and unstable cone fields

Cs
x(α) = {v1 + v2 ∈ F

s
x ⊕ F

u
x : |v2| ≤ α|v1|},

Cu
x (α) = {v1 + v2 ∈ F

s
x ⊕ F

u
x : |v2| ≥ α|v1|}.

The following theorem provides a practical way of proving that a set is hy-
perbolic:
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Theorem 5. Let N be a trapping region for a C1 diffeomorphism f . Suppose
that there exists a continuous splitting F

s ⊕ F
u defined on N , and that there

are constants α ≥ 0, C > 0, and σ > 1 so that

Df−1
x · Cs

x(α) ⊂ Cs
f−1(x)(α) and Dfx · Cu

x (α) ⊂ Cu
f(x)(α)

and
‖Df−n

x |Cs
x(α)‖ ≥ Cσn and ‖Dfn

x |Cu
x (α)‖ ≥ Cσn

for every x ∈ N . Then Λ = ∩∞
i=0f

i(N) is hyperbolic for f .

It is clear that the assumptions of this theorem are open in the C1-topology,
which proves that hyperbolicity is a robust property. In particular, if g is C1

close to f , then Λg = ∩∞
i=0g

i(N) is hyperbolic for g.

8 The Smale horseshoe

In this section we will introduce the Smale horseshoe, which was first intro-
duced by Stephen Smale in [Sm67]. The construction is based on a diffeomor-
phism f defined on a stadium-shaped region N , see Fig. 12(a). It is convenient
to think of N as being made up of four pieces: N = Dl∪Sl ∪Sr ∪Dr. Here Dl

and Dr are the left and right half discs (coloured blue), respectively. Sl and
Sr are the left and right halves of the interior square, respectively. Although
the horseshoe map f is well-defined on all of N , all interesting dynamics takes
place inside the square S = Sl ∪ Sr.

The horseshoe map is a composition of a vertical contraction, a horizontal
expansion, and a folding. This is illustrated in Fig. 12.

SlDl DrSr

Fig. 12. A geometric description of the horseshoe map.

We will now state some properties of the horseshoe map f : N → N .

(1) N is a trapping region for f , i.e., f(N) ⊂ N .
(2) f is injective, but not surjective on N . Thus f−1 is not well-defined on all

of N .
(3) f(Dl) ⊂ Dl, and f is a contraction on Dl. Thus f |Dl

has a unique fixed
point p which is a sink: x ∈ Dl ⇒ limn→∞ fn(x) = p.

(4) Since f(Dr) ⊂ Dl, we also have x ∈ Dr ⇒ limn→∞ fn(x) = p.
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From (3)+(4) it is clear that the only interesting dynamics (if any) must
take place within S: all other points tend to the sink p. We are interested in
describing the invariant part of S:

Λ = {x ∈ S : fn(x) ∈ S for all n ∈ Z}. (10)

It is natural to think of Λ as the intersection between the set of forward and
backward invariant sets: Λ = Λ+ ∩ Λ−, where

Λ+ = {x ∈ S : fn(x) ∈ S for all n ∈ Z
+}

Λ− = {x ∈ S : fn(x) ∈ S for all n ∈ Z
−}

We now assume that f maps the vertical strips V0 and V1 linearly onto the
horizontal strips H0 and H1, see Fig. 13. Let Λ−

n = ∩n
j=0f

j(S). Then we have

V0 V1

H0

H1

Fig. 13. The horseshoe map acting affinely on the vertical strips V0 and V1.

Λ− = ∩∞
j=0Λ

−
n , and it follows that

Λ−
n+1 = f(Λ−

n ) ∩ S = [f(Λ−
n ) ∩ H0] ∪ [f(Λ−

n ) ∩ H1]

= f(Λ−
n ∩ V0) ∪ f(Λ−

n ∩ V1).

This means that Λ−
n+1 is made up of 2n+1 (disjoint) horizontal strips. By the

contruction, it follows that the backward invariant set is a Cartesian product
of an interval and a Cantor2 set: Λ− = I × C−. Analogously, we have Λ+ =
C+ × I, i.e., the forward invariant set is the product of a Cantor set and an
interval. Forming the invariant set Λ, we now see that it has a very complicated
structure – it is the product of two Cantor sets:

Λ = Λ+ ∩ Λ− = [C+ × I] ∩ [I × C−] = C+ × C−.

