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Abstract— The existence of short periodic orbits for the Lorenz
system is studied rigorously. We describe a method for finding
all short cycles embedded in the chaotic attractor. We use the
method of close returns to find initial points for the Newton
operator, combined with interval tools for proving the existence
of periodic orbits in a neighborhood of a pseudo-periodic orbit.
All periodic orbits with period p ≤ 8 of the Poincaré map for
the Lorenz system are found.

I. INTRODUCTION

Despite the enormous progress in the theory of Dynamical

Systems, proving the existence and location of periodic orbits

for nonlinear continuous-time systems still is a highly non-

trivial task. Even for planar polynomial systems (addressed in

Hilbert’s 16:th problem), this remains a huge challenge.

With the advent of computer-aided proofs, based on set-

valued mathematics, several methods for just this task have

been introduced. An important class of such methods use

interval operators applied to a Poincaré map associated with

the continuous system considered. When these methods are

combined with approximations of periodic orbits, they can

be used to extract many true cycles embedded in chaotic

attractors.

Finding all short periodic orbits is even more challenging.

It is known that this problem can be successfully solved for

a certain class of systems including the Rössler system [1].

In this work we extend this method to a class of systems

whose attractors (like the Lorenz attractor) contain an unstable

equilibrium. For such systems there exist trajectories for

which the return time is arbitrarily long. It is impossible to

evaluate an interval flow-operator over a box containing such

trajectories. For nearby boxes the evaluation procedure often

fails or produces unusable results due to huge overestimation.

The Lorenz system [2] is well understood in terms of

geometric models [3]. It has been shown to be chaotic in

the topological sense for the case of non-classical [4] and

classical [5] parameter values. The existence of a strange

attractor for this system has been proved in [6].

In [7], we found the six shortest periodic orbits for the

Lorenz system. This result was obtained by generating a graph

representation of the dynamics of the Poincaré map, finding

all short cycles in the graph, and verifying which cycles

correspond to periodic orbits of the dynamical system. For

longer periods the method fails due to long computation time,

and the necessity of introducing many intermediate sections.

In this work, we use special properties of the Lorenz

attractor which, combined with the interval tools, allow us

to find all periodic orbits of much longer length.

II. INTERVAL METHODS FOR FINDING PERIODIC ORBITS

In this section, we briefly describe a general method which

can be used to find all short periodic orbits. The first step of

the method is a reduction of the continuous-time system to a

discrete system using the concept of the Poincaré map.

A. Poincaré map

Let us choose hyperplanes Σ1, Σ2, . . . ,Σm transversal to

the flow, and let Σ = Σ1 ∪ · · · ∪ Σm. The Poincaré map

P : Σ �→ Σ is defined as

P (x) = ϕ(τ(x), x), (1)

where τ(x) is the return time after which the trajectory ϕ(t, x)
returns to Σ. Periodic points of P correspond to periodic orbits

of the continuous system.

In order to study the existence of period–p orbits of P we

construct the map F defined by

[F (z)]k = x(k mod n)+1 − P (xk), k = 1, . . . , p, (2)

where z = (x1, . . . , xp)
T. Zeros of F correspond to period–p

orbits of P , i.e., F (z)=0 if and only if P p(x1) = x1.

B. Interval methods

Interval methods provide simple computational tests for

uniqueness, existence, and nonexistence of zeros of a map

within a given interval vector. In order to investigate the

existence of zeros of F in the interval vector z, one evaluates

an interval operator over z. In this work we use the Krawczyk

operator [8] defined by

K(z) = ẑ − CF (ẑ) − (CF ′(z) − I)(z − ẑ), (3)
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where ẑ ∈ z and C is an invertible matrix. In our implementa-

tion, we choose ẑ to be the center of z, and the preconditioning

matrix C to be the inverse of F ′(ẑ).
If K(z) is enclosed in the interior of z, i.e., K(z) ⊂ int z,

then F has exactly one zero in z. This property allows us to

prove the existence and uniqueness of zeros.

In order to evaluate the interval operator for the map F
defined by (2), we need a method to find an enclosure of

P (x) and an enclosure of the Jacobian P ′(x), where x ∈ Σ
is an interval vector. These enclosures are found in interval

arithmetic by rigorous integration of the differential equation

and its variational equation. For details see [1].

C. Searching for periodic orbits

Now, we describe the procedure for detecting periodic orbits

in chaotic systems. First, periodic orbits are extracted using

the method of close returns [9]. We monitor a trajectory and

look for parts of the trajectory coming close to the initial

point. Then using the standard (non-interval) Newton method

we sharpen the approximation, obtaining a quasi–periodic

trajectory z = (x1, x2, . . . , xp) of the Poincaré map. We create

an interval vector z centered at the approximate position z of

the orbit, with the same diameter at all points along the orbit.

Finally we check whether the image of z under the Krawczyk

operator is enclosed in z. If this condition holds, the existence

(and local uniqueness) of a periodic orbit is proved. In the

opposite case, we modify the interval vector and repeat the

computations.

III. SHORT PERIODIC ORBITS FOR THE LORENZ SYSTEM

A. Lorenz system

The Lorenz system is described by the following set of

equations

ẋ1 = sx2 − sx1,

ẋ2 = rx1 − x2 − x1x3, (4)

ẋ3 = x1x2 − qx3.

We consider the Lorenz system with the classical parameter

values: s = 10, r = 28, q = 8/3.

In what follows, we will use the diagonal form of the Lorenz

system (it can be obtained using a linear change of variables),

where the invariant manifolds of the origin are tangent to the

coordinate axes:

ẋ1 = λ1x1 − k1(x1 + x2)x3,

ẋ2 = λ2x2 + k1(x1 + x2)x3, (5)

ẋ3 = λ3x3 + (x1 + x2)(k2x1 + k3x2).

The constants are given by

u =
√

(s + 1)2 + 4s(r − 1),

k1 = s/u ≈ 0.2886, k2 = (s−1+u)/(2s) ≈ 2.1828,

k3 = (s−1−u)/(2s) ≈ −1.2828, (6)

λ1 = (−s−1+u)/2 ≈ 11.8277,

λ2 = (−s−1−u)/2 ≈ −22.8277,

λ3 = −q ≈ −2.6667.
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Fig. 1. A trajectory of the Lorenz system

From now on we will refer to (5) as the Lorenz system. A

trajectory of the Lorenz system is shown in Fig. 1.

For the parameter values we consider, the Lorenz system has

three equilibria. One of them is the origin P0 = (0, 0, 0)T . It

has one positive eigenvalue λ1 and two negative eigenvalues

λ2 and λ3 defined in (6). The coordinates of the other two

equilibria, shown in Fig. 1 using symbols × and +, are

P± =

(
∓

λ2

u

√
q(r−1),±

λ1

u

√
q(r−1), r− 1

)
.

P± ≈ (±5.589,±2.896, 27) have a pair of complex eigenval-

ues with positive real parts µ1,2 ≈ 0.094 ± j10.19, and one

real negative eigenvalue µ3 ≈ −13.854.

B. Trapping region and average return time

Let us choose the Poincaré map P defined by the section

Σ = {x = (x1, x2, x3) : x3 = r − 1, ẋ3 < 0}.

We begin our analysis of the existence of periodic orbits in

the Lorenz attractor by finding a trapping region containing the

attractor of P . Observe that this cannot be done by a direct

integration of the differential equation seeing that there are

trajectories in the Lorenz attractor which pass arbitrarily close

to the origin, and for which the return time is arbitrarily long.

The trapping region is found using a modified Euler method

with rigorous error bounds. In order to reduce expansion along

the trajectories we use partitioning. When a box has expanded

enough, it is partitioned, and the sub–boxes are then treated

separately. This helps reduce the problems associated with

the wrapping effect. Trajectories passing close to the fixed

point at the origin are treated differently. We define a cube

around the origin, and interrupt computations if the trajectory

hits the cube. We then change to some carefully constructed

normal form coordinates, and explicitly compute the exit of the

trajectory. There are two different ways in which a rectangle

can pass through the cube. If the box intersects the stable

manifold of the origin, it is split along the line of intersection,

and exits the cube in two pieces. Otherwise, the box flows out

in one piece. After leaving the cube, we switch back to the

original coordinates, and resume the numeric computations.

For details see [6].
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TABLE I

LOWER BOUND tn OF RETURN TIMES FOR P n

n tn tn/n
1 0.537044 0.537044
2 1.147434 0.573717
5 2.981325 0.596265

10 6.047894 0.6047894
100 63.721019 0.63721019

10000 6397.362682 0.6397362682

The trapping region found using the method described above

is composed of 14518 boxes of size 1/27 × 1/27 (see Fig. 2).

There are 514126 nonforbidden transition between the boxes.
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Fig. 2. Trapping region for the Poincaré map, x3 = 27

Using information on return times for individual boxes, we

can find bounds for the return time of the nth iterate of P .

Since for some boxes an upper bound for the return time is

infinite, the return time for the whole attractor is unbounded.

Lower bounds of return times are collected in Table I.

It is clear that the average return time τaver between two

crossings is larger than tn/n for each n. For n = 10000 we

obtain:

τaver > 0.6397. (7)

It follows that the length of any periodic orbit corresponding

to a period–n cycle of P is larger than n · 0.6397.

C. Periodic orbits

Let γ denote the first intersection of the (two-dimensional)

stable manifold of the origin with the return plane Σ. We will

label each trajectory in the following way: if the trajectory

intersects Σ to the left of γ, then the intersection point is

labelled with L, otherwise it is labelled with R. In order to

study periodic orbits we consider periodic symbolic sequences

s = (s1, s2, . . . , sp), where sk =L or sk=R, for k = 1, 2, . . . p.