It can be shown that Λ itself is a Cantor set (of measure zero) on which f
displays very complicated dynamics: there is a dense orbit, there are orbits of
all periods, and almost all nearby points separate at an exponential rate. It
can also be established that Λ is a uniformly hyperbolic set.

2 A Cantor set is compact, totally disconnected, and consists entirely of boundary
points.
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8.1 Symbolic dynamics

It is possible to identify the dynamics of the horseshoe map with a synthetic
dynamical system: σ : Σ2 → Σ2. This synthetic system is known as the full
shift on the space of two symbols, and is defined as follows. Let Σ2 denote the
set of all bi-infinite binary sequences:

Σ2 = {a = (ai) : ai ∈ {0, 1}, i ∈ Z}.

In other words, Σ2 = {0, 1}Z. It is easy to show that Σ2 is homeomorphic to a
Cantor set. We can turn Σ2 into a metric space by introducing the following
notion of distance:

d(a, b) = Σ∞
i=−∞

|ai − bi|
20|i|

.

We define the shift map σ to be the map that takes a = (ai) to σ(a) = (ai+1).
This is an injective, continuous map, and as claimed above, all dynamical
properties of the dynamical system σ : Σ2 → Σ2 have a counterpart in the
horseshoe system f : Λ → Λ. The way this is rigorously established is by
proving the existence of a conjugation in terms of a homeomorphism h : Σ2 →
Λ such that σ = h−1 ◦ f ◦ h.

The identification between points in Σ2 and Λ is easy to describe: given a
point p ∈ Λ, we associate the point a = (ai) in Σ2 that satisfies

f i(p) ∈ V0 ⇒ ai = 0

f i(p) ∈ V1 ⇒ ai = 1.

The hard part is to establish that h really conjugates the two systems. Taking
this for granted, it follows that the following properties of σ carries over to f :

(1) σ has exactly 2n period-n orbits.
(2) The periodic orbits of σ are dense in Σ2.
(3) σ has a dense (non-periodic) orbit.
(4) Almost all nearby points in Σ2 separate at an exponential rate.

A very fundamental observation is that a horseshoe-type dynamics appears
whenever a system has a periodic point who’s stable and unstable manifolds
intersect transversally (also known as a transverse homoclinic point). This was
discovered by Poincaré during his work on the stability of the solar system.

9 Attractors

Let f : R
d → R

d be a Ck map. We will fix the following notation3:

3 The reader should be aware of that there are several different notions of a strange
attractor, see [Mi85]. We choose to use very strong (but natural) requirements in
this introduction.
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Definition 4. A compact, invariant set Λf is called attracting if there exists
an open neighborhood U of Λf such that f(U) ⊂ U and ∩∞

i=0f
i(U) = Λf .

The largest such U is called the basin of attraction for Λf , and is denoted
B(Λf ). In particular, the maximal invariant set of any trapping region is an
attracting set. Even so, it may be the case that most points in B(Λf ) tend to a
much smaller subset of Λf . As an example, consider a planar diffeomorphism
with the phase portrait as illustrated in Fig. 14. Although the whole interval
I between the two sinks is attracting with B(I) = R

2, it is clear that most
orbits tend to either one of the extreme points of I. Indeed, it is only the
points belonging to the stable manifold of the saddle that do not tend to the
sinks. In order to rule out this kind of situation, we restrict our attention to

Fig. 14. An attracting set I which is not an attractor.

a subset of the attracting sets.

Definition 5. An attracting set Λf which contains a dense orbit is called an
attractor: Λf = cl(∪∞

i=0f
i(x)) for some x ∈ Λf .

This means that Λf is minimal in the sense that no proper subset of Λf

is attracting. Clearly, the attracting set I in our example is not an attractor
whereas the two extreme fixed points are. There is, however, nothing “chaotic”
about the asymptotic behavior of points tending to these attractors, and the
situation is therefore dynamically tame.

From this point of view we would like to be able to distinguish between
attractors that exhibit rich dynamics from those that do not.

Definition 6. An attractor Λf is called strange if for almost all pairs of dif-
ferent points in B(Λf ), their forward orbits eventually separate by at least a
positive constant δ (only depending on Λf ).

Here, almost all pairs means with probability one in B(Λf ) × B(Λf ) with
respect to Lebesgue measure. Strange attractors are sometimes called chaotic
or sensitive seeing that, no matter how accurately we measure the initial
conditions, we will eventually accumulate an error of size δ.

Sometimes, we can also say something about the speed at which nearby
orbits separate. Indeed, if an attractor Λf is hyperbolic with a non-trivial
unstable tangent bundle, we clearly have exponential divergence of almost all
nearby orbits. Such an attractor is called non-trivial hyperbolic and, apart
from being strange, it is also robust.
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All definitions concerning attractors can be carried over to flows by sub-
stituting f i, i ∈ N for ϕ(·, t), t ≥ 0.

10 The Lorenz system

We conclude this short introduction with a presentation of the Lorenz system.

10.1 Global and local bifurcations

The following non-linear system of differential equations, now known as the
Lorenz equations,

ẋ1 = −σx1 + σx2

ẋ2 = ̺x1 − x2 − x1x3 (11)

ẋ3 = −βx3 + x1x2,

was introduced in 1963 by Edward Lorenz, see [Lo63]. As a crude model of
atmospheric dynamics, these equations led Lorenz to the discovery of sensi-
tive dependence of initial conditions - an essential factor of unpredictability in
many systems. Numerical simulations for an open neighborhood of the clas-
sical parameter values σ = 10, β = 8/3 and ̺ = 28 suggest that almost all
points in phase space tend to a strange attractor - the Lorenz attractor.

We first note that the system (11) (and thus its solution) is invariant
under the transformation S(x1, x2, x3) = (−x1,−x2, x3). This means that any
trajectory that is not itself invariant under S must have a “twin trajectory”.

Numerical simulations for parameter values σ ≈ 10, β ≈ 8/3 , and 0 < ̺ <
∞ indicate that these equations exhibit a strange attractor for an open interval
of ̺-values. This fact was rigorously established in [Tu02]. In what follows, we
will see how the solutions change on a global scale as ̺ is varied. This gives
us a rough idea of how the chaotic dynamics is created and destroyed.

For ̺ < 1, the origin is the only fixed point of the system, and it is a global
sink (all three eigenvalues are real and negative).

At ̺ = 1, the origin undergoes a pitchfork bifurcation, and for ̺ > 1 there
are three fixed points: the origin and a symmetric pair of stable fixed points,
C± = (±

√

β(̺ − 1),±
√

β(̺ − 1), ̺−1). In the creation of C±, the origin loses
its stability, and becomes a saddle, with one unstable direction. Initially, the
symmetric fixed points are sinks, but for ̺ slightly larger than one, two of the
negative real eigenvalues become a complex conjugate pair: C± have turned
into stable spirals. The unstable manifold of the origin, denoted Wu(0), has
two branches: one with x1 > 0 (Wu

+(0)) and one with x1 < 0 (Wu
−(0). At this

stage, Wu
+(0) is attracted to, and spirals toward, C+, and Wu

−(0) is attracted
to, and spirals toward, C−, see Figure 15.a.

At ̺ = ̺hom ≈ 13.926, Wu
+(0) makes such a large spiral around C+ that it

actually hits the stable manifold of the origin, W s(0). As a consequence, we
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x1

x3

x1

x3

x1

x3

Fig. 15. The Lorenz flow for (a) ̺ < ̺hom, (b) ̺ = ̺hom and (c) ̺ > ̺hom.

have a homoclinic orbit. By symmetry, we have a pair of homoclinic orbits,
see Figure 15.b.

Although it seems intuitively clear, an analytic proof of the existence of
these homoclinic orbits was presented as late as 1992 by Hasting and Troy,
see [HT92]. They showed that for σ = 10 and β = 1, there exists a pair of
homoclinic orbits for some ̺ ∈ (1, 1000).

As mentioned in Section 8, very complicated sets of closed orbits are ex-
pected to be created as ̺ is increased beyond ̺hom. Numerical simulations
indicate that the branches of Wu(0) change side before spiraling in towards
the fixed points C±. This results in the creation of two unstable closed orbits
and a horseshoe. In 1995, Mischaikow and Mrozek [MM95] showed that for
(σ, β, ̺) ≈ (45, 10, 54), the Lorenz equations do indeed generate a horseshoe,
and thus it follows that the Lorenz equations are chaotic for these parameter
values. However, the chaotic set (the horseshoe) is not attracting and it has
measure zero, whereas the invariant set discovered by Lorenz appeared to be
both attracting and large. At ̺ = ̺het ≈ 24.06, the branches of Wu(0) enter

x1

x3

x1

x3

Fig. 16. The Lorenz flow for (a) ̺ = ̺het, (b) ̺ > ̺het.

the stable manifolds of the two unstable closed orbits, see Figure 16.a, thus
giving rise to a pair of heteroclinic orbits. This means that both branches wrap
around the unstable closed orbits forever. At this stage it seems plausible that
the return map may have an attracting invariant set.
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For ̺ > ̺het, the branches of Wu(0) spiral outwards from the two unstable
closed orbits. When the spirals reach a critical size, they cross over and start
to spiral around the other fixed point. This seems to go on for ever.