In [6], it was established that the Poincaré map induces a

stable foliation of the forward invariant part of Σ. From

this, it follows that a periodic symbolic sequence corresponds

to at most one periodic orbit. Non-rigorous computations

indicate that each periodic symbol sequence with no more

TABLE II

SHORT PERIODIC ORBITS, PERIOD p OF THE ASSOCIATED PERIODIC ORBIT

OF P , AND LENGTH t

p n t s
2 1 [1.55864, 1.55867] LR
3 2,3 [2.30589, 2.30591] LLR
4 4,5 [3.02357, 3.02360] LLLR
4 6 [3.08426, 3.08429] LLRR
5 7,8 [3.72562, 3.72566] LLLLR
5 9,10 [3.82024, 3.82026] LLLRR
5 11,12 [3.86952, 3.86956] LLRLR
6 13,14 [4.41774, 4.41779] LLLLLR
6 15,16 [4.53409, 4.53413] LLLLRR
6 17 [4.56629, 4.56633] LLLRRR
6 18,19 [4.59379, 4.59384] LLLRLR
6 20,21 [4.63712, 4.63716] LLRLRR
7 22,23 [5.10301, 5.10307]
7 24,25 [5.23417, 5.23422]
7 26,27 [5.28632, 5.28636]
7 28,29 [5.30118, 5.30122]
7 30,31 [5.33089, 5.33093]
7 32,33 [5.36986, 5.36990]
7 34,35 [5.37050, 5.37055]
7 36,37 [5.39419, 5.39424]
7 38,39 [5.42910, 5.42915]
8 40,41 [5.78337, 5.78345]
8 42,43 [5.92496, 5.92502]
8 44,45 [5.99042, 5.99047]
8 46,47 [5.99729, 5.99735]
8 48 [6.01000, 6.01005]
8 49,50 [6.03521, 6.03526]
8 51,52 [6.08233, 6.08238]
8 53,54 [6.08380, 6.08385]
8 55,56 [6.10803, 6.10808]
8 57,58 [6.12143, 6.12148]
8 59,60 [6.12231, 6.12236]
8 61,62 [6.13510, 6.13515]
8 63,64 [6.15469, 6.15475]
8 65,66 [6.17585, 6.17590]
8 67 [6.18749, 6.18754]
8 68,69 [6.19458, 6.19463]

than 24 repeating symbols corresponds to a periodic orbit

(compare [10]).

There is no periodic orbit corresponding to a single letter

symbol. This has been verified by checking that there are no

period–1 cycles in the graph (see [7]).

All periodic orbits of P with period p ≤ 8 were found using

the combination of the method of close returns and interval

tools. In order to achieve this, we first generated a trajectory

consisting of 200000 points of the Poincaré map P2, defined by

the section Σ2 = {x = (x1, x2, x3) : x3 = r − 1}. The search

was then limited to periodic orbits with period p ≤ 16 (this

corresponds to periodic orbits with period p ≤ 8 for the map

P . Next, we located quasi–periodic trajectories (returning to

the neighborhood with radius 0.005 of the initial point). Each

found quasi–periodic trajectory was used as an initial point for

a Newton iteration to find periodic orbits in its neighborhood.

Finally, we proved the existence of a nearby true periodic orbit

using the Krawczyk operator. If the same periodic orbit had

already been found it was skipped, otherwise its position was

recorded.

The results are reported in Table II. For each orbit found,

its period p, its position n in the list of all periodic orbits
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(a) p=2, n=1, LR
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(b) p=3, n=2, LLR
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(c) p=4, n=4, LLLR
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(d) p=4, n=6, LLRR
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(e) p=5, n=7, LLLLR
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(f) p=5, n=9, LLLRR
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(g) p=5, n=11, LLRLR
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(h) p=6, n=13, LLLLLR
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(i) p=6, n=15, LLLLRR
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(j) p=6, n=17, LLLRRR
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(k) p=6, n=18, LLLRLR
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(g) p=6, n=20, LLRLRR
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Fig. 3. Short periodic orbits

sorted by flow-times, the interval containing the flow-time,

and for shorter orbits, its corresponding symbol sequence are

given. There are 5 self symmetric orbits (n = 1, 6, 17, 47, 67),

one for each period p = 2, 4, 6, and two for period 8. These

are periodic orbits with symmetric symbol sequences: LR,

LLRR, LLLRRR, LLLLRRRR, LLRLRRLR. There are

also 32 pairs of orbits symmetric to each other. Clearly, they

have equal flow-times. For each pair, we report only the one

with the number of L’s not larger than the number of R’s. This

gives the total number of 69 orbits. Periodic orbits with period

p ≤ 6 are presented in Fig. 3. For each pair of symmetric

orbits, only one orbit is plotted.

Let us note that there are exactly 69 periodic symbolic

sequences with no more than 8 repeating symbols, and recall

that each periodic symbol sequence corresponds to at most one

periodic orbit. Hence, we have confirmed that there are exactly

69 periodic orbits of P with period p ≤ 8 (compare [10]).

The flow-time of any other periodic orbit of P is larger than

9 · 0.6397 = 5.7573 (compare Eq. (7)). Since the first 39

periodic orbits have periods shorter than 5.43, it follows that

these periodic orbits are the shortest. Note that it is possible

that an orbit with period p = 9 has a flow-time shorter than

that of some period–8 orbits.

IV. CONCLUSION

Using the search method for short periodic orbits and a

theoretical argument for the Lorenz system, we have found

all periodic orbits with period p ≤ 8 of the Poincaré map

associated with the Lorenz system.
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