At ̺ = ̺H ≈ 24.74, the two unstable closed orbits shrink into C±. The
real parts of the complex conjugate eigenvalues of C± cross the imaginary
axis and become positive as ̺ > ̺H . This is known as a Hopf bifurcation, and
results in C± losing their stability, which leaves us with three unstable fixed
points.

For ̺-values greater than roughly 31, there seems to appear intervals where
we have stable closed orbits, and for ̺ ≥ 200 it has been proved in [Ro79]
that all solutions tend to a single stable periodic orbit.

We end this introduction with a bifurcation diagram illustrating some of
the events described above.

̺ = 1 ̺hom ̺het ̺H

Fig. 17. A bifurcation diagram for ̺ ∈ (0, 32). Numerical simulations indicate the
presence of a strange attractor in the shaded region.

10.2 The dynamics of the Lorenz flow

Recall that for the classical parameter values σ = 10, β = 8/3 and ̺ = 28, each
fixed point C± has a pair of complex eigenvalues with positive real part, and
one real, negative eigenvalue. The origin is a saddle point with two negative
and one positive eigenvalue satisfying

0 < −λ3 < λ1 < −λ2.

Thus, the stable manifold of the origin W s(0) is two-dimensional, and the
unstable manifold of the origin Wu(0) is one-dimensional.

We also note that the flow contracts volumes at a significant rate. As the
divergence of the vector field is given by

∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
= −(σ + β + 1),
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we see that the volume of a solid at time t can be expressed as

V (t) = V (0)e−(σ+β+1)t ≈ V (0)e−13.7t,

for the classical parameter values. This means that the flow contracts volumes
almost by a factor one million per time unit, which is quite extreme.

There appears to exist a forward invariant open set U containing the origin
but bounded away from C±. The set U is a torus of genus two, with its holes
centered around the two excluded fixed points. If we let ϕ denote the flow of
(11), we can form the maximal invariant set

A =
⋂

t≥0

ϕ(U, t).

Due to the flow being dissipative, the attracting set A must have zero volume.
It must also contain the unstable manifold of the origin Wu(0), which seems to
spiral around C± in a very complicated, non-periodic fashion, see Figure 11.
In particular, A contains the origin itself, and therefore the flow on A can
not have a hyperbolic structure. The reason is that fixed points of the vector
field generate discontinuities for the return maps, and as a consequence, the
hyperbolic splitting is not continuous. Apart from this, the attracting set
appears to have a strong hyperbolic structure as described below.

As it was very difficult to extract rigorous information about the attract-
ing set A from the differential equations themselves, a geometric model of
the Lorenz flow was introduced by John Guckenheimer in the late sixties, see
[Gu76]. This model has been extensively studied, and it is well understood
today, see e.g. [GW79, Wi79, Sp82, Ra78, Ro89, Ry89]. Meanwhile, the orig-
inal equations introduced by Lorenz remained a puzzle. During the nineties,
however, a few computer-assisted proofs were announced, see [GZ98], [HT92],
and [MM95]. These articles deal with subsets of A which are not attracting,
and therefore only concern a set of trajectories having measure zero. Despite
this, it was always widely believed that the flow of the Lorenz equations has
the same qualitative behavior as its geometric model.

The geometric model is made up of two pieces: one piece dealing with all
trajectories passing near the origin, and one piece taking care of the global
aspects of the flow. We consider a flow with a fixed point at the origin with
eigenvalues just as the Lorenz flow. We also assume that there exists a unit
rectangle Σ ⊂ {x3 = 1} which is transversal to the flow, such that the induced
return map R acts on Σ as illustrated in Figure 18.

Note that R is not defined on the line Γ = Σ ∩ W s(0): these points tend
to the origin, and never return to Σ. We will assume that R(Σ \ Γ ) ⊂ Σ, to
ensure that the flow has an attracting set with a large basin of attraction. We
can now decompose the return map: R = D ◦P , where D is a diffeomorphism
corresponding to the flow outside a unit cube centered at the origin, and P
describes the flow inside the cube. By assuming that the flow is linear in the
cube, we can explicitly find P :
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Γ

Σ

Fig. 18. The two-dimensional return map acting on Σ.

P (x1, x2, 1) =
(

sign(x1), x2|x1|−λ2/λ1 , |x1|−λ3/λ1

)

.

Seeing that −λ3/λ1 < 1 < −λ2/λ1, we have very strong expansion in the
x1-direction, and an even stronger contraction in the x2-direction:

lim
|x1|→0

∂P3

∂x1
= O(|x1||λ3|/λ1−1) and lim

|x1|→0

∂P2

∂x2
= O(|x1||λ2|/λ1).

The model assumes that the flow outside the cube preserves the x2-direction,
i.e., that D takes the horizontal lines ℓ(t) = (±1, t, c) into lines ℓ̃(t) = (c̃, t, 1),
t ∈ [−1, 1]. This ensures that the contracting direction is preserved, and it
also implies that the first component of the return map is independent of x2.
Therefore, we can write R =

(

R1(x1), R2(x1, x2)
)

. Further assumptions are

that ∂R2

∂x2

≤ µ < 1 and R′
1(x1) >

√
2 for all x1, x2 ∈ Σ. The return map now

has a hyperbolic splitting E
s
x ⊕ E

u
x, with E

s
0 = Γ , and the stable leaves ℓ̃(t)

foliate Σ. Since all points on a stable leaf share a common future, we may
form an equivalence class of such points. By taking the quotient, we get an
interval map f (note that f = R1), which is assumed to satisfy the following
conditions, see Fig. 19:

1. f has a unique singularity at 0 with f(0−) = 1, and f(0+) = −1,
2. f : [−1, 1] \ {0} → [−1, 1],
3. f is C1 on [−1, 1] \ {0}, and f ′(x) >

√
2 for x 6= 0,

These conditions are enough to prove that almost all points in [−1, 1] have
dense orbits under f . It is also clear that f exhibits exponential sensitivity.
By pulling the information back to the original return map, it is possible to
prove that the attracting set of the model flow is a generalized non-trivial
hyperbolic attractor (also known as a singular hyperbolic attractor).

10.3 The Lorenz attractor

In an issue of the Mathematical Intelligencer the Fields medalist Steven Smale
presented a list of challenging problems for the 21th century, see [Sm98].
Problem number 14 reads as follows:
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Fig. 19. The one-dimensional return map acting on [−1, 1].

Is the dynamics of the ordinary differential equations of Lorenz that
of the geometric Lorenz attractor of Williams, Guckenheimer, and
Yorke?

As an affirmative answer to Smale’s question, the following result was
proved in [Tu02];

Theorem 6. For the classical parameter values, the Lorenz equations support
a robust strange attractor A. Furthermore, the flow admits a unique SRB
measure µϕ with supp(µϕ) = A.

In fact, it is established that the attracting set is a singular hyperbolic attrac-
tor: almost all nearby points separate exponentially fast until they end up on
opposite sides of the attractor. Loosely speaking, this means that a tiny blob
of initial values rapidly smears out over the entire attractor, just as observed
in numerical experiments. The existence of the SRB measure is equivalent to
saying that, for Lebesgue almost all points in the basin of attraction B(A),
and for all h ∈ C0(B(A), R), the time- and space-averages coincide:

lim
T→∞

1

T

∫ T

0

h(ϕ(x, t))dt =

∫

h(x)dµϕ,

where µϕ is an ϕ-invariant probability measure.
It is perhaps worth pointing out that the Lorenz attractor does not act

quite as the geometric model predicts. The latter can be reduced to an inter-
val map which is everywhere expanding. This is not the case for the Lorenz
attractor: there are large regions in Λ that are contracted in all directions un-
der the return map. Such regions, however, are pre-compensated by iterates
having a large associated expansion. This corresponds to the interval map
being eventually expanding, and does not lead to any different qualitative
long-time behavior. Apart from this minor discrepancy, the Lorenz attractor
is just as the geometric model predicts: it contains the origin, and thus has a
very complicated Cantor book structure as described in [Wi79].
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